Insulin-like growth factor-1 (IGF-1)-induced inhibition of growth hormone secretion is associated with sleep suppression

The hypothalamic growth hormone (GH)-releasing hormone (GHRH) promotes non-rapid eye movement sleep (NREMS). Insulin-like growth factor-1 (IGF-1) acts as a negative feedback in the somatotropic axis inhibiting GHRH and stimulating somatostatin. To determine whether this feedback alters sleep, rats a...

Full description

Saved in:
Bibliographic Details
Published in:Brain research Vol. 818; no. 2; pp. 267 - 274
Main Authors: Obál, F., Kapás, L., Gardi, J., Taishi, P., Bodosi, B., Krueger, J.M.
Format: Journal Article
Language:English
Published: London Elsevier B.V 13-02-1999
Amsterdam Elsevier
New York, NY
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hypothalamic growth hormone (GH)-releasing hormone (GHRH) promotes non-rapid eye movement sleep (NREMS). Insulin-like growth factor-1 (IGF-1) acts as a negative feedback in the somatotropic axis inhibiting GHRH and stimulating somatostatin. To determine whether this feedback alters sleep, rats and rabbits were injected intracerebroventricularly (i.c.v.) with IGF-1 (5.0 and 0.25 μg, respectively) and the sleep–wake activity was studied. Compared to baseline (i.c.v. injection of physiological saline), IGF-1 elicited prompt suppressions in both NREMS and rapid eye movement sleep (REMS) in postinjection hour 1 in rats and rabbits. The intensity of NREMS (characterized by the slow wave activity of the EEG by means of fast-Fourier analysis) was significantly enhanced 7 to 11 h postinjection in rats. Plasma GH concentrations were measured in 30-min samples after i.c.v. IGF-1 injection in rats and a significant suppression of GH secretion was observed 30 min postinjection. The simultaneous inhibition of the somatotropic axis and sleep raises the possibility that the sleep alterations also result from an IGF-1-induced suppression of GHRH. The late increases in NREMS intensity are attributed to metabolic actions of IGF-1 or to a release of GHRH from the IGF-1-induced inhibition.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(98)01286-4