Waste heat recovery of power plant with large scale serial absorption heat pumps

Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is one of the attractive solutions. In this paper, we present the theoretical study and test of a power plant waste heat recovery system with lar...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 165; pp. 1097 - 1105
Main Authors: Xu, Z.Y., Mao, H.C., Liu, D.S., Wang, R.Z.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 15-12-2018
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is one of the attractive solutions. In this paper, we present the theoretical study and test of a power plant waste heat recovery system with large scale LiBr-water absorption heat pumps for district heating. Waste heat from steam condenser with temperature of ∼35 °C is recovered by the absorption heat pumps driven by steam with pressure of ∼0.25 MPa from the turbine. Heat output from the absorption heat pumps is used to preheat the return water of district heating network from ∼45 °C to ∼80 °C. The return water is further heated by the steam to ∼105 °C for heating supply. Large temperature lift of the return water is achieved by the serial absorption heat pumps. Theoretical analysis of the system is presented, showing advantages compared to the conventional absorption heat pump and original heating supply system. On-site test showed that COP of 1.77 and heating capacity of 63.57 MW were achieved by one serial absorption heat pump, with waste heat inlet/outlet temperature of 34.63/28.33 °C and return water inlet/outlet temperature of 45.94/81.34 °C. •District heating system in power plant is improved by waste heat recovery.•Serial absorption heat pumps are used for large output temperature lift.•Theoretical study and on-site test are carried out.•COP of 1.77 and heat output of 63.57 MW are achieved by one absorption heat pump.
AbstractList Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is one of the attractive solutions. In this paper, we present the theoretical study and test of a power plant waste heat recovery system with large scale LiBr-water absorption heat pumps for district heating. Waste heat from steam condenser with temperature of ∼35 °C is recovered by the absorption heat pumps driven by steam with pressure of ∼0.25 MPa from the turbine. Heat output from the absorption heat pumps is used to preheat the return water of district heating network from ∼45 °C to ∼80 °C. The return water is further heated by the steam to ∼105 °C for heating supply. Large temperature lift of the return water is achieved by the serial absorption heat pumps. Theoretical analysis of the system is presented, showing advantages compared to the conventional absorption heat pump and original heating supply system. On-site test showed that COP of 1.77 and heating capacity of 63.57 MW were achieved by one serial absorption heat pump, with waste heat inlet/outlet temperature of 34.63/28.33 °C and return water inlet/outlet temperature of 45.94/81.34 °C.
Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is one of the attractive solutions. In this paper, we present the theoretical study and test of a power plant waste heat recovery system with large scale LiBr-water absorption heat pumps for district heating. Waste heat from steam condenser with temperature of ∼35 °C is recovered by the absorption heat pumps driven by steam with pressure of ∼0.25 MPa from the turbine. Heat output from the absorption heat pumps is used to preheat the return water of district heating network from ∼45 °C to ∼80 °C. The return water is further heated by the steam to ∼105 °C for heating supply. Large temperature lift of the return water is achieved by the serial absorption heat pumps. Theoretical analysis of the system is presented, showing advantages compared to the conventional absorption heat pump and original heating supply system. On-site test showed that COP of 1.77 and heating capacity of 63.57 MW were achieved by one serial absorption heat pump, with waste heat inlet/outlet temperature of 34.63/28.33 °C and return water inlet/outlet temperature of 45.94/81.34 °C. •District heating system in power plant is improved by waste heat recovery.•Serial absorption heat pumps are used for large output temperature lift.•Theoretical study and on-site test are carried out.•COP of 1.77 and heat output of 63.57 MW are achieved by one absorption heat pump.
Author Xu, Z.Y.
Wang, R.Z.
Mao, H.C.
Liu, D.S.
Author_xml – sequence: 1
  givenname: Z.Y.
  surname: Xu
  fullname: Xu, Z.Y.
  organization: Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, PR China
– sequence: 2
  givenname: H.C.
  surname: Mao
  fullname: Mao, H.C.
  organization: Shuangliang Eco-Energy Systems Co., Ltd., Jiangyin 214444, PR China
– sequence: 3
  givenname: D.S.
  surname: Liu
  fullname: Liu, D.S.
  organization: Shuangliang Eco-Energy Systems Co., Ltd., Jiangyin 214444, PR China
– sequence: 4
  givenname: R.Z.
  surname: Wang
  fullname: Wang, R.Z.
