On the Restraining Power of Guards
Guarded fragments of first-order logic were recently introduced by Andreka, van Benthem and Nemeti; they consist of relational first-order formulae whose quantifiers are appropriately relativized by atoms. These fragments are interesting because they extend in a natural way many propositional modal...
Saved in:
Published in: | The Journal of symbolic logic Vol. 64; no. 4; pp. 1719 - 1742 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
New York, USA
Cambridge University Press
01-12-1999
The Association for Symbolic Logic, Inc Association for Symbolic Logic |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Guarded fragments of first-order logic were recently introduced by Andreka, van Benthem and Nemeti; they consist of relational first-order formulae whose quantifiers are appropriately relativized by atoms. These fragments are interesting because they extend in a natural way many propositional modal logics, because they have useful model-theoretic properties and especially because they are decidable classes that avoid the usual syntactic restrictions (on the arity of relation symbols, the quantifier pattern or the number of variables) of almost all other known decidable fragments of first-order logic. Here, we investigate the computational complexity of these fragments. We prove that the satisfiability problems for the guarded fragment (GF) and the loosely guarded fragment (LGF) of first-order logic are complete for deterministic double exponential time. For the subfragments that have only a bounded number of variables or only relation symbols of bounded arity, satisfiability is EXPTIME-complete. We further establish a tree model property for both the guarded fragment and the loosely guarded fragment, and give a proof of the finite model property of the guarded fragment. It is also shown that some natural, modest extensions of the guarded fragments are undecidable. |
---|---|
AbstractList | Guarded fragments of first-order logic were recently introduced by Andréka, van Benthem and Németi; they consist of relational first-order formulae whose quantifiers are appropriately relativized by atoms. These fragments are interesting because they extend in a natural way many propositional modal logics, because they have useful model-theoretic properties and especially because they are decidable classes that avoid the usual syntactic restrictions (on the arity of relation symbols, the quantifier pattern or the number of variables) of almost all other known decidable fragments of first-order logic.
Here, we investigate the computational complexity of these fragments. We prove that the satisfiability problems for the
guarded fragment
(
GF
) and the
loosely guarded fragment
(
LGF
) of first-order logic are complete for deterministic double exponential time. For the subfragments that have only a bounded number of variables or only relation symbols of bounded arity, satisfiability is E
xptime
-complete. We further establish a
tree model property
for both the guarded fragment and the loosely guarded fragment, and give a proof of the
finite model property
of the guarded fragment.
It is also shown that some natural, modest extensions of the guarded fragments are undecidable. Guarded fragments of first-order logic were recently introduced by Andreka, van Benthem and Nemeti; they consist of relational first-order formulae whose quantifiers are appropriately relativized by atoms. These fragments are interesting because they extend in a natural way many propositional modal logics, because they have useful model-theoretic properties and especially because they are decidable classes that avoid the usual syntactic restrictions (on the arity of relation symbols, the quantifier pattern or the number of variables) of almost all other known decidable fragments of first-order logic. Here, we investigate the computational complexity of these fragments. We prove that the satisfiability problems for the guarded fragment (GF) and the loosely guarded fragment (LGF) of first-order logic are complete for deterministic double exponential time. For the subfragments that have only a bounded number of variables or only relation symbols of bounded arity, satisfiability is EXPTIME-complete. We further establish a tree model property for both the guarded fragment and the loosely guarded fragment, and give a proof of the finite model property of the guarded fragment. It is also shown that some natural, modest extensions of the guarded fragments are undecidable. |
Author | Grädel, Erich |
Author_xml | – sequence: 1 fullname: Gradel, Erich |
BookMark | eNp90F1LwzAUBuAgE9ym-BeKCl5V89X29E4pOsXp3JjXIW0TbZ3NTFrUf2-kZZdeHQgP78l5J2jUmEYhdEzwBWU4uaQRxIBhD41JylkYAcQjNMaY0pADoQdo4lyNMY5SDmN0smiC9k0FK-VaK6umal6DZ_OlbGB0MOukLd0h2tdy49TRMKdofXuzzu7C-WJ2n13Pw4IlURvmKselIpjjXJYlUADM8xKiIiWFVJJrmlCQMgaSqzilqdaaKY2pt4mmBZuiqz52a02tilZ1xaYqxdZWH9L-CCMrkb3Mh9dh1G4jCAGWcH9N6iNOdxGfnb9I1Kazjf-0IDHjhGIgxKvzXhXWOGeV3u0gWPxVKIYKvTzrZe1aY_9hYc8q16rvHZP2XcSJ70bEs6V4fFg_JdFqJZbsF9nkfjQ |
CitedBy_id | crossref_primary_10_1145_3040488 crossref_primary_10_1016_j_websem_2022_100721 crossref_primary_10_1145_371282_371388 crossref_primary_10_1002_malq_201400102 crossref_primary_10_1145_2817825 crossref_primary_10_2139_ssrn_460986 crossref_primary_10_1007_s10817_023_09687_x crossref_primary_10_1007_s10817_005_7354_1 crossref_primary_10_1007_s10992_020_09588_z crossref_primary_10_1145_1084805_1084827 crossref_primary_10_1016_j_apal_2005_06_007 crossref_primary_10_2168_LMCS_5_3_3_2009 crossref_primary_10_1007_s10849_005_5787_x crossref_primary_10_1016_j_artint_2022_103785 crossref_primary_10_1016_S0304_3975_98_00308_9 crossref_primary_10_1007_s11225_018_9824_6 crossref_primary_10_1016_S0747_7171_03_00034_8 crossref_primary_10_1007_s10849_005_5788_9 crossref_primary_10_1145_1806907_1806913 crossref_primary_10_1016_j_apal_2004_04_003 crossref_primary_10_1016_S0747_7171_03_00069_5 crossref_primary_10_4204_EPTCS_96_11 crossref_primary_10_1093_logcom_exv075 crossref_primary_10_1007_s10817_012_9257_2 crossref_primary_10_1016_S0168_0072_00_00018_X crossref_primary_10_2178_bsl_1058448678 crossref_primary_10_1007_s10817_019_09513_3 crossref_primary_10_1145_2701414 crossref_primary_10_1007_s10849_022_09390_x crossref_primary_10_1007_s11787_022_00316_6 crossref_primary_10_1016_S0022_0000_03_00030_8 crossref_primary_10_1145_3242953_3242958 crossref_primary_10_4204_EPTCS_243_4 crossref_primary_10_1093_logcom_exv077 crossref_primary_10_1145_1380572_1380575 crossref_primary_10_1016_j_ic_2006_08_001 crossref_primary_10_1145_3174805 crossref_primary_10_1007_s10817_010_9167_0 crossref_primary_10_1145_2287718_2287725 crossref_primary_10_1016_j_tcs_2014_08_015 crossref_primary_10_1145_504077_504079 crossref_primary_10_1093_logcom_exac002 crossref_primary_10_1137_120900095 crossref_primary_10_1016_j_apal_2004_01_003 crossref_primary_10_1145_2996796 crossref_primary_10_1007_s10849_005_5790_2 crossref_primary_10_1016_j_jcss_2006_10_011 crossref_primary_10_1017_S1471068412000257 crossref_primary_10_1016_S0304_3975_02_00866_6 crossref_primary_10_21146_2074_1472_2023_29_1_114_146 crossref_primary_10_4204_EPTCS_218_1 crossref_primary_10_1134_S1064562422700053 crossref_primary_10_1007_s10849_005_5786_y crossref_primary_10_1016_j_ipl_2012_02_005 crossref_primary_10_1007_s10844_009_0095_6 crossref_primary_10_1016_S0304_3975_01_00151_7 crossref_primary_10_1145_507382_507388 crossref_primary_10_1007_s10849_005_5789_8 crossref_primary_10_1007_s11704_013_2195_2 crossref_primary_10_1145_2108242_2108247 crossref_primary_10_1051_ita_2008023 crossref_primary_10_1145_1276920_1276921 crossref_primary_10_1016_j_jal_2010_08_004 crossref_primary_10_1145_2814570 crossref_primary_10_1145_3375628 crossref_primary_10_1007_s11225_017_9741_0 crossref_primary_10_1145_2976736 crossref_primary_10_4204_EPTCS_346_11 crossref_primary_10_1007_s10849_010_9126_5 crossref_primary_10_1007_s11787_023_00330_2 |
Cites_doi | 10.1007/s001530050130 10.1007/BF01299742 10.1007/978-3-642-75357-2 10.1002/malq.19990450304 10.1002/malq.19750210118 10.1016/S0304-3975(98)00308-9 10.1137/0206033 10.1007/978-3-642-59207-2 10.1007/BF01305233 10.1073/pnas.48.3.365 10.1007/BF00971620 10.1090/memo/0066 10.2307/421196 10.1023/A:1004275029985 10.1016/0168-0072(89)90023-7 10.1145/4904.4993 |
ContentType | Journal Article |
Copyright | Copyright 1999 Association for Symbolic Logic |
Copyright_xml | – notice: Copyright 1999 Association for Symbolic Logic |
DBID | BSCLL AAYXX CITATION EOLOZ FKUCP IOIBA K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC |
DOI | 10.2307/2586808 |
DatabaseName | Istex CrossRef Periodicals Index Online Segment 01 Periodicals Index Online Segment 04 Periodicals Index Online Segment 29 Periodicals Index Online Primary Sources Access—Foundation Edition (Plan E) - West Primary Sources Access (Plan D) - International Primary Sources Access & Build (Plan A) - MEA Primary Sources Access—Foundation Edition (Plan E) - Midwest Primary Sources Access—Foundation Edition (Plan E) - Northeast Primary Sources Access (Plan D) - Southeast Primary Sources Access (Plan D) - North Central Primary Sources Access—Foundation Edition (Plan E) - Southeast Primary Sources Access (Plan D) - South Central Primary Sources Access & Build (Plan A) - UK / I Primary Sources Access (Plan D) - Canada Primary Sources Access (Plan D) - EMEALA Primary Sources Access—Foundation Edition (Plan E) - North Central Primary Sources Access—Foundation Edition (Plan E) - South Central Primary Sources Access & Build (Plan A) - International Primary Sources Access—Foundation Edition (Plan E) - International Primary Sources Access (Plan D) - West Periodicals Index Online Segments 1-50 Primary Sources Access (Plan D) - APAC Primary Sources Access (Plan D) - Midwest Primary Sources Access (Plan D) - MEA Primary Sources Access—Foundation Edition (Plan E) - Canada Primary Sources Access—Foundation Edition (Plan E) - UK / I Primary Sources Access—Foundation Edition (Plan E) - EMEALA Primary Sources Access & Build (Plan A) - APAC Primary Sources Access & Build (Plan A) - Canada Primary Sources Access & Build (Plan A) - West Primary Sources Access & Build (Plan A) - EMEALA Primary Sources Access (Plan D) - Northeast Primary Sources Access & Build (Plan A) - Midwest Primary Sources Access & Build (Plan A) - North Central Primary Sources Access & Build (Plan A) - Northeast Primary Sources Access & Build (Plan A) - South Central Primary Sources Access & Build (Plan A) - Southeast Primary Sources Access (Plan D) - UK / I Primary Sources Access—Foundation Edition (Plan E) - APAC Primary Sources Access—Foundation Edition (Plan E) - MEA |
DatabaseTitle | CrossRef Periodicals Index Online Segment 04 Periodicals Index Online Segments 1-50 Periodicals Index Online Periodicals Index Online Segment 29 Periodicals Index Online Segment 01 |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Philosophy |
EISSN | 1943-5886 |
EndPage | 1742 |
ExternalDocumentID | oai_CULeuclid_euclid_jsl_1183745949 10_2307_2586808 2586808 ark_67375_6GQ_MKTN75RR_Q |
GroupedDBID | -DZ -~X 09C 09E 0R~ 2AX 5GY 6OB AAAZR AABES AABKS AABWE AACJH AAGFV AAKTX AANRG AARAB AASVR AAUKB ABBHK ABCQX ABEFU ABFAN ABJNI ABPFR ABPQH ABQTM ABROB ABSDQ ABTAH ABVZP ABXAU ABXSQ ABYAD ABYWD ABZCX ABZUI ACBMC ACETC ACGFS ACMTB ACNCT ACTMH ACTWD ACUBG ACUIJ ACYZP ACZBM ACZWT ADACV ADDNB ADFEC ADKIL ADMHG ADODI ADOVH ADOVT ADULT ADVJH AEBAK AECCQ AEHGV AELPN AENCP AENEX AENGE AEUPB AEYYC AFFUJ AFKQG AFLVW AFVYC AFXHP AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AI. AIGNW AIHIV AIOIP AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS AQJOH ARZZG AS~ ATUCA AUXHV AYIQA BBLKV BCGOX BESQT BJBOZ BLZWO BMAJL BQFHP BSCLL CBIIA CCQAD CCUQV CFAFE CFBFF CGQII CHEAL CJCSC CS3 CTKSN DOHLZ DQDLB DSRWC DU5 EBS ECEWR EGQIC EJD FEDTE FVMVE HGD HQ6 HVGLF HZ~ H~9 I.7 IH6 IOEEP IOO IPSME JAAYA JAS JBMMH JBZCM JENOY JHFFW JHPGK JKQEH JLEZI JLXEF JMS JPL JQKCU JSODD JST KAFGG KCGVB KFECR L7B LHUNA LW7 M7~ MVM NIKVX NZEOI O9- P2P RBU RCA RNS ROL RPE S10 S6U SA0 SAAAG T9H T9M TN5 UBC UPT UT1 VH1 WFFJZ WH7 WHG YQT YYP ZCG ZDLDU ZJOSE ZMEZD ZY4 ZYDXJ AEBPU AFXKK AIHXQ EFSUC AAYXX CITATION EOLOZ FKUCP IOIBA K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC 08R 0R AAEED AALRV ABFLS ABHAC ABUFD ACCHT ACQFJ ACUYZ ACWGA ADGEJ ADOCW AGOOT AS DZ HZ M7 RBR X |
ID | FETCH-LOGICAL-c375t-beb0de1040badd828804bd85c91caea4f2728aa681be6929fff3ef02dd87f2c3 |
IEDL.DBID | JAS |
ISSN | 0022-4812 |
IngestDate | Tue Jan 05 18:13:47 EST 2021 Thu Oct 10 16:04:11 EDT 2024 Thu Nov 21 21:33:43 EST 2024 Fri Feb 02 07:05:16 EST 2024 Wed Oct 30 09:36:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-beb0de1040badd828804bd85c91caea4f2728aa681be6929fff3ef02dd87f2c3 |
Notes | istex:C0ED0CC1F9CADF246AE34389BBF331295FFA56E3 PII:S002248120001286X ArticleID:01286 ark:/67375/6GQ-MKTN75RR-Q |
PQID | 1634120811 |
PQPubID | 1818490 |
PageCount | 24 |
ParticipantIDs | projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183745949 proquest_journals_1634120811 crossref_primary_10_2307_2586808 jstor_primary_10_2307_2586808 istex_primary_ark_67375_6GQ_MKTN75RR_Q |
PublicationCentury | 1900 |
PublicationDate | 1999-12-01 |
PublicationDateYYYYMMDD | 1999-12-01 |
PublicationDate_xml | – month: 12 year: 1999 text: 1999-12-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | New York, USA |
PublicationPlace_xml | – name: New York, USA – name: Providence, R.I., etc |
PublicationTitle | The Journal of symbolic logic |
PublicationYear | 1999 |
Publisher | Cambridge University Press The Association for Symbolic Logic, Inc Association for Symbolic Logic |
Publisher_xml | – name: Cambridge University Press – name: The Association for Symbolic Logic, Inc – name: Association for Symbolic Logic |
References | Andréka (S002248120001286X_ref001) 1999; 64 Grädel (S002248120001286X_ref014) 1999; 38 S002248120001286X_ref015 S002248120001286X_ref012 Trakhtenbrot (S002248120001286X_ref027) 1953; 88 S002248120001286X_ref011 S002248120001286X_ref010 Grädel (S002248120001286X_ref013) 1997 S002248120001286X_ref008 S002248120001286X_ref007 S002248120001286X_ref006 Herwig (S002248120001286X_ref021) Reed (S002248120001286X_ref026) 1997 Harel (S002248120001286X_ref018) 1985; 24 S002248120001286X_ref003 S002248120001286X_ref025 S002248120001286X_ref002 S002248120001286X_ref024 S002248120001286X_ref023 S002248120001286X_ref022 S002248120001286X_ref020 S002248120001286X_ref019 S002248120001286X_ref017 Vardi (S002248120001286X_ref028) 1997; 31 S002248120001286X_ref016 van Benthem (S002248120001286X_ref005) 1996 van Benthem (S002248120001286X_ref004) 1983 Donnini (S002248120001286X_ref009) 1996 |
References_xml | – start-page: 87 volume-title: Surveys in combinatorics year: 1997 ident: S002248120001286X_ref026 contributor: fullname: Reed – ident: S002248120001286X_ref016 – volume: 88 start-page: 953 year: 1953 ident: S002248120001286X_ref027 article-title: On recursive separability publication-title: Doklady Akademii Nauk SSSR contributor: fullname: Trakhtenbrot – volume: 38 start-page: 313 year: 1999 ident: S002248120001286X_ref014 article-title: Undecidability results on two-variable logics publication-title: Archive of Mathematical Logic doi: 10.1007/s001530050130 contributor: fullname: Grädel – ident: S002248120001286X_ref020 doi: 10.1007/BF01299742 – volume: 24 start-page: 51 year: 1985 ident: S002248120001286X_ref018 article-title: Recurring dominoes: Making the highly undecidable highly understandable publication-title: Annals of Discrete Mathematics contributor: fullname: Harel – ident: S002248120001286X_ref003 doi: 10.1007/978-3-642-75357-2 – volume-title: Exploring logical dynamics year: 1996 ident: S002248120001286X_ref005 contributor: fullname: van Benthem – ident: S002248120001286X_ref015 doi: 10.1002/malq.19990450304 – ident: S002248120001286X_ref025 doi: 10.1002/malq.19750210118 – volume-title: Modal logic an classical logic year: 1983 ident: S002248120001286X_ref004 contributor: fullname: van Benthem – ident: S002248120001286X_ref012 doi: 10.1016/S0304-3975(98)00308-9 – volume: 64 start-page: 243 year: 1999 ident: S002248120001286X_ref001 publication-title: Finite algebras of relations are representable on finite sets contributor: fullname: Andréka – ident: S002248120001286X_ref024 doi: 10.1137/0206033 – ident: S002248120001286X_ref008 doi: 10.1007/978-3-642-59207-2 – ident: S002248120001286X_ref022 doi: 10.1007/BF01305233 – ident: S002248120001286X_ref023 doi: 10.1073/pnas.48.3.365 – ident: S002248120001286X_ref017 doi: 10.1007/BF00971620 – ident: S002248120001286X_ref007 doi: 10.1090/memo/0066 – ident: S002248120001286X_ref021 article-title: Extending partial isomorphisms for the small index property of many ω-categorical structures publication-title: Israel Journal of Mathematics contributor: fullname: Herwig – start-page: 193 volume-title: Principles of knowledge representation year: 1996 ident: S002248120001286X_ref009 contributor: fullname: Donnini – volume: 31 volume-title: Why is modal logic so robustly decidable year: 1997 ident: S002248120001286X_ref028 contributor: fullname: Vardi – ident: S002248120001286X_ref011 doi: 10.2307/421196 – ident: S002248120001286X_ref006 – ident: S002248120001286X_ref002 doi: 10.1023/A:1004275029985 – volume-title: Proceedings of 12th IEEE Symposium on Logic in Computer Science LICS '97, Warsaw year: 1997 ident: S002248120001286X_ref013 contributor: fullname: Grädel – ident: S002248120001286X_ref010 doi: 10.1016/0168-0072(89)90023-7 – ident: S002248120001286X_ref019 doi: 10.1145/4904.4993 |
SSID | ssj0005948 |
Score | 2.00905 |
Snippet | Guarded fragments of first-order logic were recently introduced by Andreka, van Benthem and Nemeti; they consist of relational first-order formulae whose... Guarded fragments of first-order logic were recently introduced by Andréka, van Benthem and Németi; they consist of relational first-order formulae whose... |
SourceID | projecteuclid proquest crossref jstor istex |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 1719 |
SubjectTerms | Decidability Determinism Finite model property Mathematical logic Modal logic Plant roots Predicate logic Predicates Satisfiability Tiling |
Title | On the Restraining Power of Guards |
URI | https://api.istex.fr/ark:/67375/6GQ-MKTN75RR-Q/fulltext.pdf https://www.jstor.org/stable/2586808 https://www.proquest.com/docview/1634120811 http://projecteuclid.org/euclid.jsl/1183745949 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED6cvuiDP6ZidUoR8a3YtGmbPsrcFNTp5gTfStIkoI5OVgf633vJ2g0R0adCk_66uyb3tV--AziJw5gLIzkrlaYe5WHk8YSkXsokp1RL4Se2iO1D0ntiFx0jk3NSr4UxtErLC7R_8TFBEiN1FkTMVIhoQIORSgR3QeNIKasVwSnOVouFsfVh32acFWO8j5p8aJiQsw8eapqPnuWPAdnOMt2N_93fJqxXWaR7PnP7Fiypoglrt3MJ1rIJq_d1kYLPbTi-K1xscweqrGtCuPemPpo71q6NknIHht3OsH3lVdURvDxMondPKOFLhWjKFzhGIXBiPhWSRXlKcq441UESMM5jzEtVjEmQ1jpU2g-wb6KDPNyF5WJcqD1wozRScaAQCOXoHsGYlCQVjAZEEJJr5YBbGzB7m2lgZIgdjI2z6tEdOLWGnbfzyauhjCVRFl_2s9vrYS-JBoOs78ChNd_vJ0q_eWTez8hgtx9vqr3V5qUcIYRBjE0xDFIHWrX3supNLDPMNykJMPEh-39c-gBWrSaD5aq0YPl9MlWH0Cjl9MiG3BeW0NEU |
link.rule.ids | 230,315,782,786,817,887,27933,27934,58023,58256 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6JQIEKIW0QWO3GOCMqiLkApEjfLjm0JqFrUtBL8PeMsrRBCcIoUO9vMxJ6XPL8BOInCSEgrOau0IS4RIXVF7CduwpQgxCjpxXkR28e488wuG1Ym56RaC2NplTkvMP-LjwmS7OuzgDJbIWIeFqnVKytkcGdEjoSwShOc4Hw1WxpbHfhtzlm05vuo6IeWC1l88tCTtP-ifgzJ-Txztfa_O1yH1TKPdM4Lx2_AnB5swkp7KsKabcLyfVWm4HMLju8GDrY5XZ1VVSGce1shzRkaJ4-TbBt6V43exY1b1kdw0zCmY1dq6SmNeMqTOEohdGIekYrRNPFToQUxQRwwISLMTHWEaZAxJtTGC7BvbII03IGFwXCgd8GhCdVRoBEKpeggyZhSfiIZCXzp-6nRNXAqA_L3QgWDI3qwNublo9fgNDfstF2M3ixpLKY8un7g7WavE9Nulz_U4CA33-8nSr55ZNrPCmFfPLXKveXmNesjiEGUTTAMkhrUK-_x8l3MOGacxA8w9fH3_rj0ESzd9Not3rrtNPdhuVBosHSyOiyMRxN9APOZmhzm4fcFtNnUaA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD54AdEHL1NxXouI-FLsJWnTR1GnMp1zTvAtJE0C6phiHei_9yRrN4aIPhWa9HbOaXK-9st3AA6SOBHSSs4qbYhPREx9kYaZnzElCDFKBqkrYnufth7Z2bmVyTmq1sJYWqXjBbq_-JggyZ4-flPmOKLMVomYhlmKoCYZSuGOyRwZYZUuOME5a7w8tjpwYt6ZtSb8rCiIlg85_OyhB3nvSf0Ylt1c01j6_10uw2KZT3onwwBYgSndr8HCzUiMtajBfLsqV_C1Cvu3fQ_bvI4uquoQXttWSvNejefipViDbuO8e3rpl3US_DxO6YcvtQyURlwVSBytEEKxgEjFaJ6FudCCmCiNmBAJZqg6wXTIGBNrE0TYNzVRHq_DTP-1rzfAoxnVSaQREuXoKMmYUmEmGYlCGYa50XXwKiPyt6EaBkcUYe3My0evw6Ez7qhdvL9Y8lhKeXJxx2-a3VZKOx1-V4cdZ8LfT5RNeGXUzwpinz5cl3vLzXPRQzCDaJtgKGR12K48yMt3suCYeZIwwhQo3Pzj0nsw1z5r8OurVnML5p1QgyOwbMPMx_tA78B0oQa7LgK_AcsU1ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Restraining+Power+of+Guards&rft.jtitle=The+Journal+of+symbolic+logic&rft.au=Gr%C3%A4del%2C+Erich&rft.date=1999-12-01&rft.pub=The+Association+for+Symbolic+Logic%2C+Inc&rft.issn=0022-4812&rft.eissn=1943-5886&rft.volume=64&rft.issue=4&rft.spage=1719&rft.epage=1742&rft_id=info:doi/10.2307%2F2586808&rft.externalDocID=2586808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4812&client=summon |