Catalyst‐On‐Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co‐Photocatalyst for Efficient Light‐To‐Chemical Transformation
Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐c...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 24; pp. e2309983 - n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐catalyst. Here, efficient plasmon‐mediated catalysis is achieved by introducing a unique catalyst‐on‐hotspot nanoarchitecture obtained through the strategic positioning of co‐photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point‐of‐reaction. Using environmental remediation as a proof‐of‐concept application, the catalyst‐on‐hotspot design (edge‐AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic‐pollutant degradation at ≈81% albeit having lesser Cu2O co‐photocatalyst than the fully deposited design (full‐AgOcta@Cu2O). Mass‐normalized rate constants of edge‐AgOcta@Cu2O reveal up to 20‐fold and 3‐fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full‐AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4‐fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light‐concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co‐photocatalyst at the single‐particle level, the unprecedented design offers valuable insights in enhancing light‐driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.
The strategic positioning of semiconductor co‐catalyst on the electromagnetic hotspots of anisotropic plasmonic nanoparticles is crucial to concentrate light directly at the point‐of‐reaction at the single‐particle level. This unique catalyst‐on‐hotspot design enables up to 20‐fold better utilization of catalytic materials and enhances catalysis by >4‐fold over emerging hybrid photocatalytic ensembles. |
---|---|
AbstractList | Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐catalyst. Here, efficient plasmon‐mediated catalysis is achieved by introducing a unique catalyst‐on‐hotspot nanoarchitecture obtained through the strategic positioning of co‐photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point‐of‐reaction. Using environmental remediation as a proof‐of‐concept application, the catalyst‐on‐hotspot design (edge‐AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic‐pollutant degradation at ≈81% albeit having lesser Cu2O co‐photocatalyst than the fully deposited design (full‐AgOcta@Cu2O). Mass‐normalized rate constants of edge‐AgOcta@Cu2O reveal up to 20‐fold and 3‐fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full‐AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4‐fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light‐concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co‐photocatalyst at the single‐particle level, the unprecedented design offers valuable insights in enhancing light‐driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.
The strategic positioning of semiconductor co‐catalyst on the electromagnetic hotspots of anisotropic plasmonic nanoparticles is crucial to concentrate light directly at the point‐of‐reaction at the single‐particle level. This unique catalyst‐on‐hotspot design enables up to 20‐fold better utilization of catalytic materials and enhances catalysis by >4‐fold over emerging hybrid photocatalytic ensembles. Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐catalyst. Here, efficient plasmon‐mediated catalysis is achieved by introducing a unique catalyst‐on‐hotspot nanoarchitecture obtained through the strategic positioning of co‐photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point‐of‐reaction. Using environmental remediation as a proof‐of‐concept application, the catalyst‐on‐hotspot design (edge‐AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic‐pollutant degradation at ≈81% albeit having lesser Cu2O co‐photocatalyst than the fully deposited design (full‐AgOcta@Cu2O). Mass‐normalized rate constants of edge‐AgOcta@Cu2O reveal up to 20‐fold and 3‐fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full‐AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4‐fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light‐concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co‐photocatalyst at the single‐particle level, the unprecedented design offers valuable insights in enhancing light‐driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications. Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co-catalyst. Here, efficient plasmon-mediated catalysis is achieved by introducing a unique catalyst-on-hotspot nanoarchitecture obtained through the strategic positioning of co-photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point-of-reaction. Using environmental remediation as a proof-of-concept application, the catalyst-on-hotspot design (edge-AgOcta@Cu2 O) enhances photocatalytic advanced oxidation processes to achieve superior organic-pollutant degradation at ≈81% albeit having lesser Cu2 O co-photocatalyst than the fully deposited design (full-AgOcta@Cu2 O). Mass-normalized rate constants of edge-AgOcta@Cu2 O reveal up to 20-fold and 3-fold more efficient utilization of Cu2 O and Ag nanoparticles, respectively, compared to full-AgOcta@Cu2 O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4-fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light-concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co-photocatalyst at the single-particle level, the unprecedented design offers valuable insights in enhancing light-driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications. Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co-catalyst. Here, efficient plasmon-mediated catalysis is achieved by introducing a unique catalyst-on-hotspot nanoarchitecture obtained through the strategic positioning of co-photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point-of-reaction. Using environmental remediation as a proof-of-concept application, the catalyst-on-hotspot design (edge-AgOcta@Cu O) enhances photocatalytic advanced oxidation processes to achieve superior organic-pollutant degradation at ≈81% albeit having lesser Cu O co-photocatalyst than the fully deposited design (full-AgOcta@Cu O). Mass-normalized rate constants of edge-AgOcta@Cu O reveal up to 20-fold and 3-fold more efficient utilization of Cu O and Ag nanoparticles, respectively, compared to full-AgOcta@Cu O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4-fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light-concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co-photocatalyst at the single-particle level, the unprecedented design offers valuable insights in enhancing light-driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications. Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐catalyst. Here, efficient plasmon‐mediated catalysis is achieved by introducing a unique catalyst‐on‐hotspot nanoarchitecture obtained through the strategic positioning of co‐photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point‐of‐reaction. Using environmental remediation as a proof‐of‐concept application, the catalyst‐on‐hotspot design (edge‐AgOcta@Cu 2 O) enhances photocatalytic advanced oxidation processes to achieve superior organic‐pollutant degradation at ≈81% albeit having lesser Cu 2 O co‐photocatalyst than the fully deposited design (full‐AgOcta@Cu 2 O). Mass‐normalized rate constants of edge‐AgOcta@Cu 2 O reveal up to 20‐fold and 3‐fold more efficient utilization of Cu 2 O and Ag nanoparticles, respectively, compared to full‐AgOcta@Cu 2 O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4‐fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light‐concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co‐photocatalyst at the single‐particle level, the unprecedented design offers valuable insights in enhancing light‐driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications. |
Author | Boong, Siew Kheng Lee, Hiang Kwee Lee, Jinn‐Kye Chong, Carice Ang, Zhi Zhong Li, Haitao Raja Mogan, Tharishinny |
Author_xml | – sequence: 1 givenname: Carice surname: Chong fullname: Chong, Carice organization: Nanyang Technological University – sequence: 2 givenname: Siew Kheng surname: Boong fullname: Boong, Siew Kheng organization: Nanyang Technological University – sequence: 3 givenname: Tharishinny surname: Raja Mogan fullname: Raja Mogan, Tharishinny organization: Nanyang Technological University – sequence: 4 givenname: Jinn‐Kye surname: Lee fullname: Lee, Jinn‐Kye organization: Nanyang Technological University – sequence: 5 givenname: Zhi Zhong surname: Ang fullname: Ang, Zhi Zhong organization: Nanyang Technological University – sequence: 6 givenname: Haitao surname: Li fullname: Li, Haitao organization: Yangzhou University – sequence: 7 givenname: Hiang Kwee surname: Lee fullname: Lee, Hiang Kwee email: hiangkwee@ntu.edu.sg organization: National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38174596$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U9vFCEYBnBiamy7evVoSLx42ZU_MzB4M5PWmoy2ieuZMAzTpWFgBSbN3vwI_Yx-EtnsuiZevAAJv_cJ4bkEZz54A8BrjFYYIfI-Tc6tCCIUCdHQZ-ACM0yXrCHi7HTG6BxcpvSAEMWk4i_AOW0wr2rBLsBTq7Jyu5R__Xy69WW5CTltQ4ZflQ8q6o3NRuc5mg_wzqk0BW81vA56TtbfwzDCzt5vMgw-B9iGMn-3CTnoYygcQ4RX42i1NT4fbDHrPWw3ZrJaObiOyqcCJ5Vt8C_B81G5ZF4d9wX4fn21bm-W3e2nz-3Hbqkpp3QpxkpXpNGEDFWvBeKa8IHVBDcD75nghI2EDrSmlBIuatIzxURfCz5oqsolXYB3h9xtDD9mk7KcbNLGOeVNmJMkAiMseF2-cAHe_kMfwhx9eZ2kiDFeNbyqilodlI4hpWhGuY12UnEnMZL7ruS-K3nqqgy8OcbO_WSGE_9TTgHiAB6tM7v_xMlvX7rub_hvrQCoyg |
CitedBy_id | crossref_primary_10_1038_s41467_024_47994_y |
Cites_doi | 10.1039/D1CC03779J 10.1002/anie.202216562 10.1016/j.apcatb.2017.05.058 10.1016/j.electacta.2021.139746 10.1038/ncomms7990 10.1039/C9DT01046G 10.1021/acsanm.1c01126 10.1039/C8CC03502D 10.1016/j.jhazmat.2013.10.011 10.1016/j.apcatb.2023.122700 10.1021/jacs.9b01375 10.1016/j.cclet.2021.10.047 10.1016/j.jallcom.2020.154623 10.1021/acsnano.0c08773 10.1021/acsphotonics.1c00321 10.1002/asia.200900695 10.1021/jp993593c 10.1021/acs.nanolett.8b00241 10.1016/j.apsusc.2015.09.216 10.1021/es101711k 10.1016/j.cocis.2019.01.014 10.1016/j.apsusc.2020.145650 10.1039/C6CP04370D 10.1016/j.cclet.2021.07.059 10.1016/j.apcatb.2018.05.094 10.1038/s43586-023-00195-1 10.1021/acsami.0c20444 10.1016/j.surfin.2021.101436 10.1039/C8EN00930A 10.1021/acsenergylett.1c00366 10.1007/s11164-016-2436-8 10.1038/nmat3151 10.1021/acsmaterialslett.1c00081 10.1021/acs.nanolett.8b04119 10.1021/acs.chemrev.9b00187 10.1002/anie.200601277 10.1021/acs.nanolett.0c01050 10.1002/cssc.201800249 10.1039/C5NR04750A 10.1126/science.aat6967 10.1039/C5TA04566E 10.1002/jctb.5251 10.1016/j.matchemphys.2011.06.004 10.1039/C8CP00621K 10.1016/j.cej.2021.130818 10.1002/smll.201401242 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202309983 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202309983 38174596 SMLL202309983 |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- NPM 31~ AAMNL AASGY AAYOK AAYXX ACBWZ ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3733-9f4c428c22d4bc907c27d65218d7b69726f23d3533327952b6a69b597dc3a26f3 |
IEDL.DBID | 33P |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 03:05:08 EDT 2024 Thu Oct 10 22:11:32 EDT 2024 Fri Nov 22 02:25:40 EST 2024 Sat Nov 02 12:22:50 EDT 2024 Sat Aug 24 00:58:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | light-concentrating effect photocatalyst electromagnetic hotspots plasmon-mediated catalysis nanoarchitecture |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-9f4c428c22d4bc907c27d65218d7b69726f23d3533327952b6a69b597dc3a26f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38174596 |
PQID | 3066748744 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2910197561 proquest_journals_3066748744 crossref_primary_10_1002_smll_202309983 pubmed_primary_38174596 wiley_primary_10_1002_smll_202309983_SMLL202309983 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2021; 8 2021; 6 2021; 26 2015; 6 2021; 4 2021; 3 2019; 6 2015; 3 2020; 20 2020; 120 2021; 426 2019; 39 2019; 19 2020; 14 2011; 10 2023; 3 2013; 263 2016; 18 2019; 141 2020; 829 2018; 20 2017; 217 2021; 13 2010; 44 2023; 62 2018; 18 2011; 129 2017; 92 2006; 45 2018; 237 2000; 104 2023; 331 2019; 48 2020; 512 2016; 42 2022; 58 2022; 33 2015; 359 2018; 11 2018; 54 2010; 5 2022; 404 2016; 8 2014; 10 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 129 start-page: 1184 year: 2011 publication-title: Mater. Chem. Phys. – volume: 263 start-page: 541 year: 2013 publication-title: J. Hazard. Mater. – volume: 45 start-page: 4597 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 7145 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 10 start-page: 911 year: 2011 publication-title: Nat. Mater. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 829 year: 2020 publication-title: J. Alloys Compd. – volume: 5 start-page: 1466 year: 2010 publication-title: Chem.‐ Asian J. – volume: 13 start-page: 3209 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 26 year: 2021 publication-title: Surf. Interfaces – volume: 6 start-page: 1333 year: 2021 publication-title: ACS Energy Lett. – volume: 33 start-page: 1154 year: 2022 publication-title: Chin. Chem. Lett. – volume: 217 start-page: 485 year: 2017 publication-title: Appl. Catal., B – volume: 3 start-page: 12 year: 2023 publication-title: Nat. Rev. Methods Primers – volume: 8 start-page: 4672 year: 2016 publication-title: Nanoscale – volume: 331 year: 2023 publication-title: Appl. Catal., B – volume: 426 year: 2021 publication-title: Chem. Eng. J. – volume: 3 start-page: 574 year: 2021 publication-title: ACS Mater. Lett. – volume: 11 start-page: 1505 year: 2018 publication-title: ChemSusChem – volume: 362 start-page: 69 year: 2018 publication-title: Science – volume: 33 start-page: 3709 year: 2022 publication-title: Chin. Chem. Lett. – volume: 48 start-page: 8594 year: 2019 publication-title: Dalton Trans. – volume: 120 start-page: 986 year: 2020 publication-title: Chem. Rev. – volume: 58 start-page: 2055 year: 2022 publication-title: Chem. Commun. – volume: 10 start-page: 4940 year: 2014 publication-title: Small – volume: 404 year: 2022 publication-title: Electrochim. Acta – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 7807 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 105 year: 2019 publication-title: Environm. Sci.: Nano – volume: 8 start-page: 1497 year: 2021 publication-title: ACS Photonics – volume: 18 start-page: 2545 year: 2018 publication-title: Nano Lett. – volume: 20 start-page: 9872 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 42 start-page: 6025 year: 2016 publication-title: Res. Chem. Intermed. – volume: 54 start-page: 6188 year: 2018 publication-title: Chem. Commun. – volume: 6 start-page: 6990 year: 2015 publication-title: Nat. Commun. – volume: 237 start-page: 721 year: 2018 publication-title: Appl. Catal., B – volume: 20 start-page: 4322 year: 2020 publication-title: Nano Lett. – volume: 104 start-page: 1153 year: 2000 publication-title: J. Phys. Chem. B – volume: 44 start-page: 7641 year: 2010 publication-title: Env. Sci. Technol. – volume: 512 year: 2020 publication-title: Appl. Surf. Sci. – volume: 19 start-page: 891 year: 2019 publication-title: Nano Lett. – volume: 92 start-page: 2417 year: 2017 publication-title: J. Chem. Technol. Biotechnol. – volume: 39 start-page: 110 year: 2019 publication-title: Curr. Opin. Colloid Interface Sci. – volume: 359 start-page: 36 year: 2015 publication-title: Appl. Surf. Sci. – ident: e_1_2_8_2_1 doi: 10.1039/D1CC03779J – ident: e_1_2_8_7_1 doi: 10.1002/anie.202216562 – ident: e_1_2_8_45_1 doi: 10.1016/j.apcatb.2017.05.058 – ident: e_1_2_8_8_1 doi: 10.1016/j.electacta.2021.139746 – ident: e_1_2_8_6_1 doi: 10.1038/ncomms7990 – ident: e_1_2_8_40_1 doi: 10.1039/C9DT01046G – ident: e_1_2_8_41_1 doi: 10.1021/acsanm.1c01126 – ident: e_1_2_8_4_1 doi: 10.1039/C8CC03502D – ident: e_1_2_8_21_1 doi: 10.1016/j.jhazmat.2013.10.011 – ident: e_1_2_8_17_1 doi: 10.1016/j.apcatb.2023.122700 – ident: e_1_2_8_24_1 doi: 10.1021/jacs.9b01375 – ident: e_1_2_8_30_1 doi: 10.1016/j.cclet.2021.10.047 – ident: e_1_2_8_27_1 doi: 10.1016/j.jallcom.2020.154623 – ident: e_1_2_8_1_1 doi: 10.1021/acsnano.0c08773 – ident: e_1_2_8_19_1 doi: 10.1021/acsphotonics.1c00321 – ident: e_1_2_8_20_1 doi: 10.1002/asia.200900695 – ident: e_1_2_8_29_1 doi: 10.1021/jp993593c – ident: e_1_2_8_22_1 doi: 10.1021/acs.nanolett.8b00241 – ident: e_1_2_8_31_1 doi: 10.1016/j.apsusc.2015.09.216 – ident: e_1_2_8_36_1 doi: 10.1021/es101711k – ident: e_1_2_8_5_1 doi: 10.1016/j.cocis.2019.01.014 – ident: e_1_2_8_33_1 doi: 10.1016/j.apsusc.2020.145650 – ident: e_1_2_8_44_1 doi: 10.1039/C6CP04370D – ident: e_1_2_8_10_1 doi: 10.1016/j.cclet.2021.07.059 – ident: e_1_2_8_14_1 doi: 10.1016/j.apcatb.2018.05.094 – ident: e_1_2_8_16_1 doi: 10.1038/s43586-023-00195-1 – ident: e_1_2_8_34_1 doi: 10.1021/acsami.0c20444 – ident: e_1_2_8_35_1 doi: 10.1016/j.surfin.2021.101436 – ident: e_1_2_8_46_1 doi: 10.1039/C8EN00930A – ident: e_1_2_8_9_1 doi: 10.1021/acsenergylett.1c00366 – ident: e_1_2_8_38_1 doi: 10.1007/s11164-016-2436-8 – ident: e_1_2_8_11_1 doi: 10.1038/nmat3151 – ident: e_1_2_8_12_1 doi: 10.1021/acsmaterialslett.1c00081 – ident: e_1_2_8_23_1 doi: 10.1021/acs.nanolett.8b04119 – ident: e_1_2_8_13_1 doi: 10.1021/acs.chemrev.9b00187 – ident: e_1_2_8_28_1 doi: 10.1002/anie.200601277 – ident: e_1_2_8_15_1 doi: 10.1021/acs.nanolett.0c01050 – ident: e_1_2_8_3_1 doi: 10.1002/cssc.201800249 – ident: e_1_2_8_32_1 doi: 10.1039/C5NR04750A – ident: e_1_2_8_25_1 doi: 10.1126/science.aat6967 – ident: e_1_2_8_43_1 doi: 10.1039/C5TA04566E – ident: e_1_2_8_39_1 doi: 10.1002/jctb.5251 – ident: e_1_2_8_37_1 doi: 10.1016/j.matchemphys.2011.06.004 – ident: e_1_2_8_42_1 doi: 10.1039/C8CP00621K – ident: e_1_2_8_18_1 doi: 10.1016/j.cej.2021.130818 – ident: e_1_2_8_26_1 doi: 10.1002/smll.201401242 |
SSID | ssj0031247 |
Score | 2.4965303 |
Snippet | Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from... Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2309983 |
SubjectTerms | Catalysis Catalysts Chemical reactions Copper oxides Electromagnetic fields electromagnetic hotspots Focusing Light light‐concentrating effect nanoarchitecture Nanoparticles Oxidation Photocatalysis photocatalyst Photocatalysts Plasmonics Plasmons plasmon‐mediated catalysis Rate constants Utilization |
Title | Catalyst‐On‐Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co‐Photocatalyst for Efficient Light‐To‐Chemical Transformation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202309983 https://www.ncbi.nlm.nih.gov/pubmed/38174596 https://www.proquest.com/docview/3066748744 https://search.proquest.com/docview/2910197561 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTuMwFIaPmK5gMVxnCDcZCYlVBLGD3bBDpRWLApUoErsotpOZBcSIpAt2PEKfkSfhnKQJrWaBNGyiRLYTK76c__jyGeCoG5jA2CDwNZovP9Qm8TW3qW-0lDwwaSZtdYjtnbp56F72CZPT7uKv-RDtgBu1jKq_pgae6OLkExpaPD3S1AFKaPQYCPeJrkK1h0OMmq5YoPGqTldBm-UTeKuhNp7yk8Xki1bpH6m5qFwr0zNY_X6m1-DnTHayi7qerMNSmm_AyhyMcBOmPRrJeS3K97fpbY6XK1eiz1sy7IDd_HzDORuh5H4ipi4bOEMr5_8wl7Eh-fmMeAis5zD96K8rnZm9lKE4Zv2KV4Fmro6LccYUsYEWsPGcinb5FtwP-uPelT87r8E3QgnhR1lo0JsxnFssdPS6DVdWoj7oWqVlpLjMuLACBabgKjrjWiYy0ujRWCMSDBS_oJO7PN0GJlI6BT0TXZUQPSfUinOTaSNDdao1Nx4cN-UVP9dYjrgGMPOY_nHc_mMP9prijGfNs4gFLe0NifzvwWEbjA2LZkuSPHWTIuYopIJIob704HddDdpPEdYwPIukB7wq7S_yEN9dD4ft087_JNqFZbwP60Vqe9ApXybpPvwo7OSgqvIficIHjQ |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VeoAe-uDRpqXUlZA4RRA72Jve0HZXWxHoSiwSNyu2E3oocdVkD731J_Ab-SXMJJt0Vz0gVb1ESmwnVmbG840f3wAcDCIbWRdFoUH3FcbGZqHhLg-tkZJHNi-ka5LYXqqL68HnEdHknHZnYVp-iH7CjSyjGa_JwGlC-ugPa2h1-53WDhBDY8gg1uBpLFEb6RSHmHaDsUD31eRXQa8VEvVWx9t4zI9W26_6pb_A5ip2bZzP-MV_6PZLeL5Anuy0VZVX8CQvt-DZEh_hNtwNaTLnV1Xf_777WuJl4msMe2uGY7BfXnL4xKaIum-JVpeNvaXN8zfMFyylUJ8RJQIbemw__eZrbxcvZYiP2aihrEBP19bFOjOq2PEWsNkSkPblDlyNR7PhJFykbAitUEKESRFbDGgs5w7ljoG35cpJhAgDp4xMFJcFF04gxhRcJSfcyEwmBoMaZ0WGhWIX1ktf5m-AiZwSoRdioDIi0ImN4twWxspYHRvDbQCHncD0j5aZQ7cczFzTP9b9Pw5gr5OnXlhopQXt7o2J_D-Aj30x2hYtmGRl7ueV5oilokQhxAzgdasH_aeI2TA-SWQAvBH3I33Ql-dp2t-9_ZdGH2BjMjtPdfrl4uwdbOLzuN2ztgfr9c95_h7WKjffb_T_ARnkC7U |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdHhUoVHEpbvgK0GKkSpwhiB3vTW7XsiootrMRW4mbFdkIPJUYke-DGI_CMfRJmkk26qx6Q2kukKHZi2R7Pf2znZ4DPvchG1kVRaNB9hbGxaWi4y0JrpOSRzXLp6kNsr9TFde90QJic7i_-hg_RTbiRZdTjNRn4ncuP_kBDy9tftHSAEhojBrEEr2PU4kTPF2LcjsUCvVd9vAo6rZDIWy228ZgfLeZfdEt_ac1F6Vr7nuHa_5f6Hbyd6U72teko7-FVVnyA1Tka4To89Wkq56Gsfj8-XRZ4OfMVBr0VwxHYzy84fGFj1Ny3BNVlQ29p6_wN8zkbUaDPCIjA-h7zj3_6ytvZSxmqYzaogRXo55q0mGZCCVtqAZvMyWhfbMCP4WDSPwtnBzaEVighwiSPLYYzlnOHrY5ht-XKSRQIPaeMTBSXORdOoMIUXCUn3MhUJgZDGmdFig_FJiwXvsi2gYmMjkHPRU-lhM-JjeLc5sbKWB0bw20Ah2176buGy6EbAjPXVMe6q-MA9trm1DP7LLWgvb0xof8DOOgeo2XRcklaZH5aao5KKkoUCswAtppu0H2KuIbxSSID4HVrv1AGffV9NOrudv4l0z68GZ8O9ejbxfkurKBsS5pNw3uwXN1Ps4-wVLrpp7r3PwPaKQpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalyst%E2%80%90On%E2%80%90Hotspot+Nanoarchitecture%3A+Plasmonic+Focusing+of+Light+onto+Co%E2%80%90Photocatalyst+for+Efficient+Light%E2%80%90To%E2%80%90Chemical+Transformation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chong%2C+Carice&rft.au=Boong%2C+Siew+Kheng&rft.au=Raja+Mogan%2C+Tharishinny&rft.au=Lee%2C+Jinn%E2%80%90Kye&rft.date=2024-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202309983&rft.externalDBID=10.1002%252Fsmll.202309983&rft.externalDocID=SMLL202309983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |