Tannin phenotyping of the Vitaceae reveals a phylogenetic linkage of epigallocatechin in berries and leaves

Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. Green berries and mature leaves of representative true-to-type member...

Full description

Saved in:
Bibliographic Details
Published in:Annals of botany Vol. 130; no. 2; pp. 159 - 171
Main Authors: Brillouet, Jean-Marc, Romieu, Charles, Bacilieri, Roberto, Nick, Peter, Trias-Blasi, Anna, Maul, Erika, Solymosi, Katalin, Teszlák, Peter, Jiang, Jiang-Fu, Sun, Lei, Ortolani, Danielle, Londo, Jason P, Gutierrez, Ben, Prins, Bernard, Reynders, Marc, Van Caekenberghe, Frank, Maghradze, David, Marchal, Cecile, Sultan, Amir, Thomas, Jean-Francois, Scherberich, Daniel, Fulcrand, Helene, Roumeas, Laurent, Billerach, Guillaume, Salimov, Vugar, Musayev, Mirza, Ejaz Ul Islam Dar, Muhammad, Peltier, Jean-Benoit, Grisoni, Michel
Format: Journal Article
Language:English
Published: England Oxford University Press (OUP) 06-09-2022
Oxford University Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. Green berries and mature leaves of representative true-to-type members of the Vitaceae were collected before 'véraison', freeze-dried and pulverized, and condensed tannins were measured following depolymerization by nucleophilic addition of 2-mercaptoethanol to the C4 of the flavan-3-ol units in an organic acidic medium. Reaction products were separated and quantified by ultrahigh pressure liquid chromatography/diode array detection/mass spectrometry. The original ability to incorporate epigallocatechin (EGC) into grapevine condensed tannins was lost independently in both the American and Eurasian/Asian branches of the Vitaceae, with exceptional cases of reversion to the ancestral EGC phenotype. This is particularly true in the genus Vitis, where we now find two radically distinct groups differing with respect to EGC content. While Vitis species from Asia are void of EGC, 50 % of the New World Vitis harbour EGC. Interestingly, the presence of EGC is tightly coupled with the degree of leaf margin serration. Noticeably, the rare Asian EGC-forming species are phylogenetically close to Vitis vinifera, the only remnant representative of Vitis in Eurasia. Both the wild ancestral V. vinifera subsp. sylvestris as well as the domesticated V. vinifera subsp. sativa can accumulate EGC and activate galloylation biosynthesis that compete for photoassimilates and reductive power.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-7364
1095-8290
DOI:10.1093/aob/mcac077