On the Restraining Power of Guards

Guarded fragments of first-order logic were recently introduced by Andreka, van Benthem and Nemeti; they consist of relational first-order formulae whose quantifiers are appropriately relativized by atoms. These fragments are interesting because they extend in a natural way many propositional modal...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of symbolic logic Vol. 64; no. 4; pp. 1719 - 1742
Main Author: Gradel, Erich
Format: Journal Article
Language:English
Published: New York, USA Cambridge University Press 01-12-1999
The Association for Symbolic Logic, Inc
Association for Symbolic Logic
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Guarded fragments of first-order logic were recently introduced by Andreka, van Benthem and Nemeti; they consist of relational first-order formulae whose quantifiers are appropriately relativized by atoms. These fragments are interesting because they extend in a natural way many propositional modal logics, because they have useful model-theoretic properties and especially because they are decidable classes that avoid the usual syntactic restrictions (on the arity of relation symbols, the quantifier pattern or the number of variables) of almost all other known decidable fragments of first-order logic. Here, we investigate the computational complexity of these fragments. We prove that the satisfiability problems for the guarded fragment (GF) and the loosely guarded fragment (LGF) of first-order logic are complete for deterministic double exponential time. For the subfragments that have only a bounded number of variables or only relation symbols of bounded arity, satisfiability is EXPTIME-complete. We further establish a tree model property for both the guarded fragment and the loosely guarded fragment, and give a proof of the finite model property of the guarded fragment. It is also shown that some natural, modest extensions of the guarded fragments are undecidable.
AbstractList Guarded fragments of first-order logic were recently introduced by Andréka, van Benthem and Németi; they consist of relational first-order formulae whose quantifiers are appropriately relativized by atoms. These fragments are interesting because they extend in a natural way many propositional modal logics, because they have useful model-theoretic properties and especially because they are decidable classes that avoid the usual syntactic restrictions (on the arity of relation symbols, the quantifier pattern or the number of variables) of almost all other known decidable fragments of first-order logic. Here, we investigate the computational complexity of these fragments. We prove that the satisfiability problems for the guarded fragment ( GF ) and the loosely guarded fragment ( LGF ) of first-order logic are complete for deterministic double exponential time. For the subfragments that have only a bounded number of variables or only relation symbols of bounded arity, satisfiability is E xptime -complete. We further establish a tree model property for both the guarded fragment and the loosely guarded fragment, and give a proof of the finite model property of the guarded fragment. It is also shown that some natural, modest extensions of the guarded fragments are undecidable.
Guarded fragments of first-order logic were recently introduced by Andreka, van Benthem and Nemeti; they consist of relational first-order formulae whose quantifiers are appropriately relativized by atoms. These fragments are interesting because they extend in a natural way many propositional modal logics, because they have useful model-theoretic properties and especially because they are decidable classes that avoid the usual syntactic restrictions (on the arity of relation symbols, the quantifier pattern or the number of variables) of almost all other known decidable fragments of first-order logic. Here, we investigate the computational complexity of these fragments. We prove that the satisfiability problems for the guarded fragment (GF) and the loosely guarded fragment (LGF) of first-order logic are complete for deterministic double exponential time. For the subfragments that have only a bounded number of variables or only relation symbols of bounded arity, satisfiability is EXPTIME-complete. We further establish a tree model property for both the guarded fragment and the loosely guarded fragment, and give a proof of the finite model property of the guarded fragment. It is also shown that some natural, modest extensions of the guarded fragments are undecidable.
Author Grädel, Erich
Author_xml – sequence: 1
  fullname: Gradel, Erich
BookMark eNp90F1LwzAUBuAgE9ym-BeKCl5V89X29E4pOsXp3JjXIW0TbZ3NTFrUf2-kZZdeHQgP78l5J2jUmEYhdEzwBWU4uaQRxIBhD41JylkYAcQjNMaY0pADoQdo4lyNMY5SDmN0smiC9k0FK-VaK6umal6DZ_OlbGB0MOukLd0h2tdy49TRMKdofXuzzu7C-WJ2n13Pw4IlURvmKselIpjjXJYlUADM8xKiIiWFVJJrmlCQMgaSqzilqdaaKY2pt4mmBZuiqz52a02tilZ1xaYqxdZWH9L-CCMrkb3Mh9dh1G4jCAGWcH9N6iNOdxGfnb9I1Kazjf-0IDHjhGIgxKvzXhXWOGeV3u0gWPxVKIYKvTzrZe1aY_9hYc8q16rvHZP2XcSJ70bEs6V4fFg_JdFqJZbsF9nkfjQ
CitedBy_id crossref_primary_10_1145_3040488
crossref_primary_10_1016_j_websem_2022_100721
crossref_primary_10_1145_371282_371388
crossref_primary_10_1002_malq_201400102
crossref_primary_10_1145_2817825
crossref_primary_10_2139_ssrn_460986
crossref_primary_10_1007_s10817_023_09687_x
crossref_primary_10_1007_s10817_005_7354_1
crossref_primary_10_1007_s10992_020_09588_z
crossref_primary_10_1145_1084805_1084827
crossref_primary_10_1016_j_apal_2005_06_007
crossref_primary_10_2168_LMCS_5_3_3_2009
crossref_primary_10_1007_s10849_005_5787_x
crossref_primary_10_1016_j_artint_2022_103785
crossref_primary_10_1016_S0304_3975_98_00308_9
crossref_primary_10_1007_s11225_018_9824_6
crossref_primary_10_1016_S0747_7171_03_00034_8
crossref_primary_10_1007_s10849_005_5788_9
crossref_primary_10_1145_1806907_1806913
crossref_primary_10_1016_j_apal_2004_04_003
crossref_primary_10_1016_S0747_7171_03_00069_5
crossref_primary_10_4204_EPTCS_96_11
crossref_primary_10_1093_logcom_exv075
crossref_primary_10_1007_s10817_012_9257_2
crossref_primary_10_1016_S0168_0072_00_00018_X
crossref_primary_10_2178_bsl_1058448678
crossref_primary_10_1007_s10817_019_09513_3
crossref_primary_10_1145_2701414
crossref_primary_10_1007_s10849_022_09390_x
crossref_primary_10_1007_s11787_022_00316_6
crossref_primary_10_1016_S0022_0000_03_00030_8
crossref_primary_10_1145_3242953_3242958
crossref_primary_10_4204_EPTCS_243_4
crossref_primary_10_1093_logcom_exv077
crossref_primary_10_1145_1380572_1380575
crossref_primary_10_1016_j_ic_2006_08_001
crossref_primary_10_1145_3174805
crossref_primary_10_1007_s10817_010_9167_0
crossref_primary_10_1145_2287718_2287725
crossref_primary_10_1016_j_tcs_2014_08_015
crossref_primary_10_1145_504077_504079
crossref_primary_10_1093_logcom_exac002
crossref_primary_10_1137_120900095
crossref_primary_10_1016_j_apal_2004_01_003
crossref_primary_10_1145_2996796
crossref_primary_10_1007_s10849_005_5790_2
crossref_primary_10_1016_j_jcss_2006_10_011
crossref_primary_10_1017_S1471068412000257
crossref_primary_10_1016_S0304_3975_02_00866_6
crossref_primary_10_21146_2074_1472_2023_29_1_114_146
crossref_primary_10_4204_EPTCS_218_1
crossref_primary_10_1134_S1064562422700053
crossref_primary_10_1007_s10849_005_5786_y
crossref_primary_10_1016_j_ipl_2012_02_005
crossref_primary_10_1007_s10844_009_0095_6
crossref_primary_10_1016_S0304_3975_01_00151_7
crossref_primary_10_1145_507382_507388
crossref_primary_10_1007_s10849_005_5789_8
crossref_primary_10_1007_s11704_013_2195_2
crossref_primary_10_1145_2108242_2108247
crossref_primary_10_1051_ita_2008023
crossref_primary_10_1145_1276920_1276921
crossref_primary_10_1016_j_jal_2010_08_004
crossref_primary_10_1145_2814570
crossref_primary_10_1145_3375628
crossref_primary_10_1007_s11225_017_9741_0
crossref_primary_10_1145_2976736
crossref_primary_10_4204_EPTCS_346_11
crossref_primary_10_1007_s10849_010_9126_5
crossref_primary_10_1007_s11787_023_00330_2
Cites_doi 10.1007/s001530050130
10.1007/BF01299742
10.1007/978-3-642-75357-2
10.1002/malq.19990450304
10.1002/malq.19750210118
10.1016/S0304-3975(98)00308-9
10.1137/0206033
10.1007/978-3-642-59207-2
10.1007/BF01305233
10.1073/pnas.48.3.365
10.1007/BF00971620
10.1090/memo/0066
10.2307/421196
10.1023/A:1004275029985
10.1016/0168-0072(89)90023-7
10.1145/4904.4993
ContentType Journal Article
Copyright Copyright 1999 Association for Symbolic Logic
Copyright_xml – notice: Copyright 1999 Association for Symbolic Logic
DBID BSCLL
AAYXX
CITATION
EOLOZ
FKUCP
IOIBA
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
DOI 10.2307/2586808
DatabaseName Istex
CrossRef
Periodicals Index Online Segment 01
Periodicals Index Online Segment 04
Periodicals Index Online Segment 29
Periodicals Index Online
Primary Sources Access—Foundation Edition (Plan E) - West
Primary Sources Access (Plan D) - International
Primary Sources Access & Build (Plan A) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Midwest
Primary Sources Access—Foundation Edition (Plan E) - Northeast
Primary Sources Access (Plan D) - Southeast
Primary Sources Access (Plan D) - North Central
Primary Sources Access—Foundation Edition (Plan E) - Southeast
Primary Sources Access (Plan D) - South Central
Primary Sources Access & Build (Plan A) - UK / I
Primary Sources Access (Plan D) - Canada
Primary Sources Access (Plan D) - EMEALA
Primary Sources Access—Foundation Edition (Plan E) - North Central
Primary Sources Access—Foundation Edition (Plan E) - South Central
Primary Sources Access & Build (Plan A) - International
Primary Sources Access—Foundation Edition (Plan E) - International
Primary Sources Access (Plan D) - West
Periodicals Index Online Segments 1-50
Primary Sources Access (Plan D) - APAC
Primary Sources Access (Plan D) - Midwest
Primary Sources Access (Plan D) - MEA
Primary Sources Access—Foundation Edition (Plan E) - Canada
Primary Sources Access—Foundation Edition (Plan E) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - EMEALA
Primary Sources Access & Build (Plan A) - APAC
Primary Sources Access & Build (Plan A) - Canada
Primary Sources Access & Build (Plan A) - West
Primary Sources Access & Build (Plan A) - EMEALA
Primary Sources Access (Plan D) - Northeast
Primary Sources Access & Build (Plan A) - Midwest
Primary Sources Access & Build (Plan A) - North Central
Primary Sources Access & Build (Plan A) - Northeast
Primary Sources Access & Build (Plan A) - South Central
Primary Sources Access & Build (Plan A) - Southeast
Primary Sources Access (Plan D) - UK / I
Primary Sources Access—Foundation Edition (Plan E) - APAC
Primary Sources Access—Foundation Edition (Plan E) - MEA
DatabaseTitle CrossRef
Periodicals Index Online Segment 04
Periodicals Index Online Segments 1-50
Periodicals Index Online
Periodicals Index Online Segment 29
Periodicals Index Online Segment 01
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Philosophy
EISSN 1943-5886
EndPage 1742
ExternalDocumentID oai_CULeuclid_euclid_jsl_1183745949
10_2307_2586808
2586808
ark_67375_6GQ_MKTN75RR_Q
GroupedDBID -DZ
-~X
09C
09E
0R~
2AX
5GY
6OB
AAAZR
AABES
AABKS
AABWE
AACJH
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
ABBHK
ABCQX
ABEFU
ABFAN
ABJNI
ABPFR
ABPQH
ABQTM
ABROB
ABSDQ
ABTAH
ABVZP
ABXAU
ABXSQ
ABYAD
ABYWD
ABZCX
ABZUI
ACBMC
ACETC
ACGFS
ACMTB
ACNCT
ACTMH
ACTWD
ACUBG
ACUIJ
ACYZP
ACZBM
ACZWT
ADACV
ADDNB
ADFEC
ADKIL
ADMHG
ADODI
ADOVH
ADOVT
ADULT
ADVJH
AEBAK
AECCQ
AEHGV
AELPN
AENCP
AENEX
AENGE
AEUPB
AEYYC
AFFUJ
AFKQG
AFLVW
AFVYC
AFXHP
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ARZZG
AS~
ATUCA
AUXHV
AYIQA
BBLKV
BCGOX
BESQT
BJBOZ
BLZWO
BMAJL
BQFHP
BSCLL
CBIIA
CCQAD
CCUQV
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
CS3
CTKSN
DOHLZ
DQDLB
DSRWC
DU5
EBS
ECEWR
EGQIC
EJD
FEDTE
FVMVE
HGD
HQ6
HVGLF
HZ~
H~9
I.7
IH6
IOEEP
IOO
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JHPGK
JKQEH
JLEZI
JLXEF
JMS
JPL
JQKCU
JSODD
JST
KAFGG
KCGVB
KFECR
L7B
LHUNA
LW7
M7~
MVM
NIKVX
NZEOI
O9-
P2P
RBU
RCA
RNS
ROL
RPE
S10
S6U
SA0
SAAAG
T9H
T9M
TN5
UBC
UPT
UT1
VH1
WFFJZ
WH7
WHG
YQT
YYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
AEBPU
AFXKK
AIHXQ
EFSUC
AAYXX
CITATION
EOLOZ
FKUCP
IOIBA
K30
PAAUG
PAWHS
PAWZZ
PAXOH
PBHAV
PBQSW
PBYQZ
PCIWU
PCMID
PCZJX
PDGRG
PDWWI
PETMR
PFVGT
PGXDX
PIHIL
PISVA
PJCTQ
PJTMS
PLCHJ
PMHAD
PNQDJ
POUND
PPLAD
PQAPC
PQCAN
PQCMW
PQEME
PQHKH
PQMID
PQNCT
PQNET
PQSCT
PQSET
PSVJG
PVMQY
PZGFC
08R
0R
AAEED
AALRV
ABFLS
ABHAC
ABUFD
ACCHT
ACQFJ
ACUYZ
ACWGA
ADGEJ
ADOCW
AGOOT
AS
DZ
HZ
M7
RBR
X
ID FETCH-LOGICAL-c375t-beb0de1040badd828804bd85c91caea4f2728aa681be6929fff3ef02dd87f2c3
IEDL.DBID JAS
ISSN 0022-4812
IngestDate Tue Jan 05 18:13:47 EST 2021
Thu Oct 10 16:04:11 EDT 2024
Thu Nov 21 21:33:43 EST 2024
Fri Feb 02 07:05:16 EST 2024
Wed Oct 30 09:36:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-beb0de1040badd828804bd85c91caea4f2728aa681be6929fff3ef02dd87f2c3
Notes istex:C0ED0CC1F9CADF246AE34389BBF331295FFA56E3
PII:S002248120001286X
ArticleID:01286
ark:/67375/6GQ-MKTN75RR-Q
PQID 1634120811
PQPubID 1818490
PageCount 24
ParticipantIDs projecteuclid_primary_oai_CULeuclid_euclid_jsl_1183745949
proquest_journals_1634120811
crossref_primary_10_2307_2586808
jstor_primary_10_2307_2586808
istex_primary_ark_67375_6GQ_MKTN75RR_Q
PublicationCentury 1900
PublicationDate 1999-12-01
PublicationDateYYYYMMDD 1999-12-01
PublicationDate_xml – month: 12
  year: 1999
  text: 1999-12-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Providence, R.I., etc
PublicationTitle The Journal of symbolic logic
PublicationYear 1999
Publisher Cambridge University Press
The Association for Symbolic Logic, Inc
Association for Symbolic Logic
Publisher_xml – name: Cambridge University Press
– name: The Association for Symbolic Logic, Inc
– name: Association for Symbolic Logic
References Andréka (S002248120001286X_ref001) 1999; 64
Grädel (S002248120001286X_ref014) 1999; 38
S002248120001286X_ref015
S002248120001286X_ref012
Trakhtenbrot (S002248120001286X_ref027) 1953; 88
S002248120001286X_ref011
S002248120001286X_ref010
Grädel (S002248120001286X_ref013) 1997
S002248120001286X_ref008
S002248120001286X_ref007
S002248120001286X_ref006
Herwig (S002248120001286X_ref021)
Reed (S002248120001286X_ref026) 1997
Harel (S002248120001286X_ref018) 1985; 24
S002248120001286X_ref003
S002248120001286X_ref025
S002248120001286X_ref002
S002248120001286X_ref024
S002248120001286X_ref023
S002248120001286X_ref022
S002248120001286X_ref020
S002248120001286X_ref019
S002248120001286X_ref017
Vardi (S002248120001286X_ref028) 1997; 31
S002248120001286X_ref016
van Benthem (S002248120001286X_ref005) 1996
van Benthem (S002248120001286X_ref004) 1983
Donnini (S002248120001286X_ref009) 1996
References_xml – start-page: 87
  volume-title: Surveys in combinatorics
  year: 1997
  ident: S002248120001286X_ref026
  contributor:
    fullname: Reed
– ident: S002248120001286X_ref016
– volume: 88
  start-page: 953
  year: 1953
  ident: S002248120001286X_ref027
  article-title: On recursive separability
  publication-title: Doklady Akademii Nauk SSSR
  contributor:
    fullname: Trakhtenbrot
– volume: 38
  start-page: 313
  year: 1999
  ident: S002248120001286X_ref014
  article-title: Undecidability results on two-variable logics
  publication-title: Archive of Mathematical Logic
  doi: 10.1007/s001530050130
  contributor:
    fullname: Grädel
– ident: S002248120001286X_ref020
  doi: 10.1007/BF01299742
– volume: 24
  start-page: 51
  year: 1985
  ident: S002248120001286X_ref018
  article-title: Recurring dominoes: Making the highly undecidable highly understandable
  publication-title: Annals of Discrete Mathematics
  contributor:
    fullname: Harel
– ident: S002248120001286X_ref003
  doi: 10.1007/978-3-642-75357-2
– volume-title: Exploring logical dynamics
  year: 1996
  ident: S002248120001286X_ref005
  contributor:
    fullname: van Benthem
– ident: S002248120001286X_ref015
  doi: 10.1002/malq.19990450304
– ident: S002248120001286X_ref025
  doi: 10.1002/malq.19750210118
– volume-title: Modal logic an classical logic
  year: 1983
  ident: S002248120001286X_ref004
  contributor:
    fullname: van Benthem
– ident: S002248120001286X_ref012
  doi: 10.1016/S0304-3975(98)00308-9
– volume: 64
  start-page: 243
  year: 1999
  ident: S002248120001286X_ref001
  publication-title: Finite algebras of relations are representable on finite sets
  contributor:
    fullname: Andréka
– ident: S002248120001286X_ref024
  doi: 10.1137/0206033
– ident: S002248120001286X_ref008
  doi: 10.1007/978-3-642-59207-2
– ident: S002248120001286X_ref022
  doi: 10.1007/BF01305233
– ident: S002248120001286X_ref023
  doi: 10.1073/pnas.48.3.365
– ident: S002248120001286X_ref017
  doi: 10.1007/BF00971620
– ident: S002248120001286X_ref007
  doi: 10.1090/memo/0066
– ident: S002248120001286X_ref021
  article-title: Extending partial isomorphisms for the small index property of many ω-categorical structures
  publication-title: Israel Journal of Mathematics
  contributor:
    fullname: Herwig
– start-page: 193
  volume-title: Principles of knowledge representation
  year: 1996
  ident: S002248120001286X_ref009
  contributor:
    fullname: Donnini
– volume: 31
  volume-title: Why is modal logic so robustly decidable
  year: 1997
  ident: S002248120001286X_ref028
  contributor:
    fullname: Vardi
– ident: S002248120001286X_ref011
  doi: 10.2307/421196
– ident: S002248120001286X_ref006
– ident: S002248120001286X_ref002
  doi: 10.1023/A:1004275029985
– volume-title: Proceedings of 12th IEEE Symposium on Logic in Computer Science LICS '97, Warsaw
  year: 1997
  ident: S002248120001286X_ref013
  contributor:
    fullname: Grädel
– ident: S002248120001286X_ref010
  doi: 10.1016/0168-0072(89)90023-7
– ident: S002248120001286X_ref019
  doi: 10.1145/4904.4993
SSID ssj0005948
Score 2.00905
Snippet Guarded fragments of first-order logic were recently introduced by Andreka, van Benthem and Nemeti; they consist of relational first-order formulae whose...
Guarded fragments of first-order logic were recently introduced by Andréka, van Benthem and Németi; they consist of relational first-order formulae whose...
SourceID projecteuclid
proquest
crossref
jstor
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1719
SubjectTerms Decidability
Determinism
Finite model property
Mathematical logic
Modal logic
Plant roots
Predicate logic
Predicates
Satisfiability
Tiling
Title On the Restraining Power of Guards
URI https://api.istex.fr/ark:/67375/6GQ-MKTN75RR-Q/fulltext.pdf
https://www.jstor.org/stable/2586808
https://www.proquest.com/docview/1634120811
http://projecteuclid.org/euclid.jsl/1183745949
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED6cvuiDP6ZidUoR8a3YtGmbPsrcFNTp5gTfStIkoI5OVgf633vJ2g0R0adCk_66uyb3tV--AziJw5gLIzkrlaYe5WHk8YSkXsokp1RL4Se2iO1D0ntiFx0jk3NSr4UxtErLC7R_8TFBEiN1FkTMVIhoQIORSgR3QeNIKasVwSnOVouFsfVh32acFWO8j5p8aJiQsw8eapqPnuWPAdnOMt2N_93fJqxXWaR7PnP7Fiypoglrt3MJ1rIJq_d1kYLPbTi-K1xscweqrGtCuPemPpo71q6NknIHht3OsH3lVdURvDxMondPKOFLhWjKFzhGIXBiPhWSRXlKcq441UESMM5jzEtVjEmQ1jpU2g-wb6KDPNyF5WJcqD1wozRScaAQCOXoHsGYlCQVjAZEEJJr5YBbGzB7m2lgZIgdjI2z6tEdOLWGnbfzyauhjCVRFl_2s9vrYS-JBoOs78ChNd_vJ0q_eWTez8hgtx9vqr3V5qUcIYRBjE0xDFIHWrX3supNLDPMNykJMPEh-39c-gBWrSaD5aq0YPl9MlWH0Cjl9MiG3BeW0NEU
link.rule.ids 230,315,782,786,817,887,27933,27934,58023,58256
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6JQIEKIW0QWO3GOCMqiLkApEjfLjm0JqFrUtBL8PeMsrRBCcIoUO9vMxJ6XPL8BOInCSEgrOau0IS4RIXVF7CduwpQgxCjpxXkR28e488wuG1Ym56RaC2NplTkvMP-LjwmS7OuzgDJbIWIeFqnVKytkcGdEjoSwShOc4Hw1WxpbHfhtzlm05vuo6IeWC1l88tCTtP-ifgzJ-Txztfa_O1yH1TKPdM4Lx2_AnB5swkp7KsKabcLyfVWm4HMLju8GDrY5XZ1VVSGce1shzRkaJ4-TbBt6V43exY1b1kdw0zCmY1dq6SmNeMqTOEohdGIekYrRNPFToQUxQRwwISLMTHWEaZAxJtTGC7BvbII03IGFwXCgd8GhCdVRoBEKpeggyZhSfiIZCXzp-6nRNXAqA_L3QgWDI3qwNublo9fgNDfstF2M3ixpLKY8un7g7WavE9Nulz_U4CA33-8nSr55ZNrPCmFfPLXKveXmNesjiEGUTTAMkhrUK-_x8l3MOGacxA8w9fH3_rj0ESzd9Not3rrtNPdhuVBosHSyOiyMRxN9APOZmhzm4fcFtNnUaA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD54AdEHL1NxXouI-FLsJWnTR1GnMp1zTvAtJE0C6phiHei_9yRrN4aIPhWa9HbOaXK-9st3AA6SOBHSSs4qbYhPREx9kYaZnzElCDFKBqkrYnufth7Z2bmVyTmq1sJYWqXjBbq_-JggyZ4-flPmOKLMVomYhlmKoCYZSuGOyRwZYZUuOME5a7w8tjpwYt6ZtSb8rCiIlg85_OyhB3nvSf0Ylt1c01j6_10uw2KZT3onwwBYgSndr8HCzUiMtajBfLsqV_C1Cvu3fQ_bvI4uquoQXttWSvNejefipViDbuO8e3rpl3US_DxO6YcvtQyURlwVSBytEEKxgEjFaJ6FudCCmCiNmBAJZqg6wXTIGBNrE0TYNzVRHq_DTP-1rzfAoxnVSaQREuXoKMmYUmEmGYlCGYa50XXwKiPyt6EaBkcUYe3My0evw6Ez7qhdvL9Y8lhKeXJxx2-a3VZKOx1-V4cdZ8LfT5RNeGXUzwpinz5cl3vLzXPRQzCDaJtgKGR12K48yMt3suCYeZIwwhQo3Pzj0nsw1z5r8OurVnML5p1QgyOwbMPMx_tA78B0oQa7LgK_AcsU1ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Restraining+Power+of+Guards&rft.jtitle=The+Journal+of+symbolic+logic&rft.au=Gr%C3%A4del%2C+Erich&rft.date=1999-12-01&rft.pub=The+Association+for+Symbolic+Logic%2C+Inc&rft.issn=0022-4812&rft.eissn=1943-5886&rft.volume=64&rft.issue=4&rft.spage=1719&rft.epage=1742&rft_id=info:doi/10.2307%2F2586808&rft.externalDocID=2586808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4812&client=summon