Toward a model of microsaccade generation: the case of microsaccadic inhibition

Microsaccades are one component of the small eye movements that constitute fixation. Their implementation in the oculomotor system is unknown. To better understand the physiological and mechanistic processes underlying microsaccade generation, we studied microsaccadic inhibition, a transient drop of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vision (Charlottesville, Va.) Vol. 8; no. 11; pp. 5.1 - 5
Main Authors: Rolfs, Martin, Kliegl, Reinhold, Engbert, Ralf
Format: Journal Article
Language:English
Published: United States 06-08-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microsaccades are one component of the small eye movements that constitute fixation. Their implementation in the oculomotor system is unknown. To better understand the physiological and mechanistic processes underlying microsaccade generation, we studied microsaccadic inhibition, a transient drop of microsaccade rate, in response to irrelevant visual and auditory stimuli. Quantitative descriptions of the time course and strength of inhibition revealed a strong dependence of microsaccadic inhibition on stimulus characteristics. In Experiment 1, microsaccadic inhibition occurred sooner after auditory than after visual stimuli and after luminance-contrast than after color-contrast visual stimuli. Moreover, microsaccade amplitude strongly decreased during microsaccadic inhibition. In Experiment 2, the latency of microsaccadic inhibition increased with decreasing luminance contrast. We develop a conceptual model of microsaccade generation in which microsaccades result from fixation-related activity in a motor map coding for both fixation and saccades. In this map, fixation is represented at the central site. Saccades are generated by activity in the periphery, their amplitude increasing with eccentricity. The activity at the central, fixation-related site of the map predicts the rate of microsaccades as well as their amplitude and direction distributions. This model represents a framework for understanding the dynamics of microsaccade behavior in a broad range of tasks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-7362
1534-7362
DOI:10.1167/8.11.5