Efficient degradation of phenanthrene by biochar-supported nano zero-valent iron activated persulfate: performance evaluation and mechanism insights
Biochar-supported nano zero-valent iron (BC@nZVI) is a novel and efficient non-homogeneous activator for persulfate (PS). This study aimed to identify the primary pathways, the degradation mechanism and the performance of phenanthrene (PHE) with PS activated by BC@nZVI (BC@nZVI/PS). BC@nZVI as an ac...
Saved in:
Published in: | Environmental science and pollution research international Vol. 30; no. 60; pp. 125731 - 125740 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-12-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biochar-supported nano zero-valent iron (BC@nZVI) is a novel and efficient non-homogeneous activator for persulfate (PS). This study aimed to identify the primary pathways, the degradation mechanism and the performance of phenanthrene (PHE) with PS activated by BC@nZVI (BC@nZVI/PS). BC@nZVI as an activator for PS was prepared by liquid phase reduction method. BC@nZVI was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffractometer and Fourier transform infrared spectroscopy. The effects of the iron-carbon mass ratio and BC@nZVI dosage were investigated, and a pseudo-first-order kinetic model was used to evaluate the PHE degradation. The results showed that BC supported nZVI and inhibited the agglomeration of nZVI, improving PS’s activation efficiency. The optimal iron-carbon mass ratio was determined to be 1:4, accompanied by a dosage of 0.6 g/L of BC@nZVI. During PS activation, nZVI was transformed to Fe
2+
and Fe
3+
, with the majority being Fe
3+
. The reducibility of nZVI in BC@nZVI enabled the reduction of Fe
3+
to Fe
2+
to activate PS. Radical quenching and electron paramagnetic resonance (EPR) revealed that the oxidative radicals in the BC@nZVI/PS system were mainly SO
4
-
· and ·OH, where SO
4
-
· was the primary free radical under acidic and neutral conditions and ·OH in alkaline conditions. Additionally, BC@nZVI adsorption had a limited role in PHE removal. This study can provide mechanism insights of PHE degradation in water with BC@nZVI activation of the Na
2
S
2
O
8
system.
Graphical abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-31002-9 |