Waste heat recovery of power plant with large scale serial absorption heat pumps
Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is one of the attractive solutions. In this paper, we present the theoretical study and test of a power plant waste heat recovery system with lar...
Saved in:
Published in: | Energy (Oxford) Vol. 165; pp. 1097 - 1105 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
15-12-2018
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is one of the attractive solutions. In this paper, we present the theoretical study and test of a power plant waste heat recovery system with large scale LiBr-water absorption heat pumps for district heating. Waste heat from steam condenser with temperature of ∼35 °C is recovered by the absorption heat pumps driven by steam with pressure of ∼0.25 MPa from the turbine. Heat output from the absorption heat pumps is used to preheat the return water of district heating network from ∼45 °C to ∼80 °C. The return water is further heated by the steam to ∼105 °C for heating supply. Large temperature lift of the return water is achieved by the serial absorption heat pumps. Theoretical analysis of the system is presented, showing advantages compared to the conventional absorption heat pump and original heating supply system. On-site test showed that COP of 1.77 and heating capacity of 63.57 MW were achieved by one serial absorption heat pump, with waste heat inlet/outlet temperature of 34.63/28.33 °C and return water inlet/outlet temperature of 45.94/81.34 °C.
•District heating system in power plant is improved by waste heat recovery.•Serial absorption heat pumps are used for large output temperature lift.•Theoretical study and on-site test are carried out.•COP of 1.77 and heat output of 63.57 MW are achieved by one absorption heat pump. |
---|---|
AbstractList | Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is one of the attractive solutions. In this paper, we present the theoretical study and test of a power plant waste heat recovery system with large scale LiBr-water absorption heat pumps for district heating. Waste heat from steam condenser with temperature of ∼35 °C is recovered by the absorption heat pumps driven by steam with pressure of ∼0.25 MPa from the turbine. Heat output from the absorption heat pumps is used to preheat the return water of district heating network from ∼45 °C to ∼80 °C. The return water is further heated by the steam to ∼105 °C for heating supply. Large temperature lift of the return water is achieved by the serial absorption heat pumps. Theoretical analysis of the system is presented, showing advantages compared to the conventional absorption heat pump and original heating supply system. On-site test showed that COP of 1.77 and heating capacity of 63.57 MW were achieved by one serial absorption heat pump, with waste heat inlet/outlet temperature of 34.63/28.33 °C and return water inlet/outlet temperature of 45.94/81.34 °C. Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is one of the attractive solutions. In this paper, we present the theoretical study and test of a power plant waste heat recovery system with large scale LiBr-water absorption heat pumps for district heating. Waste heat from steam condenser with temperature of ∼35 °C is recovered by the absorption heat pumps driven by steam with pressure of ∼0.25 MPa from the turbine. Heat output from the absorption heat pumps is used to preheat the return water of district heating network from ∼45 °C to ∼80 °C. The return water is further heated by the steam to ∼105 °C for heating supply. Large temperature lift of the return water is achieved by the serial absorption heat pumps. Theoretical analysis of the system is presented, showing advantages compared to the conventional absorption heat pump and original heating supply system. On-site test showed that COP of 1.77 and heating capacity of 63.57 MW were achieved by one serial absorption heat pump, with waste heat inlet/outlet temperature of 34.63/28.33 °C and return water inlet/outlet temperature of 45.94/81.34 °C. •District heating system in power plant is improved by waste heat recovery.•Serial absorption heat pumps are used for large output temperature lift.•Theoretical study and on-site test are carried out.•COP of 1.77 and heat output of 63.57 MW are achieved by one absorption heat pump. |
Author | Xu, Z.Y. Wang, R.Z. Mao, H.C. Liu, D.S. |
Author_xml | – sequence: 1 givenname: Z.Y. surname: Xu fullname: Xu, Z.Y. organization: Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, PR China – sequence: 2 givenname: H.C. surname: Mao fullname: Mao, H.C. organization: Shuangliang Eco-Energy Systems Co., Ltd., Jiangyin 214444, PR China – sequence: 3 givenname: D.S. surname: Liu fullname: Liu, D.S. organization: Shuangliang Eco-Energy Systems Co., Ltd., Jiangyin 214444, PR China – sequence: 4 givenname: R.Z. surname: Wang fullname: Wang, R.Z. email: rzwang@sjtu.edu.cn organization: Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, PR China |
BookMark | eNp9kEtrwzAQhEVJoUnaf9CDoGe7eliyfCmU0BcE2kNLj0Kx1omNY7mSkpB_Xxv33MsuDDOz7LdAs851gNAtJSklVN43KXTgt-eUEaoGKSWCXaA5VTlPZK7EDM0JlyQRWcau0CKEhhAiVFHM0ce3CRHwDkzEHkp3BH_GrsK9O4HHfWu6iE913OHW-C3gUJp2mOBr02KzCc73sXbdlO8P-z5co8vKtAFu_vYSfT0_fa5ek_X7y9vqcZ2UPOcxqVQmBCEmZxZUZgVVFWVkozKiciss4zZXxUYAzZVkZZZzKQsiC2uVrYAMFUt0N_X23v0cIETduIPvhpOaUSk5V0yOrmxyld6F4KHSva_3xp81JXpkpxs9sdMju1Ed2A2xhykGwwfHGrwOZQ1dCbYeIEVtXf1_wS9yanq2 |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_118358 crossref_primary_10_1016_j_energy_2019_04_001 crossref_primary_10_3390_en14061550 crossref_primary_10_1016_j_energy_2024_130299 crossref_primary_10_1088_1742_6596_2119_1_012105 crossref_primary_10_1016_j_cherd_2023_05_049 crossref_primary_10_1134_S0040601520120095 crossref_primary_10_1016_j_applthermaleng_2021_117460 crossref_primary_10_1016_j_applthermaleng_2024_123748 crossref_primary_10_1016_j_enconman_2021_113954 crossref_primary_10_1007_s12273_021_0874_8 crossref_primary_10_1016_j_enconman_2019_06_052 crossref_primary_10_1016_j_energy_2022_125611 crossref_primary_10_1088_1757_899X_1051_1_012049 crossref_primary_10_18186_thermal_850796 crossref_primary_10_1080_15567036_2020_1796845 crossref_primary_10_1016_j_enconman_2019_04_045 crossref_primary_10_1016_j_applthermaleng_2023_121200 crossref_primary_10_1016_j_energy_2021_121804 crossref_primary_10_3390_en16227607 crossref_primary_10_1016_j_energy_2019_07_104 crossref_primary_10_15377_2409_5826_2019_06_7 crossref_primary_10_3390_su11071881 crossref_primary_10_1016_j_applthermaleng_2020_116325 crossref_primary_10_1016_j_enconman_2024_118662 crossref_primary_10_1016_j_enconman_2023_117952 crossref_primary_10_3390_infrastructures7030037 crossref_primary_10_1016_j_energy_2023_129292 crossref_primary_10_1016_j_applthermaleng_2021_117792 crossref_primary_10_1016_j_energy_2022_125194 crossref_primary_10_1016_j_energy_2019_116446 crossref_primary_10_1016_j_fuel_2022_127237 crossref_primary_10_1016_j_energy_2019_116005 crossref_primary_10_1016_j_enconman_2022_115358 crossref_primary_10_1088_1757_899X_721_1_012059 crossref_primary_10_1016_j_applthermaleng_2023_121772 crossref_primary_10_1016_j_energy_2019_06_026 crossref_primary_10_1016_j_energy_2021_120872 crossref_primary_10_1007_s43979_022_00038_0 crossref_primary_10_1016_j_jobe_2022_104499 crossref_primary_10_1016_j_enconman_2020_113293 crossref_primary_10_1016_j_applthermaleng_2021_117719 crossref_primary_10_1016_j_energy_2022_123846 crossref_primary_10_3390_en13236256 crossref_primary_10_3390_en15124445 crossref_primary_10_1016_j_rser_2023_114141 crossref_primary_10_1016_j_energy_2024_131007 crossref_primary_10_1016_j_energy_2019_116429 crossref_primary_10_1016_j_energy_2021_122292 crossref_primary_10_1016_j_heliyon_2024_e26797 crossref_primary_10_1016_j_enconman_2020_113100 crossref_primary_10_1016_j_energy_2021_120341 crossref_primary_10_1016_j_ijrefrig_2020_08_012 crossref_primary_10_1016_j_erss_2020_101764 crossref_primary_10_1016_j_enconman_2024_118760 crossref_primary_10_1016_j_energy_2023_129396 crossref_primary_10_3390_su152115204 crossref_primary_10_1016_j_apenergy_2020_115910 crossref_primary_10_1016_j_enconman_2019_112343 crossref_primary_10_1016_j_energy_2024_131755 crossref_primary_10_1016_j_renene_2024_120074 crossref_primary_10_1016_j_enconman_2020_113821 crossref_primary_10_1016_j_seta_2022_102214 crossref_primary_10_1088_2631_8695_ababf2 crossref_primary_10_1002_er_5066 crossref_primary_10_3390_en16124591 crossref_primary_10_1016_j_jclepro_2022_133936 crossref_primary_10_1016_j_energy_2023_127005 crossref_primary_10_31648_ts_6638 crossref_primary_10_1016_j_applthermaleng_2021_116605 crossref_primary_10_1016_j_enconman_2020_113072 crossref_primary_10_1016_j_apenergy_2023_120757 crossref_primary_10_3390_e23050513 crossref_primary_10_15407_scine20_01_035 crossref_primary_10_1016_j_energy_2018_12_017 crossref_primary_10_1016_j_ijrefrig_2024_06_012 |
Cites_doi | 10.1016/j.ijrefrig.2016.02.009 10.1016/j.energy.2013.08.033 10.1016/j.apenergy.2013.02.019 10.1016/j.cap.2009.11.052 10.1016/j.applthermaleng.2011.12.045 10.1016/1359-4311(95)00069-0 10.1016/j.rser.2014.05.004 10.1016/1359-4311(95)00041-0 10.1016/j.applthermaleng.2003.08.006 10.1016/S0140-7007(97)00090-X 10.1016/j.rser.2015.06.058 10.1016/j.applthermaleng.2011.11.006 10.1016/j.enconman.2014.06.083 10.1016/j.desal.2004.06.075 10.1016/j.energy.2008.07.019 10.1016/j.apenergy.2004.10.012 10.1016/j.ijrefrig.2005.10.007 10.1016/j.desal.2006.10.015 10.1016/j.applthermaleng.2012.04.047 10.1016/j.apenergy.2013.06.049 10.1016/j.energy.2007.10.013 10.1007/s11708-017-0507-1 10.1002/(SICI)1099-114X(199807)22:9<791::AID-ER393>3.0.CO;2-W 10.1021/je1011295 10.1002/er.943 10.1016/j.applthermaleng.2008.04.012 10.1016/j.apenergy.2015.01.147 10.1016/S1290-0729(00)00197-5 10.1016/S1359-4311(03)00011-5 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Dec 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2018 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI |
DOI | 10.1016/j.energy.2018.10.052 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
EndPage | 1105 |
ExternalDocumentID | 10_1016_j_energy_2018_10_052 S0360544218320425 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AAXKI AAYXX ABDPE ABFNM ABXDB ADMUD AFJKZ AHHHB AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI |
ID | FETCH-LOGICAL-c373t-f845500a72de84d518f120b84087d5d23d789b5e17862c473669069dd8dfe0373 |
ISSN | 0360-5442 |
IngestDate | Thu Oct 10 21:08:59 EDT 2024 Fri Nov 22 00:15:18 EST 2024 Fri Feb 23 02:33:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Absorption heat pump Large scale Power plant District heating Waste heat |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c373t-f845500a72de84d518f120b84087d5d23d789b5e17862c473669069dd8dfe0373 |
PQID | 2166338267 |
PQPubID | 2045484 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2166338267 crossref_primary_10_1016_j_energy_2018_10_052 elsevier_sciencedirect_doi_10_1016_j_energy_2018_10_052 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-15 |
PublicationDateYYYYMMDD | 2018-12-15 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Alarcón-Padilla, García-Rodríguez, Blanco-Gálvez (bib6) 2007; 212 Li, Wu, Zhang, Shi, Wang (bib17) 2012; 48 Costa, Bakhtiari, Schuster, Paris (bib27) 2009; 34 Borde, Jelinek, Daltrophe (bib21) 1997; 20 Zhang, Hu (bib20) 2012; 37 Le Lostec, Galanis, Baribeault, Millette (bib9) 2008; 33 Han, Xu, Gao, Wang, Chen (bib22) 2011; 56 Centre (bib23) 2014 Donnellan, Byrne, Oliveira, Cronin (bib13) 2014; 113 Wu, Zhang, Li, Shi, Wang (bib18) 2012; 48 Garimella, Christensen, Lacy (bib8) 1996; 16 Johnson, Choate, Davidson (bib1) 2008 Rivera, Cerezo, Rivero, Cervantes, Best (bib11) 2003; 27 Zhuo, Machielsen (bib12) 1996; 16 Brückner, Liu, Miró, Radspieler, Cabeza, Lävemann (bib4) 2015; 151 Qu, Abdelaziz, Yin (bib25) 2014; 87 Zhang, Wang, Zhu, Qiu, Li, Chen (bib3) 2013; 112 Keil, Plura, Radspieler, Schweigler (bib24) 2008; 28 Pátek, Klomfar (bib28) 2006; 29 Hatami, Ganji, Gorji-Bandpy (bib2) 2014; 37 Reyes, Gómez, García-Gutiérrez (bib15) 2010; 10 Barragán, Arellano, Heard (bib14) 1998; 22 Xu, Wang (bib5) 2017; 11 Toppi, Aprile, Guerra, Motta (bib30) 2016; 66 Genssle, Stephan (bib19) 2000; 39 Zhao, Ma, Chen (bib10) 2003; 23 Zhao, Zhang, Ma (bib7) 2005; 82 Xu, Wang, Xia (bib29) 2013; 60 Konstantinaviciute, Bobinaite (bib31) 2015; 51 Ma, Chen, Li, Sha, Liang, Li (bib26) 2003; 23 Bourouisa, Coronas, Romero, Siqueiros (bib16) 2004; 166 Li (10.1016/j.energy.2018.10.052_bib17) 2012; 48 Borde (10.1016/j.energy.2018.10.052_bib21) 1997; 20 Barragán (10.1016/j.energy.2018.10.052_bib14) 1998; 22 Zhang (10.1016/j.energy.2018.10.052_bib3) 2013; 112 Genssle (10.1016/j.energy.2018.10.052_bib19) 2000; 39 Johnson (10.1016/j.energy.2018.10.052_bib1) 2008 Keil (10.1016/j.energy.2018.10.052_bib24) 2008; 28 Toppi (10.1016/j.energy.2018.10.052_bib30) 2016; 66 Rivera (10.1016/j.energy.2018.10.052_bib11) 2003; 27 Donnellan (10.1016/j.energy.2018.10.052_bib13) 2014; 113 Zhang (10.1016/j.energy.2018.10.052_bib20) 2012; 37 Reyes (10.1016/j.energy.2018.10.052_bib15) 2010; 10 Hatami (10.1016/j.energy.2018.10.052_bib2) 2014; 37 Xu (10.1016/j.energy.2018.10.052_bib5) 2017; 11 Zhuo (10.1016/j.energy.2018.10.052_bib12) 1996; 16 Pátek (10.1016/j.energy.2018.10.052_bib28) 2006; 29 Xu (10.1016/j.energy.2018.10.052_bib29) 2013; 60 Zhao (10.1016/j.energy.2018.10.052_bib10) 2003; 23 Centre (10.1016/j.energy.2018.10.052_bib23) 2014 Brückner (10.1016/j.energy.2018.10.052_bib4) 2015; 151 Garimella (10.1016/j.energy.2018.10.052_bib8) 1996; 16 Costa (10.1016/j.energy.2018.10.052_bib27) 2009; 34 Bourouisa (10.1016/j.energy.2018.10.052_bib16) 2004; 166 Le Lostec (10.1016/j.energy.2018.10.052_bib9) 2008; 33 Qu (10.1016/j.energy.2018.10.052_bib25) 2014; 87 Wu (10.1016/j.energy.2018.10.052_bib18) 2012; 48 Konstantinaviciute (10.1016/j.energy.2018.10.052_bib31) 2015; 51 Alarcón-Padilla (10.1016/j.energy.2018.10.052_bib6) 2007; 212 Han (10.1016/j.energy.2018.10.052_bib22) 2011; 56 Ma (10.1016/j.energy.2018.10.052_bib26) 2003; 23 Zhao (10.1016/j.energy.2018.10.052_bib7) 2005; 82 |
References_xml | – volume: 112 start-page: 956 year: 2013 end-page: 966 ident: bib3 article-title: A review of waste heat recovery technologies towards molten slag in steel industry publication-title: Appl Energy contributor: fullname: Chen – volume: 27 start-page: 1279 year: 2003 end-page: 1292 ident: bib11 article-title: Single stage and double absorption heat transformers used to recover energy in a distillation column of butane and pentane publication-title: Int J Energy Res contributor: fullname: Best – volume: 212 start-page: 303 year: 2007 end-page: 310 ident: bib6 article-title: Assessment of an absorption heat pump coupled to a multi-effect distillation unit within AQUASOL project publication-title: Desalination contributor: fullname: Blanco-Gálvez – volume: 37 start-page: 129 year: 2012 end-page: 135 ident: bib20 article-title: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water publication-title: Appl Therm Eng contributor: fullname: Hu – volume: 151 start-page: 157 year: 2015 end-page: 167 ident: bib4 article-title: Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies publication-title: Appl Energy contributor: fullname: Lävemann – volume: 10 start-page: S244 year: 2010 end-page: S248 ident: bib15 article-title: Performance modelling of single and double absorption heat transformers publication-title: Curr Appl Phys contributor: fullname: García-Gutiérrez – year: 2008 ident: bib1 article-title: Waste heat recovery. Technology and opportunities in US industry contributor: fullname: Davidson – volume: 34 start-page: 254 year: 2009 end-page: 260 ident: bib27 article-title: Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency publication-title: Energy contributor: fullname: Paris – volume: 29 start-page: 566 year: 2006 end-page: 578 ident: bib28 article-title: A computationally effective formulation of the thermodynamic properties of LiBr–H publication-title: Int J Refrig contributor: fullname: Klomfar – volume: 23 start-page: 2407 year: 2003 end-page: 2414 ident: bib10 article-title: Thermodynamic performance of a new type of double absorption heat transformer publication-title: Appl Therm Eng contributor: fullname: Chen – volume: 66 start-page: 169 year: 2016 end-page: 180 ident: bib30 article-title: Numerical investigation on semi-GAX NH publication-title: Int J Refrig contributor: fullname: Motta – volume: 39 start-page: 30 year: 2000 end-page: 38 ident: bib19 article-title: Analysis of the process characteristics of an absorption heat transformer with compact heat exchangers and the mixture TFE–E181 publication-title: Int J Therm Sci contributor: fullname: Stephan – year: 2014 ident: bib23 article-title: Application of industrial heat pumps publication-title: IEA heat pump programme annex 35 contributor: fullname: Centre – volume: 60 start-page: 457 year: 2013 end-page: 463 ident: bib29 article-title: A novel variable effect LiBr-water absorption refrigeration cycle publication-title: Energy contributor: fullname: Xia – volume: 11 start-page: 414 year: 2017 end-page: 436 ident: bib5 article-title: Absorption heat pump for waste heat reuse: current states and future development publication-title: Front Energy contributor: fullname: Wang – volume: 113 start-page: 141 year: 2014 end-page: 151 ident: bib13 article-title: First and second law multidimensional analysis of a triple absorption heat transformer (TAHT) publication-title: Appl Energy contributor: fullname: Cronin – volume: 16 start-page: 255 year: 1996 end-page: 262 ident: bib12 article-title: Performance of high-temperature absorption heat transformers using Alkitrate as the working pair publication-title: Appl Therm Eng contributor: fullname: Machielsen – volume: 20 start-page: 256 year: 1997 end-page: 266 ident: bib21 article-title: Working fluids for an absorption system based on R124 (2-chloro-1, 1, 1, 2,-tetrafluoroethane) and organic absorbents publication-title: Int J Refrig contributor: fullname: Daltrophe – volume: 23 start-page: 797 year: 2003 end-page: 806 ident: bib26 article-title: Application of absorption heat transformer to recover waste heat from a synthetic rubber plant publication-title: Appl Therm Eng contributor: fullname: Li – volume: 48 start-page: 317 year: 2012 end-page: 324 ident: bib17 article-title: Energy saving potential of low temperature hot water system based on air source absorption heat pump publication-title: Appl Therm Eng contributor: fullname: Wang – volume: 87 start-page: 175 year: 2014 end-page: 184 ident: bib25 article-title: New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement publication-title: Energy Convers Manag contributor: fullname: Yin – volume: 56 start-page: 1268 year: 2011 end-page: 1272 ident: bib22 article-title: Vapor− liquid equilibrium study of an absorption heat transformer working fluid of (HFC-32+ DMF) publication-title: J Chem Eng Data contributor: fullname: Chen – volume: 166 start-page: 209 year: 2004 end-page: 214 ident: bib16 article-title: Purification of seawater using absorption heat transformers with water-(LiBr+ LiI+ LiNO3+ LiCl) and low temperature heat sources publication-title: Desalination contributor: fullname: Siqueiros – volume: 51 start-page: 603 year: 2015 end-page: 612 ident: bib31 article-title: Comparative analysis of carbon dioxide emission factors for energy industries in European Union countries publication-title: Renew Sustain Energy Rev contributor: fullname: Bobinaite – volume: 16 start-page: 591 year: 1996 end-page: 604 ident: bib8 article-title: Performance evaluation of a generator-absorber heat-exchange heat pump publication-title: Appl Therm Eng contributor: fullname: Lacy – volume: 33 start-page: 500 year: 2008 end-page: 512 ident: bib9 article-title: Wood chip drying with an absorption heat pump publication-title: Energy contributor: fullname: Millette – volume: 28 start-page: 2070 year: 2008 end-page: 2076 ident: bib24 article-title: Application of customized absorption heat pumps for utilization of low-grade heat sources publication-title: Appl Therm Eng contributor: fullname: Schweigler – volume: 48 start-page: 349 year: 2012 end-page: 358 ident: bib18 article-title: Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions publication-title: Appl Therm Eng contributor: fullname: Wang – volume: 37 start-page: 168 year: 2014 end-page: 181 ident: bib2 article-title: A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery publication-title: Renew Sustain Energy Rev contributor: fullname: Gorji-Bandpy – volume: 82 start-page: 107 year: 2005 end-page: 116 ident: bib7 article-title: Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid publication-title: Appl Energy contributor: fullname: Ma – volume: 22 start-page: 791 year: 1998 end-page: 803 ident: bib14 article-title: Performance study of a double-absorption water/calcium chloride heat transformer publication-title: Int J Energy Res contributor: fullname: Heard – volume: 66 start-page: 169 year: 2016 ident: 10.1016/j.energy.2018.10.052_bib30 article-title: Numerical investigation on semi-GAX NH3–H2O absorption cycles publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2016.02.009 contributor: fullname: Toppi – volume: 60 start-page: 457 year: 2013 ident: 10.1016/j.energy.2018.10.052_bib29 article-title: A novel variable effect LiBr-water absorption refrigeration cycle publication-title: Energy doi: 10.1016/j.energy.2013.08.033 contributor: fullname: Xu – volume: 112 start-page: 956 year: 2013 ident: 10.1016/j.energy.2018.10.052_bib3 article-title: A review of waste heat recovery technologies towards molten slag in steel industry publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.02.019 contributor: fullname: Zhang – year: 2014 ident: 10.1016/j.energy.2018.10.052_bib23 article-title: Application of industrial heat pumps contributor: fullname: Centre – volume: 10 start-page: S244 issue: 2 year: 2010 ident: 10.1016/j.energy.2018.10.052_bib15 article-title: Performance modelling of single and double absorption heat transformers publication-title: Curr Appl Phys doi: 10.1016/j.cap.2009.11.052 contributor: fullname: Reyes – volume: 48 start-page: 317 year: 2012 ident: 10.1016/j.energy.2018.10.052_bib17 article-title: Energy saving potential of low temperature hot water system based on air source absorption heat pump publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.12.045 contributor: fullname: Li – volume: 16 start-page: 255 issue: 3 year: 1996 ident: 10.1016/j.energy.2018.10.052_bib12 article-title: Performance of high-temperature absorption heat transformers using Alkitrate as the working pair publication-title: Appl Therm Eng doi: 10.1016/1359-4311(95)00069-0 contributor: fullname: Zhuo – volume: 37 start-page: 168 year: 2014 ident: 10.1016/j.energy.2018.10.052_bib2 article-title: A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.05.004 contributor: fullname: Hatami – volume: 16 start-page: 591 issue: 7 year: 1996 ident: 10.1016/j.energy.2018.10.052_bib8 article-title: Performance evaluation of a generator-absorber heat-exchange heat pump publication-title: Appl Therm Eng doi: 10.1016/1359-4311(95)00041-0 contributor: fullname: Garimella – volume: 23 start-page: 2407 issue: 18 year: 2003 ident: 10.1016/j.energy.2018.10.052_bib10 article-title: Thermodynamic performance of a new type of double absorption heat transformer publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2003.08.006 contributor: fullname: Zhao – volume: 20 start-page: 256 issue: 4 year: 1997 ident: 10.1016/j.energy.2018.10.052_bib21 article-title: Working fluids for an absorption system based on R124 (2-chloro-1, 1, 1, 2,-tetrafluoroethane) and organic absorbents publication-title: Int J Refrig doi: 10.1016/S0140-7007(97)00090-X contributor: fullname: Borde – volume: 51 start-page: 603 year: 2015 ident: 10.1016/j.energy.2018.10.052_bib31 article-title: Comparative analysis of carbon dioxide emission factors for energy industries in European Union countries publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.06.058 contributor: fullname: Konstantinaviciute – volume: 37 start-page: 129 year: 2012 ident: 10.1016/j.energy.2018.10.052_bib20 article-title: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.11.006 contributor: fullname: Zhang – volume: 87 start-page: 175 year: 2014 ident: 10.1016/j.energy.2018.10.052_bib25 article-title: New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.06.083 contributor: fullname: Qu – volume: 166 start-page: 209 year: 2004 ident: 10.1016/j.energy.2018.10.052_bib16 article-title: Purification of seawater using absorption heat transformers with water-(LiBr+ LiI+ LiNO3+ LiCl) and low temperature heat sources publication-title: Desalination doi: 10.1016/j.desal.2004.06.075 contributor: fullname: Bourouisa – year: 2008 ident: 10.1016/j.energy.2018.10.052_bib1 contributor: fullname: Johnson – volume: 34 start-page: 254 issue: 3 year: 2009 ident: 10.1016/j.energy.2018.10.052_bib27 article-title: Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency publication-title: Energy doi: 10.1016/j.energy.2008.07.019 contributor: fullname: Costa – volume: 82 start-page: 107 issue: 2 year: 2005 ident: 10.1016/j.energy.2018.10.052_bib7 article-title: Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid publication-title: Appl Energy doi: 10.1016/j.apenergy.2004.10.012 contributor: fullname: Zhao – volume: 29 start-page: 566 issue: 4 year: 2006 ident: 10.1016/j.energy.2018.10.052_bib28 article-title: A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2005.10.007 contributor: fullname: Pátek – volume: 212 start-page: 303 issue: 1–3 year: 2007 ident: 10.1016/j.energy.2018.10.052_bib6 article-title: Assessment of an absorption heat pump coupled to a multi-effect distillation unit within AQUASOL project publication-title: Desalination doi: 10.1016/j.desal.2006.10.015 contributor: fullname: Alarcón-Padilla – volume: 48 start-page: 349 year: 2012 ident: 10.1016/j.energy.2018.10.052_bib18 article-title: Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.04.047 contributor: fullname: Wu – volume: 113 start-page: 141 year: 2014 ident: 10.1016/j.energy.2018.10.052_bib13 article-title: First and second law multidimensional analysis of a triple absorption heat transformer (TAHT) publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.06.049 contributor: fullname: Donnellan – volume: 33 start-page: 500 issue: 3 year: 2008 ident: 10.1016/j.energy.2018.10.052_bib9 article-title: Wood chip drying with an absorption heat pump publication-title: Energy doi: 10.1016/j.energy.2007.10.013 contributor: fullname: Le Lostec – volume: 11 start-page: 414 issue: 4 year: 2017 ident: 10.1016/j.energy.2018.10.052_bib5 article-title: Absorption heat pump for waste heat reuse: current states and future development publication-title: Front Energy doi: 10.1007/s11708-017-0507-1 contributor: fullname: Xu – volume: 22 start-page: 791 issue: 9 year: 1998 ident: 10.1016/j.energy.2018.10.052_bib14 article-title: Performance study of a double-absorption water/calcium chloride heat transformer publication-title: Int J Energy Res doi: 10.1002/(SICI)1099-114X(199807)22:9<791::AID-ER393>3.0.CO;2-W contributor: fullname: Barragán – volume: 56 start-page: 1268 issue: 4 year: 2011 ident: 10.1016/j.energy.2018.10.052_bib22 article-title: Vapor− liquid equilibrium study of an absorption heat transformer working fluid of (HFC-32+ DMF) publication-title: J Chem Eng Data doi: 10.1021/je1011295 contributor: fullname: Han – volume: 27 start-page: 1279 issue: 14 year: 2003 ident: 10.1016/j.energy.2018.10.052_bib11 article-title: Single stage and double absorption heat transformers used to recover energy in a distillation column of butane and pentane publication-title: Int J Energy Res doi: 10.1002/er.943 contributor: fullname: Rivera – volume: 28 start-page: 2070 issue: 16 year: 2008 ident: 10.1016/j.energy.2018.10.052_bib24 article-title: Application of customized absorption heat pumps for utilization of low-grade heat sources publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2008.04.012 contributor: fullname: Keil – volume: 151 start-page: 157 year: 2015 ident: 10.1016/j.energy.2018.10.052_bib4 article-title: Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.147 contributor: fullname: Brückner – volume: 39 start-page: 30 issue: 1 year: 2000 ident: 10.1016/j.energy.2018.10.052_bib19 article-title: Analysis of the process characteristics of an absorption heat transformer with compact heat exchangers and the mixture TFE–E181 publication-title: Int J Therm Sci doi: 10.1016/S1290-0729(00)00197-5 contributor: fullname: Genssle – volume: 23 start-page: 797 issue: 7 year: 2003 ident: 10.1016/j.energy.2018.10.052_bib26 article-title: Application of absorption heat transformer to recover waste heat from a synthetic rubber plant publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(03)00011-5 contributor: fullname: Ma |
SSID | ssj0005899 |
Score | 2.5659564 |
Snippet | Large amount of waste heat is dissipated in industries, resulting in energy waste and environment pollution. Waste heat recovery with absorption heat pump is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1097 |
SubjectTerms | Absorption Absorption heat pump District heating Environment pollution Heat exchangers Heat pumps Heat recovery Heat recovery systems Heating Large scale Pollution Power plant Power plants Pumps Steam Temperature effects Theoretical analysis Turbines Waste heat Waste heat recovery Waste materials Water absorption Water pollution |
Title | Waste heat recovery of power plant with large scale serial absorption heat pumps |
URI | https://dx.doi.org/10.1016/j.energy.2018.10.052 https://www.proquest.com/docview/2166338267 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfY9gAvCAYTg4H8wFvlyHHs2nmctqCCEEJ0aIWXyIkdiQm11dJK_Pnc2fnoBogPiRerOsWO698v5_P5zibkpRXcWTA7GJiinsmprVnOs4Z5-LBgtuU2D0E0s7l-tzDnhSzGFIJR9l-RBhlgjZmzf4H20CgI4DdgDiWgDuUf4X5pATe0_zYTXOxC_8Me-hpvQ8M7o5eb6Hv9iiHgkxYggjJ0bGKrdnUdVUiovwao2xuu-5goiCeUfotB8YMbYbEN2xzJp2T0cQcv7Cw5G0Rvv4SnzpP5ILrs_NUfks_JrgciNRjNEXMwo1usT40Z45BiOhZnSsqbqnaqdpQlbn7vTLxgiKifKvXoX7hKfPiTGI5nEozIi0ff3joue44vxveirkKNtEcOBCgh0IEHp6-LxZsxAMiE20WHjvaJlSH678d3_cpwuTWFB7vk4gG53y0o6GlkwkNyxy8Pyd0-37w9JEfFmMsID3bKvH1E3geqUISa9lShq4YGqtBAFYpUoYEqNFCFRqrQkSqxfqDKY_LxVXFxNmPdBRusznS2YY3BnHZutXDeSKdS06SCV7DmN9opJzKnTV4pn2pY99ZSZ1M81jp3zrjGc2jiiOwvV0v_hFAjRQVTJa-kraXKlVVNZirH81r4qZPimLB-9Mp1PEel7AMMr8o42iWONkphtI-J7oe47GzBaOOVwIrf1DzpESm777ItRQqWdQZLaf30nxt-Ru6N7D8h-5vrrX9O9lq3fdFR6zs7UIjE |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste+heat+recovery+of+power+plant+with+large+scale+serial+absorption+heat+pumps&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Z.Y.&rft.au=Mao%2C+H.C.&rft.au=Liu%2C+D.S.&rft.au=Wang%2C+R.Z.&rft.date=2018-12-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=165&rft.spage=1097&rft.epage=1105&rft_id=info:doi/10.1016%2Fj.energy.2018.10.052&rft.externalDocID=S0360544218320425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |