Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method: A detailed study of the conditions of carbon deposition

In this paper, a thermodynamic analysis of ethanol/water system, using the Gibbs energy minimization method, has been carried out. A mathematical relationship between Lagrange's multipliers and carbon activity in the gas phase was deduced. From this, it was possible to calculate carbon activiti...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 34; no. 10; pp. 4321 - 4330
Main Authors: Lima da Silva, Aline, Malfatti, Célia de Fraga, Müller, Iduvirges Lourdes
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-05-2009
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a thermodynamic analysis of ethanol/water system, using the Gibbs energy minimization method, has been carried out. A mathematical relationship between Lagrange's multipliers and carbon activity in the gas phase was deduced. From this, it was possible to calculate carbon activities in both stable and metastable systems. For the system that corresponds to ethanol steam reforming at very low contact times, composed mainly of ethylene and acetaldehyde, carbon activities were always much greater than unity over the whole temperature range, changing from 1.2×107 at 400K to 1.1×104 at 1200K. Furthermore, there was practically no effect of the inlet steam/ethanol ratio on carbon activity values. These results indicate that such a system is highly favorable to carbon formation. On the other hand, by considering a more stable system, in order to represent high contact times, it was observed that carbon activities are much lower and depend greatly on the inlet steam/ethanol ratio employed. Besides, the complete conversion of ethylene and acetaldehyde into other species, such as CO, CO2, CH4 and H2, lowers the total Gibbs energy of the system. By computing carbon activities in experimental systems, it was also possible to explain deviations between thermodynamic analysis and experimental results regarding carbon deposition.
AbstractList In this paper, a thermodynamic analysis of ethanol/water system, using the Gibbs energy minimization method, has been carried out. A mathematical relationship between Lagrange's multipliers and carbon activity in the gas phase was deduced. From this, it was possible to calculate carbon activities in both stable and metastable systems. For the system that corresponds to ethanol steam reforming at very low contact times, composed mainly of ethylene and acetaldehyde, carbon activities were always much greater than unity over the whole temperature range, changing from 1.2×107 at 400K to 1.1×104 at 1200K. Furthermore, there was practically no effect of the inlet steam/ethanol ratio on carbon activity values. These results indicate that such a system is highly favorable to carbon formation. On the other hand, by considering a more stable system, in order to represent high contact times, it was observed that carbon activities are much lower and depend greatly on the inlet steam/ethanol ratio employed. Besides, the complete conversion of ethylene and acetaldehyde into other species, such as CO, CO2, CH4 and H2, lowers the total Gibbs energy of the system. By computing carbon activities in experimental systems, it was also possible to explain deviations between thermodynamic analysis and experimental results regarding carbon deposition.
In this paper, a thermodynamic analysis of ethanol/water system, using the Gibbs energy minimization method, has been carried out. A mathematical relationship between Lagrange's multipliers and carbon activity in the gas phase was deduced. From this, it was possible to calculate carbon activities in both stable and metastable systems. For the system that corresponds to ethanol steam reforming at very low contact times, composed mainly of ethylene and acetaldehyde, carbon activities were always much greater than unity over the whole temperature range, changing from 1.2 x 10 super(7 at 400 K to 1.1 x 10) super(4) at 1200 K. Furthermore, there was practically no effect of the inlet steam/ethanol ratio on carbon activity values. These results indicate that such a system is highly favorable to carbon formation. On the other hand, by considering a more stable system, in order to represent high contact times, it was observed that carbon activities are much lower and depend greatly on the inlet steam/ethanol ratio employed. Besides, the complete conversion of ethylene and acetaldehyde into other species, such as CO, CO sub(2, CH) sub(4) and H sub(2, lowers the total Gibbs energy of the system. By computing carbon activities in experimental systems, it was also possible to explain deviations between thermodynamic analysis and experimental results regarding carbon deposition.)
Author Müller, Iduvirges Lourdes
Lima da Silva, Aline
Malfatti, Célia de Fraga
Author_xml – sequence: 1
  givenname: Aline
  surname: Lima da Silva
  fullname: Lima da Silva, Aline
  email: adasilva26@gmail.com
– sequence: 2
  givenname: Célia de Fraga
  surname: Malfatti
  fullname: Malfatti, Célia de Fraga
– sequence: 3
  givenname: Iduvirges Lourdes
  surname: Müller
  fullname: Müller, Iduvirges Lourdes
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21615651$$DView record in Pascal Francis
BookMark eNqFkc1u1DAUhS1UJKaFV0DeIFYJdpwfmxVVBQWpEpuytpzr645HiT3YGaT0LXhjnE5hy8aWrr5zju49l-QixICEvOWs5oz3Hw61P-xXiwHrhjFVM1GzRr0gOy4HVYlWDhdkx0TPKsGVekUucz4wxgfWqh35fb_HNEe7BjN7oCaYac0-0-goLnsT4kTzgmamCV1Msw8P9JS399aPY6YlND2stMz97B_N4mOgcxFG-5FeU4uL8RPaYnGy6-a57JFCDNZv5FMKmDQWkcVjzE_T1-SlM1PGN8__Ffnx5fP9zdfq7vvtt5vruwrE0C6Vky2ita0UtpOjbVyvpOvHvnG8k6rjLRhhwTgDHXSKOWHlANCwFjoBgx3EFXl_9j2m-POEedGzz4DTZALGU9aq3FYKwdtC9mcSUsy5HEIfk59NWjVneqtAH_TfCvRWgWZClwqK8N1zhMlgJpdMAJ__qRve867veOE-nTks-_7ymHQGjwHQ-oSwaBv9_6L-AOKGplM
CODEN IJHEDX
CitedBy_id crossref_primary_10_1039_c2cy20267k
crossref_primary_10_1021_acs_chemrev_6b00099
crossref_primary_10_1016_j_apcata_2016_10_020
crossref_primary_10_1016_j_ijhydene_2011_03_123
crossref_primary_10_1515_revce_2016_0022
crossref_primary_10_1016_j_fuel_2021_122325
crossref_primary_10_1021_ef500084m
crossref_primary_10_1016_j_ijhydene_2010_03_003
crossref_primary_10_1088_1757_899X_1170_1_012002
crossref_primary_10_1016_j_energy_2018_07_097
crossref_primary_10_4155_bfs_12_8
crossref_primary_10_1016_j_jpcs_2021_110138
crossref_primary_10_1016_j_enconman_2024_118302
crossref_primary_10_1016_j_ijhydene_2011_12_034
crossref_primary_10_1016_j_ijhydene_2019_01_130
crossref_primary_10_1007_s11144_011_0335_y
crossref_primary_10_1063_1_4747819
crossref_primary_10_1016_j_fuproc_2010_11_021
crossref_primary_10_1016_j_energy_2016_05_096
crossref_primary_10_1021_acs_energyfuels_1c01670
crossref_primary_10_1021_ie500067d
crossref_primary_10_1007_s13399_016_0213_y
crossref_primary_10_1016_j_cej_2015_02_016
crossref_primary_10_1016_j_enconman_2019_04_072
crossref_primary_10_1021_acs_iecr_8b06412
crossref_primary_10_1016_j_fuel_2024_132140
crossref_primary_10_1021_acs_iecr_9b01728
crossref_primary_10_1080_01614940_2021_1968197
crossref_primary_10_1515_revce_2016_0045
crossref_primary_10_1002_ep_11836
crossref_primary_10_1021_ie4018918
crossref_primary_10_1021_jz3012047
crossref_primary_10_1016_j_energy_2017_05_145
crossref_primary_10_1007_s11244_013_0221_0
crossref_primary_10_1021_ie901540m
crossref_primary_10_1155_2014_929676
crossref_primary_10_1016_j_catcom_2013_07_018
crossref_primary_10_1016_j_molcata_2013_09_039
crossref_primary_10_3934_energy_2016_1_68
crossref_primary_10_1016_j_fuproc_2010_08_003
crossref_primary_10_1016_j_jpowsour_2011_06_035
crossref_primary_10_1016_j_ijhydene_2014_12_037
crossref_primary_10_1016_j_jcat_2020_11_009
crossref_primary_10_1039_C7SE00212B
crossref_primary_10_1039_C4DT00521J
crossref_primary_10_2139_ssrn_3812314
crossref_primary_10_1016_j_ijhydene_2016_04_080
crossref_primary_10_1016_j_jpowsour_2010_03_066
crossref_primary_10_1016_j_jechem_2016_10_003
crossref_primary_10_1016_j_rser_2017_02_049
crossref_primary_10_1016_j_ijhydene_2015_07_138
crossref_primary_10_1016_j_ijhydene_2015_03_155
crossref_primary_10_1016_j_ijhydene_2012_01_182
crossref_primary_10_1016_j_ijhydene_2015_09_125
crossref_primary_10_1016_j_applthermaleng_2015_12_044
crossref_primary_10_1016_j_enconman_2017_10_042
crossref_primary_10_1021_ie500445u
crossref_primary_10_1061__ASCE_EY_1943_7897_0000250
crossref_primary_10_1002_fuce_201100203
crossref_primary_10_1016_j_ijhydene_2011_06_055
crossref_primary_10_1016_j_ijhydene_2019_04_064
crossref_primary_10_1016_j_ijhydene_2012_01_031
crossref_primary_10_1016_j_applthermaleng_2014_06_032
crossref_primary_10_1021_acs_energyfuels_4c00646
crossref_primary_10_1016_j_energy_2011_04_004
crossref_primary_10_1016_j_enconman_2012_02_032
crossref_primary_10_1002_apj_1759
crossref_primary_10_1021_ie400786z
crossref_primary_10_1016_j_ijhydene_2015_05_167
crossref_primary_10_1016_j_energy_2015_04_072
crossref_primary_10_3389_fenrg_2021_742323
crossref_primary_10_1016_j_cherd_2012_09_015
crossref_primary_10_1016_j_biortech_2014_01_113
crossref_primary_10_1016_j_jpowsour_2015_07_046
crossref_primary_10_1016_j_enconman_2010_09_034
crossref_primary_10_1088_2053_1591_ab356c
crossref_primary_10_3390_pr8060708
crossref_primary_10_1016_j_apenergy_2021_117491
crossref_primary_10_1016_j_ijhydene_2010_11_051
crossref_primary_10_1016_j_ces_2012_07_041
crossref_primary_10_1002_er_1958
crossref_primary_10_1002_er_4549
crossref_primary_10_1016_j_jpowsour_2011_07_030
crossref_primary_10_1007_s11244_022_01757_5
crossref_primary_10_1007_s11144_017_1210_2
crossref_primary_10_1016_j_apcatb_2012_02_006
crossref_primary_10_1016_j_ijhydene_2017_08_210
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118764
crossref_primary_10_1016_j_cej_2010_10_033
crossref_primary_10_1080_00986445_2023_2240709
crossref_primary_10_1007_s11356_015_5757_z
crossref_primary_10_1002_ceat_201100534
crossref_primary_10_1016_S1003_9953_11_60421_0
crossref_primary_10_1021_ie2030213
crossref_primary_10_1016_j_ijhydene_2015_06_016
crossref_primary_10_1016_j_nxsust_2024_100033
crossref_primary_10_1016_j_enconman_2021_114181
crossref_primary_10_1021_ef1017576
crossref_primary_10_1016_j_apcatb_2013_12_012
crossref_primary_10_3390_e25071098
Cites_doi 10.1016/S1385-8947(03)00186-4
10.1016/j.jcat.2004.04.034
10.1016/0021-9517(85)90314-8
10.1016/j.ces.2004.07.039
10.1063/1.1744264
10.1016/j.ijhydene.2006.02.024
10.1016/S1566-7367(03)00051-7
10.1016/j.cattod.2007.01.062
10.1016/0360-3199(91)90166-G
10.1016/j.ijhydene.2008.09.071
10.1016/j.ijhydene.2006.10.024
10.1016/j.cattod.2004.12.005
10.1016/j.apcata.2004.03.052
10.1016/0021-9517(72)90170-4
10.1016/S0378-7753(00)00498-5
10.1016/j.ijhydene.2007.12.012
10.1016/j.ijhydene.2005.04.004
10.1021/ie00044a020
10.1016/S0920-5861(02)00057-3
10.1021/i200018a010
10.1016/S0892-6875(01)00007-3
10.1016/j.jpowsour.2005.02.046
10.1016/0360-3199(95)00030-H
10.1021/ie0496333
10.1016/S0360-3199(03)00052-1
10.1287/inte.28.5.29
ContentType Journal Article
Copyright 2009 International Association for Hydrogen Energy
2009 INIST-CNRS
Copyright_xml – notice: 2009 International Association for Hydrogen Energy
– notice: 2009 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.ijhydene.2009.03.029
DatabaseName Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3487
EndPage 4330
ExternalDocumentID 10_1016_j_ijhydene_2009_03_029
21615651
S0360319909004376
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
TN5
WUQ
XPP
ZMT
~G-
AALMO
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c374t-f84eedd483d58bd2f698f6b62f1589514ca3dcafac5c590f3d87cc204c53c7d73
ISSN 0360-3199
IngestDate Sat Oct 26 01:39:23 EDT 2024
Thu Sep 26 17:35:57 EDT 2024
Fri Nov 25 01:05:12 EST 2022
Fri Feb 23 02:27:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Chemical equilibrium
Carbon deposition
Thermodynamic analysis
Ethanol steam reforming
Gibbs energy minimization method
Gibbs free energy
Ethanol
Theoretical study
Deposit formation
Steam reforming
Hydrogen production
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-f84eedd483d58bd2f698f6b62f1589514ca3dcafac5c590f3d87cc204c53c7d73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 901683314
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_901683314
crossref_primary_10_1016_j_ijhydene_2009_03_029
pascalfrancis_primary_21615651
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2009_03_029
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of hydrogen energy
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References McDonald, Floudas (bib27) 1995; 34
Benito, Sanz, Isabel, Padilla, Arjona, Daza (bib13) 2005; 151
Fatsikostas, Kondarides, Verykios (bib2) 2002; 75
Kubaschewski, Alcock, Spencer (bib21) 1993
Smith, Missen (bib32) 1982
Garcia, Laborde (bib4) 1991; 16
Freni, Cavallaro, Mondello, Spadaro, Frusteri (bib1) 2003; 4
Fylstra, Lasdon, Watson, Waren (bib14) 1998; 28
Reklaitis, Ravindran, Ragsdell (bib25) 1983
Edgar, Himmelblau (bib24) 1988
Vizcaíno, Arena, Baronetti, Carrero, Calles, Laborde (bib19) 2008; 33
Frusteri, Freni, Chiodo, Spadaro, Di Blasi, Bonura, Cavallaro (bib30) 2004; 270
Fatsikostas, Verykios (bib18) 2004; 225
Vasudeva, Mitra, Umasankar, Dhingra (bib5) 1996; 21
Lwin (bib15) 2000; 16
Lisboa, Santos, Passos, Noronha (bib31) 2005; 101
Rossi, Alonso, Antunes, Guirardello, Cardozo-Filho (bib28) 2009; 34
Ioannides (bib17) 2001; 92
Mariño, Boveri, Baronetti, Laborde (bib12) 2004; 29
Rostrup-Nielsen (bib7) 1972; 27
White, Johnson, Danzig (bib26) 1958; 28
Sandler (bib23) 1999
Alberton, Souza, Schmal (bib3) 2007; 123
Nguyen, Tran (bib16) 2001; 14
Mas, Kipreos, Amadeo, Laborde (bib6) 2006; 31
Knacke, Kubaschewski, Hesselmann (bib22) 1991
Ginsburg, Piña, Solh, Lasa (bib10) 2005; 44
Assabumrungrat, Pavarajarn, Charojrochkul, Laosiripojana (bib34) 2004; 59
Rostrup-Nielsen, Hojlund (bib33) 1985
Frusteri, Freni, Chiodo, Donato, Bonura, Cavallaro (bib20) 2006; 31
Bokx, Kock, Boellaard, Klop, Geus (bib9) 1985; 96
Comas, Mariño, Laborde, Amadeo (bib11) 2004; 98
Manning, Garmirian, Reid (bib8) 1982; 21
Vizcaíno, Carrero, Calles (bib29) 2007; 32
Bokx (10.1016/j.ijhydene.2009.03.029_bib9) 1985; 96
Vizcaíno (10.1016/j.ijhydene.2009.03.029_bib19) 2008; 33
Ginsburg (10.1016/j.ijhydene.2009.03.029_bib10) 2005; 44
Fylstra (10.1016/j.ijhydene.2009.03.029_bib14) 1998; 28
Lwin (10.1016/j.ijhydene.2009.03.029_bib15) 2000; 16
Kubaschewski (10.1016/j.ijhydene.2009.03.029_bib21) 1993
Rostrup-Nielsen (10.1016/j.ijhydene.2009.03.029_bib7) 1972; 27
Rostrup-Nielsen (10.1016/j.ijhydene.2009.03.029_bib33) 1985
Vizcaíno (10.1016/j.ijhydene.2009.03.029_bib29) 2007; 32
Ioannides (10.1016/j.ijhydene.2009.03.029_bib17) 2001; 92
Frusteri (10.1016/j.ijhydene.2009.03.029_bib30) 2004; 270
Knacke (10.1016/j.ijhydene.2009.03.029_bib22) 1991
White (10.1016/j.ijhydene.2009.03.029_bib26) 1958; 28
Vasudeva (10.1016/j.ijhydene.2009.03.029_bib5) 1996; 21
Nguyen (10.1016/j.ijhydene.2009.03.029_bib16) 2001; 14
Lisboa (10.1016/j.ijhydene.2009.03.029_bib31) 2005; 101
McDonald (10.1016/j.ijhydene.2009.03.029_bib27) 1995; 34
Alberton (10.1016/j.ijhydene.2009.03.029_bib3) 2007; 123
Comas (10.1016/j.ijhydene.2009.03.029_bib11) 2004; 98
Sandler (10.1016/j.ijhydene.2009.03.029_bib23) 1999
Garcia (10.1016/j.ijhydene.2009.03.029_bib4) 1991; 16
Freni (10.1016/j.ijhydene.2009.03.029_bib1) 2003; 4
Benito (10.1016/j.ijhydene.2009.03.029_bib13) 2005; 151
Mariño (10.1016/j.ijhydene.2009.03.029_bib12) 2004; 29
Rossi (10.1016/j.ijhydene.2009.03.029_bib28) 2009; 34
Mas (10.1016/j.ijhydene.2009.03.029_bib6) 2006; 31
Smith (10.1016/j.ijhydene.2009.03.029_bib32) 1982
Edgar (10.1016/j.ijhydene.2009.03.029_bib24) 1988
Fatsikostas (10.1016/j.ijhydene.2009.03.029_bib2) 2002; 75
Fatsikostas (10.1016/j.ijhydene.2009.03.029_bib18) 2004; 225
Assabumrungrat (10.1016/j.ijhydene.2009.03.029_bib34) 2004; 59
Reklaitis (10.1016/j.ijhydene.2009.03.029_bib25) 1983
Manning (10.1016/j.ijhydene.2009.03.029_bib8) 1982; 21
Frusteri (10.1016/j.ijhydene.2009.03.029_bib20) 2006; 31
References_xml – volume: 16
  start-page: 307
  year: 1991
  end-page: 312
  ident: bib4
  article-title: Hydrogen production by the steam reforming of ethanol: thermodynamic analysis
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Laborde
– volume: 59
  start-page: 6015
  year: 2004
  end-page: 6020
  ident: bib34
  article-title: Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled ethanol
  publication-title: Chem Eng Sci
  contributor:
    fullname: Laosiripojana
– volume: 4
  start-page: 259
  year: 2003
  end-page: 268
  ident: bib1
  article-title: Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts
  publication-title: Catal Commun
  contributor:
    fullname: Frusteri
– volume: 123
  start-page: 257
  year: 2007
  end-page: 264
  ident: bib3
  article-title: Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts
  publication-title: Catal Today
  contributor:
    fullname: Schmal
– volume: 225
  start-page: 439
  year: 2004
  end-page: 452
  ident: bib18
  article-title: Reaction network of steam reforming of ethanol over Ni-based catalysts
  publication-title: J Catal
  contributor:
    fullname: Verykios
– volume: 28
  start-page: 751
  year: 1958
  end-page: 755
  ident: bib26
  article-title: Chemical equilibrium in complex mixtures
  publication-title: J Chem Phys
  contributor:
    fullname: Danzig
– volume: 28
  start-page: 29
  year: 1998
  end-page: 55
  ident: bib14
  article-title: Design and use of the Microsoft Excel Solver
  publication-title: Interfaces
  contributor:
    fullname: Waren
– start-page: 57
  year: 1985
  ident: bib33
  publication-title: Deactivation and poisoning of catalyst
  contributor:
    fullname: Hojlund
– volume: 16
  start-page: 335
  year: 2000
  end-page: 339
  ident: bib15
  article-title: Chemical equilibrium by Gibbs energy minimization on spreadsheets
  publication-title: Int J Eng
  contributor:
    fullname: Lwin
– volume: 21
  start-page: 404
  year: 1982
  end-page: 409
  ident: bib8
  article-title: Carbon deposition studies using nickel and cobalt catalysts
  publication-title: Ind Eng Chem Proc Des Dev
  contributor:
    fullname: Reid
– volume: 32
  start-page: 1450
  year: 2007
  end-page: 1461
  ident: bib29
  article-title: Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Calles
– volume: 151
  start-page: 11
  year: 2005
  end-page: 17
  ident: bib13
  article-title: Bio-ethanol steam reforming: insights on the mechanism for hydrogen production
  publication-title: J Power Sources
  contributor:
    fullname: Daza
– year: 1991
  ident: bib22
  article-title: Thermochemical properties of inorganic substances
  contributor:
    fullname: Hesselmann
– volume: 44
  start-page: 4846
  year: 2005
  end-page: 4854
  ident: bib10
  article-title: Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamics and kinetics models
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: Lasa
– volume: 98
  start-page: 61
  year: 2004
  end-page: 68
  ident: bib11
  article-title: Bio-ethanol steam reforming on Ni/Al
  publication-title: Chem Eng J
  contributor:
    fullname: Amadeo
– volume: 14
  start-page: 359
  year: 2001
  end-page: 364
  ident: bib16
  article-title: A simple method for predicting equilibrium composition on leaching systems
  publication-title: Miner Eng
  contributor:
    fullname: Tran
– year: 1983
  ident: bib25
  article-title: Engineering optimization, methods and applications
  contributor:
    fullname: Ragsdell
– volume: 270
  start-page: 1
  year: 2004
  end-page: 7
  ident: bib30
  article-title: Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell
  publication-title: Appl Catal A Gen
  contributor:
    fullname: Cavallaro
– volume: 31
  start-page: 2193
  year: 2006
  end-page: 2199
  ident: bib20
  article-title: Steam and auto-thermal reforming of bio-ethanol over MgO and CeO
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Cavallaro
– volume: 75
  start-page: 145
  year: 2002
  end-page: 155
  ident: bib2
  article-title: Production of hydrogen for fuel cells by reformation of biomass-derived ethanol
  publication-title: Catal Today
  contributor:
    fullname: Verykios
– year: 1999
  ident: bib23
  article-title: Chemical and engineering thermodynamics
  contributor:
    fullname: Sandler
– year: 1988
  ident: bib24
  article-title: Optimization of chemical processes
  contributor:
    fullname: Himmelblau
– volume: 27
  start-page: 343
  year: 1972
  end-page: 356
  ident: bib7
  article-title: Equilibria of decomposition reactions of carbon monoxide and methane over nickel catalysts
  publication-title: J Catal
  contributor:
    fullname: Rostrup-Nielsen
– year: 1982
  ident: bib32
  article-title: Chemical reaction equilibrium analysis: theory and algorithms
  contributor:
    fullname: Missen
– volume: 101
  start-page: 15
  year: 2005
  end-page: 21
  ident: bib31
  article-title: Influence of the addition of promoters to steam reforming catalysts
  publication-title: Catal Today
  contributor:
    fullname: Noronha
– volume: 92
  start-page: 17
  year: 2001
  end-page: 25
  ident: bib17
  article-title: Thermodynamic analysis of ethanol processors for fuel cell applications
  publication-title: J Power Sources
  contributor:
    fullname: Ioannides
– volume: 31
  start-page: 21
  year: 2006
  end-page: 28
  ident: bib6
  article-title: Thermodynamic analysis of ethanol/water system with the stoichiometric method
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Laborde
– volume: 34
  start-page: 1674
  year: 1995
  end-page: 1687
  ident: bib27
  article-title: Global optimization and analysis for Gibbs energy function using the UNIFAC, Wilson e ASOG equations
  publication-title: Ind Eng Chem Res
  contributor:
    fullname: Floudas
– volume: 33
  start-page: 3489
  year: 2008
  end-page: 3492
  ident: bib19
  article-title: Ethanol steam reforming on Ni/Al
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Laborde
– volume: 34
  start-page: 323
  year: 2009
  end-page: 332
  ident: bib28
  article-title: Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Cardozo-Filho
– volume: 29
  start-page: 67
  year: 2004
  end-page: 71
  ident: bib12
  article-title: Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Laborde
– volume: 96
  start-page: 454
  year: 1985
  end-page: 467
  ident: bib9
  article-title: The formation of filamentous carbon on iron and nickel catalysts: thermodynamics
  publication-title: J Catal
  contributor:
    fullname: Geus
– year: 1993
  ident: bib21
  article-title: Materials thermochemistry
  contributor:
    fullname: Spencer
– volume: 21
  start-page: 13
  year: 1996
  end-page: 18
  ident: bib5
  article-title: Steam reforming of ethanol for hydrogen production: thermodynamic analysis
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Dhingra
– volume: 98
  start-page: 61
  year: 2004
  ident: 10.1016/j.ijhydene.2009.03.029_bib11
  article-title: Bio-ethanol steam reforming on Ni/Al2O3 catalyst
  publication-title: Chem Eng J
  doi: 10.1016/S1385-8947(03)00186-4
  contributor:
    fullname: Comas
– volume: 225
  start-page: 439
  year: 2004
  ident: 10.1016/j.ijhydene.2009.03.029_bib18
  article-title: Reaction network of steam reforming of ethanol over Ni-based catalysts
  publication-title: J Catal
  doi: 10.1016/j.jcat.2004.04.034
  contributor:
    fullname: Fatsikostas
– volume: 96
  start-page: 454
  year: 1985
  ident: 10.1016/j.ijhydene.2009.03.029_bib9
  article-title: The formation of filamentous carbon on iron and nickel catalysts: thermodynamics
  publication-title: J Catal
  doi: 10.1016/0021-9517(85)90314-8
  contributor:
    fullname: Bokx
– year: 1982
  ident: 10.1016/j.ijhydene.2009.03.029_bib32
  contributor:
    fullname: Smith
– volume: 59
  start-page: 6015
  year: 2004
  ident: 10.1016/j.ijhydene.2009.03.029_bib34
  article-title: Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled ethanol
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2004.07.039
  contributor:
    fullname: Assabumrungrat
– volume: 28
  start-page: 751
  year: 1958
  ident: 10.1016/j.ijhydene.2009.03.029_bib26
  article-title: Chemical equilibrium in complex mixtures
  publication-title: J Chem Phys
  doi: 10.1063/1.1744264
  contributor:
    fullname: White
– volume: 31
  start-page: 2193
  year: 2006
  ident: 10.1016/j.ijhydene.2009.03.029_bib20
  article-title: Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.02.024
  contributor:
    fullname: Frusteri
– volume: 4
  start-page: 259
  year: 2003
  ident: 10.1016/j.ijhydene.2009.03.029_bib1
  article-title: Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts
  publication-title: Catal Commun
  doi: 10.1016/S1566-7367(03)00051-7
  contributor:
    fullname: Freni
– year: 1999
  ident: 10.1016/j.ijhydene.2009.03.029_bib23
  contributor:
    fullname: Sandler
– volume: 123
  start-page: 257
  year: 2007
  ident: 10.1016/j.ijhydene.2009.03.029_bib3
  article-title: Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2007.01.062
  contributor:
    fullname: Alberton
– volume: 16
  start-page: 307
  year: 1991
  ident: 10.1016/j.ijhydene.2009.03.029_bib4
  article-title: Hydrogen production by the steam reforming of ethanol: thermodynamic analysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/0360-3199(91)90166-G
  contributor:
    fullname: Garcia
– volume: 34
  start-page: 323
  year: 2009
  ident: 10.1016/j.ijhydene.2009.03.029_bib28
  article-title: Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.09.071
  contributor:
    fullname: Rossi
– volume: 32
  start-page: 1450
  year: 2007
  ident: 10.1016/j.ijhydene.2009.03.029_bib29
  article-title: Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.10.024
  contributor:
    fullname: Vizcaíno
– volume: 101
  start-page: 15
  year: 2005
  ident: 10.1016/j.ijhydene.2009.03.029_bib31
  article-title: Influence of the addition of promoters to steam reforming catalysts
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2004.12.005
  contributor:
    fullname: Lisboa
– volume: 270
  start-page: 1
  year: 2004
  ident: 10.1016/j.ijhydene.2009.03.029_bib30
  article-title: Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2004.03.052
  contributor:
    fullname: Frusteri
– volume: 27
  start-page: 343
  year: 1972
  ident: 10.1016/j.ijhydene.2009.03.029_bib7
  article-title: Equilibria of decomposition reactions of carbon monoxide and methane over nickel catalysts
  publication-title: J Catal
  doi: 10.1016/0021-9517(72)90170-4
  contributor:
    fullname: Rostrup-Nielsen
– volume: 92
  start-page: 17
  year: 2001
  ident: 10.1016/j.ijhydene.2009.03.029_bib17
  article-title: Thermodynamic analysis of ethanol processors for fuel cell applications
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(00)00498-5
  contributor:
    fullname: Ioannides
– volume: 33
  start-page: 3489
  year: 2008
  ident: 10.1016/j.ijhydene.2009.03.029_bib19
  article-title: Ethanol steam reforming on Ni/Al2O3 catalysts: effect of Mg addition
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.12.012
  contributor:
    fullname: Vizcaíno
– volume: 31
  start-page: 21
  year: 2006
  ident: 10.1016/j.ijhydene.2009.03.029_bib6
  article-title: Thermodynamic analysis of ethanol/water system with the stoichiometric method
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2005.04.004
  contributor:
    fullname: Mas
– volume: 34
  start-page: 1674
  year: 1995
  ident: 10.1016/j.ijhydene.2009.03.029_bib27
  article-title: Global optimization and analysis for Gibbs energy function using the UNIFAC, Wilson e ASOG equations
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie00044a020
  contributor:
    fullname: McDonald
– volume: 75
  start-page: 145
  year: 2002
  ident: 10.1016/j.ijhydene.2009.03.029_bib2
  article-title: Production of hydrogen for fuel cells by reformation of biomass-derived ethanol
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(02)00057-3
  contributor:
    fullname: Fatsikostas
– year: 1991
  ident: 10.1016/j.ijhydene.2009.03.029_bib22
  contributor:
    fullname: Knacke
– volume: 21
  start-page: 404
  year: 1982
  ident: 10.1016/j.ijhydene.2009.03.029_bib8
  article-title: Carbon deposition studies using nickel and cobalt catalysts
  publication-title: Ind Eng Chem Proc Des Dev
  doi: 10.1021/i200018a010
  contributor:
    fullname: Manning
– volume: 14
  start-page: 359
  year: 2001
  ident: 10.1016/j.ijhydene.2009.03.029_bib16
  article-title: A simple method for predicting equilibrium composition on leaching systems
  publication-title: Miner Eng
  doi: 10.1016/S0892-6875(01)00007-3
  contributor:
    fullname: Nguyen
– start-page: 57
  year: 1985
  ident: 10.1016/j.ijhydene.2009.03.029_bib33
  contributor:
    fullname: Rostrup-Nielsen
– volume: 151
  start-page: 11
  year: 2005
  ident: 10.1016/j.ijhydene.2009.03.029_bib13
  article-title: Bio-ethanol steam reforming: insights on the mechanism for hydrogen production
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.02.046
  contributor:
    fullname: Benito
– year: 1988
  ident: 10.1016/j.ijhydene.2009.03.029_bib24
  contributor:
    fullname: Edgar
– volume: 16
  start-page: 335
  year: 2000
  ident: 10.1016/j.ijhydene.2009.03.029_bib15
  article-title: Chemical equilibrium by Gibbs energy minimization on spreadsheets
  publication-title: Int J Eng
  contributor:
    fullname: Lwin
– volume: 21
  start-page: 13
  year: 1996
  ident: 10.1016/j.ijhydene.2009.03.029_bib5
  article-title: Steam reforming of ethanol for hydrogen production: thermodynamic analysis
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/0360-3199(95)00030-H
  contributor:
    fullname: Vasudeva
– year: 1993
  ident: 10.1016/j.ijhydene.2009.03.029_bib21
  contributor:
    fullname: Kubaschewski
– volume: 44
  start-page: 4846
  year: 2005
  ident: 10.1016/j.ijhydene.2009.03.029_bib10
  article-title: Coke formation over a nickel catalyst under methane dry reforming conditions: thermodynamics and kinetics models
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie0496333
  contributor:
    fullname: Ginsburg
– volume: 29
  start-page: 67
  year: 2004
  ident: 10.1016/j.ijhydene.2009.03.029_bib12
  article-title: Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/S0360-3199(03)00052-1
  contributor:
    fullname: Mariño
– year: 1983
  ident: 10.1016/j.ijhydene.2009.03.029_bib25
  contributor:
    fullname: Reklaitis
– volume: 28
  start-page: 29
  year: 1998
  ident: 10.1016/j.ijhydene.2009.03.029_bib14
  article-title: Design and use of the Microsoft Excel Solver
  publication-title: Interfaces
  doi: 10.1287/inte.28.5.29
  contributor:
    fullname: Fylstra
SSID ssj0017049
Score 2.339532
Snippet In this paper, a thermodynamic analysis of ethanol/water system, using the Gibbs energy minimization method, has been carried out. A mathematical relationship...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 4321
SubjectTerms Alternative fuels. Production and utilization
Applied sciences
Carbon
Carbon deposition
Chemical equilibrium
Contact
Energy
Ethanol
Ethanol steam reforming
Ethyl alcohol
Ethylene
Exact sciences and technology
Fuels
Gibbs energy minimization method
Hydrogen
Mathematical analysis
Mathematical models
Thermodynamic analysis
Thermodynamics
Title Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method: A detailed study of the conditions of carbon deposition
URI https://dx.doi.org/10.1016/j.ijhydene.2009.03.029
https://search.proquest.com/docview/901683314
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa67QWEEFdRLpMfeIsykthJHN5KKWyI8dIh7S1ybKdL1TZTL5P4GfxjjmM7STUQIMRLVDltnOZ8Oefz8bkg9BpsOlUyKnwJxtkHhRf6wFq5L2GUEl0wrYkmPJ2mXy7Z-wmdDAauhWo39l8lDWMga505-xfSbi8KA_AZZA5HkDoc_1Tu62UtTaN5j_dqjijtJa91eojiSw8sY63jYGbernEXfKyKYuMpkwqoC44sbYambTJtUthNxCmQ1I0rRq2JK6ypZdWG1Am-LuomxtYGhPUJ8L4Hsle34uqbXNcz3XOguYU2UKhack9yb1otbowLeNGLBDjni5JvTUTC2Oz5Lyr4vtKEfNZanHN96t3YZT2eyd1NtdbFLT7XOotj3_WRdYGGxh_ncnK6ACiTB6Yti2m7dKKMWmdp5hNqTbvV-9aJavEd9LQ4JSZr2zICSszW0S1rYxwf85NqDs8Ino4tf0pOAuvF2a_kPdW3pu8syJqSUskBOopAP4J6PhqdTS4_tdtfqV23ub_SS23_-Wy_YlX3rvkG3vXSNGm5xTcaEnXxAN23qx88MrB9iAZq9Qjd7dXEfIy-7wEYOwDjusQWwLgBMG4BjBsA4wbA2KAH9wGMDYDf4hF28MUNfPU1Ab64g68eMfDFHXyfoK8fJhfjU9_2DfEFSenWLxkF5icpIzJmhYzKJGNlUiRRGcYMVhRUcCIFL7mIRZwFJZEsFSIKqIiJSGVKnqLDVb1SzxCmDFY0AgxXwhTNJGOgvYQqKOGhVGmYDNEb99zza1MeJndxk_PcSUr3es3ygOQgqSHKnHhyS3INec0BVb_97fGePNspI71uS-JwiLATcA5mQu_98ZWqd5scaH_CCAnp83-Y_wW6072GL9Hhdr1Tr9DBRu6OLYJ_ALdk64I
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+analysis+of+ethanol+steam+reforming+using+Gibbs+energy+minimization+method%3A+A+detailed+study+of+the+conditions+of+carbon+deposition&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Lima+da+Silva%2C+Aline&rft.au=Malfatti%2C+C%C3%A9lia+de+Fraga&rft.au=M%C3%BCller%2C+Iduvirges+Lourdes&rft.date=2009-05-01&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=34&rft.issue=10&rft.spage=4321&rft.epage=4330&rft_id=info:doi/10.1016%2Fj.ijhydene.2009.03.029&rft.externalDocID=S0360319909004376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon