Impact of Cuminaldehyde and Indomethacin Co-Administration on Inflammatory Responses in MIA-Induced Osteoarthritis in Rats

Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceuticals (Basel, Switzerland) Vol. 17; no. 5; p. 630
Main Authors: de Morais, Sebastião Vieira, Calado, Gustavo Pereira, Carvalho, Rafael Cardoso, Garcia, João Batista Santos, de Queiroz, Thyago Moreira, Cantanhede Filho, Antonio José, Lopes, Alberto Jorge Oliveira, Cartágenes, Maria do Socorro de Sousa, Domingues, Gerson Ricardo de Souza
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01-05-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that the co-administration of cuminaldehyde and indomethacin does indeed produce a superior effect when compared to these compounds individually, significantly enhancing therapeutic outcomes. This effect is evidenced by a marked reduction in pro-inflammatory cytokines IL-6 and IFN-γ, alongside a significant increase in the anti-inflammatory cytokine IL-10, compared to treatments with each compound alone. Radiographic analyses further confirm the preservation of joint integrity and a reduction in osteoarthritic damage, highlighting the association's efficacy in cartilage-reducing damage. These findings suggests that the association of cuminaldehyde and indomethacin not only slows OA progression but also offers enhanced cartilage-reducing damage and fosters the production of protective cytokines. This study underscores the potential benefits of integrating natural products with pharmaceuticals in OA management and stresses the importance of further research to fully understand the mechanisms underlying the observed potentiated effects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8247
1424-8247
DOI:10.3390/ph17050630