  email: rzwang@sjtu.edu.cn
  organization: Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, PR China
BookMark eNp9kEtrwzAQhEVJoUnaf9CDoGe7eliyfCmU0BcE2kNLj0Kx1omNY7mSkpB_Xxv33MsuDDOz7LdAs851gNAtJSklVN43KXTgt-eUEaoGKSWCXaA5VTlPZK7EDM0JlyQRWcau0CKEhhAiVFHM0ce3CRHwDkzEHkp3BH_GrsK9O4HHfWu6iE913OHW-C3gUJp2mOBr02KzCc73sXbdlO8P-z5co8vKtAFu_vYSfT0_fa5ek_X7y9vqcZ2UPOcxqVQmBCEmZxZUZgVVFWVkozKiciss4zZXxUYAzZVkZZZzKQsiC2uVrYAMFUt0N_X23v0cIETduIPvhpOaUSk5V0yOrmxyld6F4KHSva_3xp81JXpkpxs9sdMju1Ed2A2xhykGwwfHGrwOZQ1dCbYeIEVtXf1_wS9yanq2
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2022_118358
crossref_primary_10_1016_j_energy_2019_04_001
crossref_primary_10_3390_en14061550
crossref_primary_10_1016_j_energy_2024_130299
crossref_primary_10_1088_1742_6596_2119_1_012105
crossref_primary_10_1016_j_cherd_2023_05_049
crossref_primary_10_1134_S0040601520120095
crossref_primary_10_1016_j_applthermaleng_2021_117460
crossref_primary_10_1016_j_applthermaleng_2024_123748
crossref_primary_10_1016_j_enconman_2021_113954
crossref_primary_10_1007_s12273_021_0874_8
crossref_primary_10_1016_j_enconman_2019_06_052
crossref_primary_10_1016_j_energy_2022_125611
crossref_primary_10_1088_1757_899X_1051_1_012049
crossref_primary_10_18186_thermal_850796
crossref_primary_10_1080_15567036_2020_1796845
crossref_primary_10_1016_j_enconman_2019_04_045
crossref_primary_10_1016_j_applthermaleng_2023_121200
crossref_primary_10_1016_j_energy_2021_121804
crossref_primary_10_3390_en16227607
crossref_primary_10_1016_j_energy_2019_07_104
crossref_primary_10_15377_2409_5826_2019_06_7
crossref_primary_10_3390_su11071881
crossref_primary_10_1016_j_applthermaleng_2020_116325
crossref_primary_10_1016_j_enconman_2024_118662
crossref_primary_10_1016_j_enconman_2023_117952
crossref_primary_10_3390_infrastructures7030037
crossref_primary_10_1016_j_energy_2023_129292
crossref_primary_10_1016_j_applthermaleng_2021_117792
crossref_primary_10_1016_j_energy_2022_125194
crossref_primary_10_1016_j_energy_2019_116446
crossref_primary_10_1016_j_fuel_2022_127237
crossref_primary_10_1016_j_energy_2019_116005
crossref_primary_10_1016_j_enconman_2022_115358
crossref_primary_10_1088_1757_899X_721_1_012059
crossref_primary_10_1016_j_applthermaleng_2023_121772
crossref_primary_10_1016_j_energy_2019_06_026
crossref_primary_10_1016_j_energy_2021_120872
crossref_primary_10_1007_s43979_022_00038_0
crossref_primary_10_1016_j_jobe_2022_104499
crossref_primary_10_1016_j_enconman_2020_113293
crossref_primary_10_1016_j_applthermaleng_2021_117719
crossref_primary_10_1016_j_energy_2022_123846
crossref_primary_10_3390_en13236256
crossref_primary_10_3390_en15124445
crossref_primary_10_1016_j_rser_2023_114141
crossref_primary_10_1016_j_energy_2024_131007
crossref_primary_10_1016_j_energy_2019_116429
crossref_primary_10_1016_j_energy_2021_122292
crossref_primary_10_1016_j_heliyon_2024_e26797
crossref_primary_10_1016_j_enconman_2020_113100
crossref_primary_10_1016_j_energy_2021_120341
crossref_primary_10_1016_j_ijrefrig_2020_08_012
crossref_primary_10_1016_j_erss_2020_101764
crossref_primary_10_1016_j_enconman_2024_118760
crossref_primary_10_1016_j_energy_2023_129396
crossref_primary_10_3390_su152115204
crossref_primary_10_1016_j_apenergy_2020_115910
crossref_primary_10_1016_j_enconman_2019_112343
crossref_primary_10_1016_j_energy_2024_131755
crossref_primary_10_1016_j_renene_2024_120074
crossref_primary_10_1016_j_enconman_2020_113821
crossref_primary_10_1016_j_seta_2022_102214
crossref_primary_10_1088_2631_8695_ababf2
crossref_primary_10_1002_er_5066
crossref_primary_10_3390_en16124591
crossref_primary_10_1016_j_jclepro_2022_133936
crossref_primary_10_1016_j_energy_2023_127005
crossref_primary_10_31648_ts_6638
crossref_primary_10_1016_j_applthermaleng_2021_116605
crossref_primary_10_1016_j_enconman_2020_113072
crossref_primary_10_1016_j_apenergy_2023_120757
crossref_primary_10_3390_e23050513
crossref_primary_10_15407_scine20_01_035
crossref_primary_10_1016_j_energy_2018_12_017
crossref_primary_10_1016_j_ijrefrig_2024_06_012
Cites_doi 10.1016/j.ijrefrig.2016.02.009
10.1016/j.energy.2013.08.033
10.1016/j.apenergy.2013.02.019
10.1016/j.cap.2009.11.052
10.1016/j.applthermaleng.2011.12.045
10.1016/1359-4311(95)00069-0
10.1016/j.rser.2014.05.004
10.1016/1359-4311(95)00041-0
10.1016/j.applthermaleng.2003.08.006
10.1016/S0140-7007(97)00090-X
10.1016/j.rser.2015.06.058
10.1016/j.applthermaleng.2011.11.006
10.1016/j.enconman.2014.06.083
10.1016/j.desal.2004.06.075
10.1016/j.energy.2008.07.019
10.1016/j.apenergy.2004.10.012
10.1016/j.ijrefrig.2005.10.007
10.1016/j.desal.2006.10.015
10.1016/j.applthermaleng.2012.04.047
10.1016/j.apenergy.2013.06.049
10.1016/j.energy.2007.10.013
10.1007/s11708-017-0507-1
10.1002/(SICI)1099-114X(199807)22:9<791::AID-ER393>3.0.CO;2-W
10.1021/je1011295
10.1002/er.943
10.1016/j.applthermaleng.2008.04.012
10.1016/j.apenergy.2015.01.147
10.1016/S1290-0729(00)00197-5
10.1016/S1359-4311(03)00011-5
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2018
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
DOI 10.1016/j.energy.2018.10.052
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 1105
ExternalDocumentID 10_1016_j_energy_2018_10_052
S0360544218320425
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AAXKI
AAYXX
ABDPE
ABFNM
ABXDB
ADMUD
AFJKZ
AHHHB
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
ID FETCH-LOGICAL-c373t-f845500a72de84d518f120b84087d5d23d789b5e17862c473669069dd8dfe0373
ISSN 0360-5442
IngestDate Thu Oct 10 21:08:59 EDT 2024
Fri Nov 22 00:15:18 EST 2024
Fri Feb 23 02:33:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Absorption heat pump
Large scale
Power plant
District heating
Waste heat
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-f845500a72de84d518f120b84087d5d23d789b5e17862c473669069dd8dfe0373
PQID 2166338267
PQPubID 2045484
PageCount 9
ParticipantIDs proquest_journals_2166338267
crossref_primary_10_1016_j_energy_2018_10_052
elsevier_sciencedirect_doi_10_1016_j_energy_2018_10_052
PublicationCentury 2000
PublicationDate 2018-12-15
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Alarcón-Padilla, García-Rodríguez, Blanco-Gálvez (bib6) 2007; 212
Li, Wu, Zhang, Shi, Wang (bib17) 2012; 48
Costa, Bakhtiari, Schuster, Paris (bib27) 2009; 34
Borde, Jelinek, Daltrophe (bib21) 1997; 20
Zhang, Hu (bib20) 2012; 37
Le Lostec, Galanis, Baribeault, Millette (bib9) 2008; 33
Han, Xu, Gao, Wang, Chen (bib22) 2011; 56
Centre (bib23) 2014
Donnellan, Byrne, Oliveira, Cronin (bib13) 2014; 113
Wu, Zhang, Li, Shi, Wang (bib18) 2012; 48
Garimella, Christensen, Lacy (bib8) 1996; 16
Johnson, Choate, Davidson (bib1) 2008
Rivera, Cerezo, Rivero, Cervantes, Best (bib11) 2003; 27
Zhuo, Machielsen (bib12) 1996; 16
Brückner, Liu, Miró, Radspieler, Cabeza, Lävemann (bib4) 2015; 151
Qu, Abdelaziz, Yin (bib25) 2014; 87
Zhang, Wang, Zhu, Qiu, Li, Chen (bib3) 2013; 112
Keil, Plura, Radspieler, Schweigler (bib24) 2008; 28
Pátek, Klomfar (bib28) 2006; 29
Hatami, Ganji, Gorji-Bandpy (bib2) 2014; 37
Reyes, Gómez, García-Gutiérrez (bib15) 2010; 10
Barragán, Arellano, Heard (bib14) 1998; 22
Xu, Wang (bib5) 2017; 11
Toppi, Aprile, Guerra, Motta (bib30) 2016; 66
Genssle, Stephan (bib19) 2000; 39
Zhao, Ma, Chen (bib10) 2003; 23
Zhao, Zhang, Ma (bib7) 2005; 82
Xu, Wang, Xia (bib29) 2013; 60
Konstantinaviciute, Bobinaite (bib31) 2015; 51
Ma, Chen, Li, Sha, Liang, Li (bib26) 2003; 23
Bourouisa, Coronas, Romero, Siqueiros (bib16) 2004; 166
Li (10.1016/j.energy.2018.10.052_bib17) 2012; 48
Borde (10.1016/j.energy.2018.10.052_bib21) 1997; 20
Barragán (10.1016/j.energy.2018.10.052_bib14) 1998; 22
Zhang (10.1016/j.energy.2018.10.052_bib3) 2013; 112
Genssle (10.1016/j.energy.2018.10.052_bib19) 2000; 39
Johnson (10.1016/j.energy.2018.10.052_bib1) 2008
Keil (10.1016/j.energy.2018.10.052_bib24) 2008; 28
Toppi (10.1016/j.energy.2018.10.052_bib30) 2016; 66
Rivera (10.1016/j.energy.2018.10.052_bib11) 2003; 27
Donnellan (10.1016/j.energy.2018.10.052_bib13) 2014; 113
Zhang (10.1016/j.energy.2018.10.052_bib20) 2012; 37
Reyes (10.1016/j.energy.2018.10.052_bib15) 2010; 10
Hatami (10.1016/j.energy.2018.10.052_bib2) 2014; 37
Xu (10.1016/j.energy.2018.10.052_bib5) 2017; 11
Zhuo (10.1016/j.energy.2018.10.052_bib12) 1996; 16
Pátek (10.1016/j.energy.2018.10.052_bib28) 2006; 29
Xu (10.1016/j.energy.2018.10.052_bib29) 2013; 60
Zhao (10.1016/j.energy.2018.10.052_bib10) 2003; 23
Centre (10.1016/j.energy.2018.10.052_bib23) 2014
Brückner (10.1016/j.energy.2018.10.052_bib4) 2015; 151
Garimella (10.1016/j.energy.2018.10.052_bib8) 1996; 16
Costa (10.1016/j.energy.2018.10.052_bib27) 2009; 34
Bourouisa (10.1016/j.energy.2018.10.052_bib16) 2004; 166
Le Lostec (10.1016/j.energy.2018.10.052_bib9) 2008; 33
Qu (10.1016/j.energy.2018.10.052_bib25) 2014; 87
Wu (10.1016/j.energy.2018.10.052_bib18) 2012; 48
Konstantinaviciute (10.1016/j.energy.2018.10.052_bib31) 2015; 51
Alarcón-Padilla (10.1016/j.energy.2018.10.052_bib6) 2007; 212
Han (10.1016/j.energy.2018.10.052_bib22) 2011; 56
Ma (10.1016/j.energy.2018.10.052_bib26) 2003; 23
Zhao (10.1016/j.energy.2018.10.052_bib7) 2005; 82
References_xml – volume: 112
  start-page: 956
  year: 2013
  end-page: 966
  ident: bib3
  article-title: A review of waste heat recovery technologies towards molten slag in steel industry
  publication-title: Appl Energy
  contributor:
    fullname: Chen
– volume: 27
  start-page: 1279
  year: 2003
  end-page: 1292
  ident: bib11
  article-title: Single stage and double absorption heat transformers used to recover energy in a distillation column of butane and pentane
  publication-title: Int J Energy Res
  contributor:
    fullname: Best
– volume: 212
  start-page: 303
  year: 2007
  end-page: 310
  ident: bib6
  article-title: Assessment of an absorption heat pump coupled to a multi-effect distillation unit within AQUASOL project
  publication-title: Desalination
  contributor:
    fullname: Blanco-Gálvez
– volume: 37
  start-page: 129
  year: 2012
  end-page: 135
  ident: bib20
  article-title: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water
  publication-title: Appl Therm Eng
  contributor:
    fullname: Hu
– volume: 151
  start-page: 157
  year: 2015
  end-page: 167
  ident: bib4
  article-title: Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies
  publication-title: Appl Energy
  contributor:
    fullname: Lävemann
– volume: 10
  start-page: S244
  year: 2010
  end-page: S248
  ident: bib15
  article-title: Performance modelling of single and double absorption heat transformers
  publication-title: Curr Appl Phys
  contributor:
    fullname: García-Gutiérrez
– year: 2008
  ident: bib1
  article-title: Waste heat recovery. Technology and opportunities in US industry
  contributor:
    fullname: Davidson
– volume: 34
  start-page: 254
  year: 2009
  end-page: 260
  ident: bib27
  article-title: Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency
  publication-title: Energy
  contributor:
    fullname: Paris
– volume: 29
  start-page: 566
  year: 2006
  end-page: 578
  ident: bib28
  article-title: A computationally effective formulation of the thermodynamic properties of LiBr–H
  publication-title: Int J Refrig
  contributor:
    fullname: Klomfar
– volume: 23
  start-page: 2407
  year: 2003
  end-page: 2414
  ident: bib10
  article-title: Thermodynamic performance of a new type of double absorption heat transformer
  publication-title: Appl Therm Eng
  contributor:
    fullname: Chen
– volume: 66
  start-page: 169
  year: 2016
  end-page: 180
  ident: bib30
  article-title: Numerical investigation on semi-GAX NH
  publication-title: Int J Refrig
  contributor:
    fullname: Motta
– volume: 39
  start-page: 30
  year: 2000
  end-page: 38
  ident: bib19
  article-title: Analysis of the process characteristics of an absorption heat transformer with compact heat exchangers and the mixture TFE–E181
  publication-title: Int J Therm Sci
  contributor:
    fullname: Stephan
– year: 2014
  ident: bib23
  article-title: Application of industrial heat pumps
  publication-title: IEA heat pump programme annex 35
  contributor:
    fullname: Centre
– volume: 60
  start-page: 457
  year: 2013
  end-page: 463
  ident: bib29
  article-title: A novel variable effect LiBr-water absorption refrigeration cycle
  publication-title: Energy
  contributor:
    fullname: Xia
– volume: 11
  start-page: 414
  year: 2017
  end-page: 436
  ident: bib5
  article-title: Absorption heat pump for waste heat reuse: current states and future development
  publication-title: Front Energy
  contributor:
    fullname: Wang
– volume: 113
  start-page: 141
  year: 2014
  end-page: 151
  ident: bib13
  article-title: First and second law multidimensional analysis of a triple absorption heat transformer (TAHT)
  publication-title: Appl Energy
  contributor:
    fullname: Cronin
– volume: 16
  start-page: 255
  year: 1996
  end-page: 262
  ident: bib12
  article-title: Performance of high-temperature absorption heat transformers using Alkitrate as the working pair
  publication-title: Appl Therm Eng
  contributor:
    fullname: Machielsen
– volume: 20
  start-page: 256
  year: 1997
  end-page: 266
  ident: bib21
  article-title: Working fluids for an absorption system based on R124 (2-chloro-1, 1, 1, 2,-tetrafluoroethane) and organic absorbents
  publication-title: Int J Refrig
  contributor:
    fullname: Daltrophe
– volume: 23
  start-page: 797
  year: 2003
  end-page: 806
  ident: bib26
  article-title: Application of absorption heat transformer to recover waste heat from a synthetic rubber plant
  publication-title: Appl Therm Eng
  contributor:
    fullname: Li
– volume: 48
  start-page: 317
  year: 2012
  end-page: 324
  ident: bib17
  article-title: Energy saving potential of low temperature hot water system based on air source absorption heat pump
  publication-title: Appl Therm Eng
  contributor:
    fullname: Wang
– volume: 87
  start-page: 175
  year: 2014
  end-page: 184
  ident: bib25
  article-title: New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement
  publication-title: Energy Convers Manag
  contributor:
    fullname: Yin
– volume: 56
  start-page: 1268
  year: 2011
  end-page: 1272
  ident: bib22
  article-title: Vapor− liquid equilibrium study of an absorption heat transformer working fluid of (HFC-32+ DMF)
  publication-title: J Chem Eng Data
  contributor:
    fullname: Chen
– volume: 166
  start-page: 209
  year: 2004
  end-page: 214
  ident: bib16
  article-title: Purification of seawater using absorption heat transformers with water-(LiBr+ LiI+ LiNO3+ LiCl) and low temperature heat sources
  publication-title: Desalination
  contributor:
    fullname: Siqueiros
– volume: 51
  start-page: 603
  year: 2015
  end-page: 612
  ident: bib31
  article-title: Comparative analysis of carbon dioxide emission factors for energy industries in European Union countries
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Bobinaite
– volume: 16
  start-page: 591
  year: 1996
  end-page: 604
  ident: bib8
  article-title: Performance evaluation of a generator-absorber heat-exchange heat pump
  publication-title: Appl Therm Eng
  contributor:
    fullname: Lacy
– volume: 33
  start-page: 500
  year: 2008
  end-page: 512
  ident: bib9
  article-title: Wood chip drying with an absorption heat pump
  publication-title: Energy
  contributor:
    fullname: Millette
– volume: 28
  start-page: 2070
  year: 2008
  end-page: 2076
  ident: bib24
  article-title: Application of customized absorption heat pumps for utilization of low-grade heat sources
  publication-title: Appl Therm Eng
  contributor:
    fullname: Schweigler
– volume: 48
  start-page: 349
  year: 2012
  end-page: 358
  ident: bib18
  article-title: Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions
  publication-title: Appl Therm Eng
  contributor:
    fullname: Wang
– volume: 37
  start-page: 168
  year: 2014
  end-page: 181
  ident: bib2
  article-title: A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Gorji-Bandpy
– volume: 82
  start-page: 107
  year: 2005
  end-page: 116
  ident: bib7
  article-title: Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid
  publication-title: Appl Energy
  contributor:
    fullname: Ma
– volume: 22
  start-page: 791
  year: 1998
  end-page: 803
  ident: bib14
  article-title: Performance study of a double-absorption water/calcium chloride heat transformer
  publication-title: Int J Energy Res
  contributor:
    fullname: Heard
– volume: 66
  start-page: 169
  year: 2016
  ident: 10.1016/j.energy.2018.10.052_bib30
  article-title: Numerical investigation on semi-GAX NH3–H2O absorption cycles
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2016.02.009
  contributor:
    fullname: Toppi
– volume: 60
  start-page: 457
  year: 2013
  ident: 10.1016/j.energy.2018.10.052_bib29
  article-title: A novel variable effect LiBr-water absorption refrigeration cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.033
  contributor:
    fullname: Xu
– volume: 112
  start-page: 956
  year: 2013
  ident: 10.1016/j.energy.2018.10.052_bib3
  article-title: A review of waste heat recovery technologies towards molten slag in steel industry
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.02.019
  contributor:
    fullname: Zhang
– year: 2014
  ident: 10.1016/j.energy.2018.10.052_bib23
  article-title: Application of industrial heat pumps
  contributor:
    fullname: Centre
– volume: 10
  start-page: S244
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2018.10.052_bib15
  article-title: Performance modelling of single and double absorption heat transformers
  publication-title: Curr Appl Phys
  doi: 10.1016/j.cap.2009.11.052
  contributor:
    fullname: Reyes
– volume: 48
  start-page: 317
  year: 2012
  ident: 10.1016/j.energy.2018.10.052_bib17
  article-title: Energy saving potential of low temperature hot water system based on air source absorption heat pump
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.12.045
  contributor:
    fullname: Li
– volume: 16
  start-page: 255
  issue: 3
  year: 1996
  ident: 10.1016/j.energy.2018.10.052_bib12
  article-title: Performance of high-temperature absorption heat transformers using Alkitrate as the working pair
  publication-title: Appl Therm Eng
  doi: 10.1016/1359-4311(95)00069-0
  contributor:
    fullname: Zhuo
– volume: 37
  start-page: 168
  year: 2014
  ident: 10.1016/j.energy.2018.10.052_bib2
  article-title: A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.004
  contributor:
    fullname: Hatami
– volume: 16
  start-page: 591
  issue: 7
  year: 1996
  ident: 10.1016/j.energy.2018.10.052_bib8
  article-title: Performance evaluation of a generator-absorber heat-exchange heat pump
  publication-title: Appl Therm Eng
  doi: 10.1016/1359-4311(95)00041-0
  contributor:
    fullname: Garimella
– volume: 23
  start-page: 2407
  issue: 18
  year: 2003
  ident: 10.1016/j.energy.2018.10.052_bib10
  article-title: Thermodynamic performance of a new type of double absorption heat transformer
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2003.08.006
  contributor:
    fullname: Zhao
– volume: 20
  start-page: 256
  issue: 4
  year: 1997
  ident: 10.1016/j.energy.2018.10.052_bib21
  article-title: Working fluids for an absorption system based on R124 (2-chloro-1, 1, 1, 2,-tetrafluoroethane) and organic absorbents
  publication-title: Int J Refrig
  doi: 10.1016/S0140-7007(97)00090-X
  contributor:
    fullname: Borde
– volume: 51
  start-page: 603
  year: 2015
  ident: 10.1016/j.energy.2018.10.052_bib31
  article-title: Comparative analysis of carbon dioxide emission factors for energy industries in European Union countries
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.06.058
  contributor:
    fullname: Konstantinaviciute
– volume: 37
  start-page: 129
  year: 2012
  ident: 10.1016/j.energy.2018.10.052_bib20
  article-title: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.11.006
  contributor:
    fullname: Zhang
– volume: 87
  start-page: 175
  year: 2014
  ident: 10.1016/j.energy.2018.10.052_bib25
  article-title: New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.06.083
  contributor:
    fullname: Qu
– volume: 166
  start-page: 209
  year: 2004
  ident: 10.1016/j.energy.2018.10.052_bib16
  article-title: Purification of seawater using absorption heat transformers with water-(LiBr+ LiI+ LiNO3+ LiCl) and low temperature heat sources
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.06.075
  contributor:
    fullname: Bourouisa
– year: 2008
  ident: 10.1016/j.energy.2018.10.052_bib1
  contributor:
    fullname: Johnson
– volume: 34
  start-page: 254
  issue: 3
  year: 2009
  ident: 10.1016/j.energy.2018.10.052_bib27
  article-title: Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency
  publication-title: Energy
  doi: 10.1016/j.energy.2008.07.019
  contributor:
    fullname: Costa
– volume: 82
  start-page: 107
  issue: 2
  year: 2005
  ident: 10.1016/j.energy.2018.10.052_bib7
  article-title: Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.10.012
  contributor:
    fullname: Zhao
– volume: 29
  start-page: 566
  issue: 4
  year: 2006
  ident: 10.1016/j.energy.2018.10.052_bib28
  article-title: A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2005.10.007
  contributor:
    fullname: Pátek
– volume: 212
  start-page: 303
  issue: 1–3
  year: 2007
  ident: 10.1016/j.energy.2018.10.052_bib6
  article-title: Assessment of an absorption heat pump coupled to a multi-effect distillation unit within AQUASOL project
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.10.015
  contributor:
    fullname: Alarcón-Padilla
– volume: 48
  start-page: 349
  year: 2012
  ident: 10.1016/j.energy.2018.10.052_bib18
  article-title: Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.04.047
  contributor:
    fullname: Wu
– volume: 113
  start-page: 141
  year: 2014
  ident: 10.1016/j.energy.2018.10.052_bib13
  article-title: First and second law multidimensional analysis of a triple absorption heat transformer (TAHT)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.06.049
  contributor:
    fullname: Donnellan
– volume: 33
  start-page: 500
  issue: 3
  year: 2008
  ident: 10.1016/j.energy.2018.10.052_bib9
  article-title: Wood chip drying with an absorption heat pump
  publication-title: Energy
  doi: 10.1016/j.energy.2007.10.013
  contributor:
    fullname: Le Lostec
– volume: 11
  start-page: 414
  issue: 4
  year: 2017
  ident: 10.1016/j.energy.2018.10.052_bib5
  article-title: Absorption heat pump for waste heat reuse: current states and future development
  publication-title: Front Energy
  doi: 10.1007/s11708-017-0507-1
  contributor:
    fullname: Xu
– volume: 22
  start-page: 791
  issue: 9
  year: 1998
  ident: 10.1016/j.energy.2018.10.052_bib14
  article-title: Performance study of a double-absorption water/calcium chloride heat transformer
  publication-title: Int J Energy Res
  doi: 10.1002/(SICI)1099-114X(199807)22:9<791::AID-ER393>3.0.CO;2-W
  contributor:
    fullname: Barragán
– volume: 56
  start-page: 1268
  issue: 4
  year: 2011
  ident: 10.1016/j.energy.2018.10.052_bib22
  article-title: Vapor− liquid equilibrium study of an absorption heat transformer working fluid of (HFC-32+ DMF)
  publication-title: J Chem Eng Data
  doi: 10.1021/je1011295
  contributor:
    fullname: Han
– volume: 27
  start-page: 1279
  issue: 14
  year: 2003
  ident: 10.1016/j.energy.2018.10.052_bib11
  article-title: Single stage and double absorption heat transformers used to recover energy in a distillation column of butane and pentane
  publication-title: Int J Energy Res
  doi: 10.1002/er.943
  contributor:
    fullname: Rivera
– volume: 28
  start-page: 2070
  issue: 16
  year: 2008
  ident: 10.1016/j.energy.2018.10.052_bib24
  article-title: Application of customized absorption heat pumps for utilization of low-grade heat sources
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2008.04.012
  contributor:
    fullname: Keil
– volume: 151
  start-page: 157
  year: 2015
  ident: 10.1016/j.energy.2018.10.052_bib4
  article-title: Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.147
  contributor:
    fullname: Brückner
– volume: 39
  start-page: 30
  issue: 1
  year: 2000
  ident: 10.1016/j.energy.2018.10.052_bib19
  article-title: Analysis of the process characteristics of an absorption heat transformer with compact heat exchangers and the mixture TFE–E181
  publication-title: Int J Therm Sci
  doi: 10.1016/S1290-0729(00)00197-5
  contributor:
    fullname: Genssle
– volume: 23
  start-page: 797
  issue: 7
  year: 2003
  ident: 10.1016/j.energy.2018.10.052_bib26
  article-title: Application of absorption heat transformer to recover waste heat from a synthetic rubber plant
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(03)00011-5
  contributor:
    fullname: Ma
SSID ssj0005899
Score 2.5659564
Snippet Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 1097
SubjectTerms Absorption
Absorption heat pump
District heating
Environment pollution
Heat exchangers
Heat pumps
Heat recovery
Heat recovery systems
Heating
Large scale
Pollution
Power plant
Power plants
Pumps
Steam
Temperature effects
Theoretical analysis
Turbines
Waste heat
Waste heat recovery
Waste materials
Water absorption
Water pollution
Title Waste heat recovery of power plant with large scale serial absorption heat pumps
URI https://dx.doi.org/10.1016/j.energy.2018.10.052
https://www.proquest.com/docview/2166338267
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfY9gAvCAYTg4H8wFvlyHHs2nmctqCCEEJ0aIWXyIkdiQm11dJK_Pnc2fnoBogPiRerOsWO698v5_P5zibkpRXcWTA7GJiinsmprVnOs4Z5-LBgtuU2D0E0s7l-tzDnhSzGFIJR9l-RBhlgjZmzf4H20CgI4DdgDiWgDuUf4X5pATe0_zYTXOxC_8Me-hpvQ8M7o5eb6Hv9iiHgkxYggjJ0bGKrdnUdVUiovwao2xuu-5goiCeUfotB8YMbYbEN2xzJp2T0cQcv7Cw5G0Rvv4SnzpP5ILrs_NUfks_JrgciNRjNEXMwo1usT40Z45BiOhZnSsqbqnaqdpQlbn7vTLxgiKifKvXoX7hKfPiTGI5nEozIi0ff3joue44vxveirkKNtEcOBCgh0IEHp6-LxZsxAMiE20WHjvaJlSH678d3_cpwuTWFB7vk4gG53y0o6GlkwkNyxy8Pyd0-37w9JEfFmMsID3bKvH1E3geqUISa9lShq4YGqtBAFYpUoYEqNFCFRqrQkSqxfqDKY_LxVXFxNmPdBRusznS2YY3BnHZutXDeSKdS06SCV7DmN9opJzKnTV4pn2pY99ZSZ1M81jp3zrjGc2jiiOwvV0v_hFAjRQVTJa-kraXKlVVNZirH81r4qZPimLB-9Mp1PEel7AMMr8o42iWONkphtI-J7oe47GzBaOOVwIrf1DzpESm777ItRQqWdQZLaf30nxt-Ru6N7D8h-5vrrX9O9lq3fdFR6zs7UIjE
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste+heat+recovery+of+power+plant+with+large+scale+serial+absorption+heat+pumps&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Z.Y.&rft.au=Mao%2C+H.C.&rft.au=Liu%2C+D.S.&rft.au=Wang%2C+R.Z.&rft.date=2018-12-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=165&rft.spage=1097&rft.epage=1105&rft_id=info:doi/10.1016%2Fj.energy.2018.10.052&rft.externalDocID=S0360544218320425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon