Catalyst‐On‐Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co‐Photocatalyst for Efficient Light‐To‐Chemical Transformation

Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐c...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 24; pp. e2309983 - n/a
Main Authors: Chong, Carice, Boong, Siew Kheng, Raja Mogan, Tharishinny, Lee, Jinn‐Kye, Ang, Zhi Zhong, Li, Haitao, Lee, Hiang Kwee
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐catalyst. Here, efficient plasmon‐mediated catalysis is achieved by introducing a unique catalyst‐on‐hotspot nanoarchitecture obtained through the strategic positioning of co‐photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point‐of‐reaction. Using environmental remediation as a proof‐of‐concept application, the catalyst‐on‐hotspot design (edge‐AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic‐pollutant degradation at ≈81% albeit having lesser Cu2O co‐photocatalyst than the fully deposited design (full‐AgOcta@Cu2O). Mass‐normalized rate constants of edge‐AgOcta@Cu2O reveal up to 20‐fold and 3‐fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full‐AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4‐fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light‐concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co‐photocatalyst at the single‐particle level, the unprecedented design offers valuable insights in enhancing light‐driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications. The strategic positioning of semiconductor co‐catalyst on the electromagnetic hotspots of anisotropic plasmonic nanoparticles is crucial to concentrate light directly at the point‐of‐reaction at the single‐particle level. This unique catalyst‐on‐hotspot design enables up to 20‐fold better utilization of catalytic materials and enhances catalysis by >4‐fold over emerging hybrid photocatalytic ensembles.
AbstractList Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐catalyst. Here, efficient plasmon‐mediated catalysis is achieved by introducing a unique catalyst‐on‐hotspot nanoarchitecture obtained through the strategic positioning of co‐photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point‐of‐reaction. Using environmental remediation as a proof‐of‐concept application, the catalyst‐on‐hotspot design (edge‐AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic‐pollutant degradation at ≈81% albeit having lesser Cu2O co‐photocatalyst than the fully deposited design (full‐AgOcta@Cu2O). Mass‐normalized rate constants of edge‐AgOcta@Cu2O reveal up to 20‐fold and 3‐fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full‐AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4‐fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light‐concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co‐photocatalyst at the single‐particle level, the unprecedented design offers valuable insights in enhancing light‐driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications. The strategic positioning of semiconductor co‐catalyst on the electromagnetic hotspots of anisotropic plasmonic nanoparticles is crucial to concentrate light directly at the point‐of‐reaction at the single‐particle level. This unique catalyst‐on‐hotspot design enables up to 20‐fold better utilization of catalytic materials and enhances catalysis by >4‐fold over emerging hybrid photocatalytic ensembles.
Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐catalyst. Here, efficient plasmon‐mediated catalysis is achieved by introducing a unique catalyst‐on‐hotspot nanoarchitecture obtained through the strategic positioning of co‐photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point‐of‐reaction. Using environmental remediation as a proof‐of‐concept application, the catalyst‐on‐hotspot design (edge‐AgOcta@Cu2O) enhances photocatalytic advanced oxidation processes to achieve superior organic‐pollutant degradation at ≈81% albeit having lesser Cu2O co‐photocatalyst than the fully deposited design (full‐AgOcta@Cu2O). Mass‐normalized rate constants of edge‐AgOcta@Cu2O reveal up to 20‐fold and 3‐fold more efficient utilization of Cu2O and Ag nanoparticles, respectively, compared to full‐AgOcta@Cu2O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4‐fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light‐concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co‐photocatalyst at the single‐particle level, the unprecedented design offers valuable insights in enhancing light‐driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.
Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co-catalyst. Here, efficient plasmon-mediated catalysis is achieved by introducing a unique catalyst-on-hotspot nanoarchitecture obtained through the strategic positioning of co-photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point-of-reaction. Using environmental remediation as a proof-of-concept application, the catalyst-on-hotspot design (edge-AgOcta@Cu2 O) enhances photocatalytic advanced oxidation processes to achieve superior organic-pollutant degradation at ≈81% albeit having lesser Cu2 O co-photocatalyst than the fully deposited design (full-AgOcta@Cu2 O). Mass-normalized rate constants of edge-AgOcta@Cu2 O reveal up to 20-fold and 3-fold more efficient utilization of Cu2 O and Ag nanoparticles, respectively, compared to full-AgOcta@Cu2 O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4-fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light-concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co-photocatalyst at the single-particle level, the unprecedented design offers valuable insights in enhancing light-driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.
Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co-catalyst. Here, efficient plasmon-mediated catalysis is achieved by introducing a unique catalyst-on-hotspot nanoarchitecture obtained through the strategic positioning of co-photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point-of-reaction. Using environmental remediation as a proof-of-concept application, the catalyst-on-hotspot design (edge-AgOcta@Cu O) enhances photocatalytic advanced oxidation processes to achieve superior organic-pollutant degradation at ≈81% albeit having lesser Cu O co-photocatalyst than the fully deposited design (full-AgOcta@Cu O). Mass-normalized rate constants of edge-AgOcta@Cu O reveal up to 20-fold and 3-fold more efficient utilization of Cu O and Ag nanoparticles, respectively, compared to full-AgOcta@Cu O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4-fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light-concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co-photocatalyst at the single-particle level, the unprecedented design offers valuable insights in enhancing light-driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.
Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from weak electromagnetic field enhancements from polycrystalline and isotropic plasmonic nanoparticles as well as poor utilization of precious co‐catalyst. Here, efficient plasmon‐mediated catalysis is achieved by introducing a unique catalyst‐on‐hotspot nanoarchitecture obtained through the strategic positioning of co‐photocatalyst onto plasmonic hotspots to concentrate light energy directly at the point‐of‐reaction. Using environmental remediation as a proof‐of‐concept application, the catalyst‐on‐hotspot design (edge‐AgOcta@Cu 2 O) enhances photocatalytic advanced oxidation processes to achieve superior organic‐pollutant degradation at ≈81% albeit having lesser Cu 2 O co‐photocatalyst than the fully deposited design (full‐AgOcta@Cu 2 O). Mass‐normalized rate constants of edge‐AgOcta@Cu 2 O reveal up to 20‐fold and 3‐fold more efficient utilization of Cu 2 O and Ag nanoparticles, respectively, compared to full‐AgOcta@Cu 2 O and standalone catalysts. Moreover, this design also exhibits catalytic performance >4‐fold better than emerging hybrid photocatalytic platforms. Mechanistic studies unveil that the light‐concentrating effect facilitated by the dense electromagnetic hotspots is crucial to promote the generation and utilization of energetic photocarriers for enhanced catalysis. By enabling the plasmonic focusing of light onto co‐photocatalyst at the single‐particle level, the unprecedented design offers valuable insights in enhancing light‐driven chemical reactions and realizing efficient energy/catalyst utilizations for diverse chemical, environmental, and energy applications.
Author Boong, Siew Kheng
Lee, Hiang Kwee
Lee, Jinn‐Kye
Chong, Carice
Ang, Zhi Zhong
Li, Haitao
Raja Mogan, Tharishinny
Author_xml – sequence: 1
  givenname: Carice
  surname: Chong
  fullname: Chong, Carice
  organization: Nanyang Technological University
– sequence: 2
  givenname: Siew Kheng
  surname: Boong
  fullname: Boong, Siew Kheng
  organization: Nanyang Technological University
– sequence: 3
  givenname: Tharishinny
  surname: Raja Mogan
  fullname: Raja Mogan, Tharishinny
  organization: Nanyang Technological University
– sequence: 4
  givenname: Jinn‐Kye
  surname: Lee
  fullname: Lee, Jinn‐Kye
  organization: Nanyang Technological University
– sequence: 5
  givenname: Zhi Zhong
  surname: Ang
  fullname: Ang, Zhi Zhong
  organization: Nanyang Technological University
– sequence: 6
  givenname: Haitao
  surname: Li
  fullname: Li, Haitao
  organization: Yangzhou University
– sequence: 7
  givenname: Hiang Kwee
  surname: Lee
  fullname: Lee, Hiang Kwee
  email: hiangkwee@ntu.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38174596$$D View this record in MEDLINE/PubMed
BookMark eNqF0U9vFCEYBnBiamy7evVoSLx42ZU_MzB4M5PWmoy2ieuZMAzTpWFgBSbN3vwI_Yx-EtnsuiZevAAJv_cJ4bkEZz54A8BrjFYYIfI-Tc6tCCIUCdHQZ-ACM0yXrCHi7HTG6BxcpvSAEMWk4i_AOW0wr2rBLsBTq7Jyu5R__Xy69WW5CTltQ4ZflQ8q6o3NRuc5mg_wzqk0BW81vA56TtbfwzDCzt5vMgw-B9iGMn-3CTnoYygcQ4RX42i1NT4fbDHrPWw3ZrJaObiOyqcCJ5Vt8C_B81G5ZF4d9wX4fn21bm-W3e2nz-3Hbqkpp3QpxkpXpNGEDFWvBeKa8IHVBDcD75nghI2EDrSmlBIuatIzxURfCz5oqsolXYB3h9xtDD9mk7KcbNLGOeVNmJMkAiMseF2-cAHe_kMfwhx9eZ2kiDFeNbyqilodlI4hpWhGuY12UnEnMZL7ruS-K3nqqgy8OcbO_WSGE_9TTgHiAB6tM7v_xMlvX7rub_hvrQCoyg
CitedBy_id crossref_primary_10_1038_s41467_024_47994_y
Cites_doi 10.1039/D1CC03779J
10.1002/anie.202216562
10.1016/j.apcatb.2017.05.058
10.1016/j.electacta.2021.139746
10.1038/ncomms7990
10.1039/C9DT01046G
10.1021/acsanm.1c01126
10.1039/C8CC03502D
10.1016/j.jhazmat.2013.10.011
10.1016/j.apcatb.2023.122700
10.1021/jacs.9b01375
10.1016/j.cclet.2021.10.047
10.1016/j.jallcom.2020.154623
10.1021/acsnano.0c08773
10.1021/acsphotonics.1c00321
10.1002/asia.200900695
10.1021/jp993593c
10.1021/acs.nanolett.8b00241
10.1016/j.apsusc.2015.09.216
10.1021/es101711k
10.1016/j.cocis.2019.01.014
10.1016/j.apsusc.2020.145650
10.1039/C6CP04370D
10.1016/j.cclet.2021.07.059
10.1016/j.apcatb.2018.05.094
10.1038/s43586-023-00195-1
10.1021/acsami.0c20444
10.1016/j.surfin.2021.101436
10.1039/C8EN00930A
10.1021/acsenergylett.1c00366
10.1007/s11164-016-2436-8
10.1038/nmat3151
10.1021/acsmaterialslett.1c00081
10.1021/acs.nanolett.8b04119
10.1021/acs.chemrev.9b00187
10.1002/anie.200601277
10.1021/acs.nanolett.0c01050
10.1002/cssc.201800249
10.1039/C5NR04750A
10.1126/science.aat6967
10.1039/C5TA04566E
10.1002/jctb.5251
10.1016/j.matchemphys.2011.06.004
10.1039/C8CP00621K
10.1016/j.cej.2021.130818
10.1002/smll.201401242
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202309983
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
PubMed
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202309983
38174596
SMLL202309983
Genre article
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
NPM
31~
AAMNL
AASGY
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3733-9f4c428c22d4bc907c27d65218d7b69726f23d3533327952b6a69b597dc3a26f3
IEDL.DBID 33P
ISSN 1613-6810
IngestDate Fri Aug 16 03:05:08 EDT 2024
Thu Oct 10 22:11:32 EDT 2024
Fri Nov 22 02:25:40 EST 2024
Sat Nov 02 12:22:50 EDT 2024
Sat Aug 24 00:58:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords light-concentrating effect
photocatalyst
electromagnetic hotspots
plasmon-mediated catalysis
nanoarchitecture
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-9f4c428c22d4bc907c27d65218d7b69726f23d3533327952b6a69b597dc3a26f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38174596
PQID 3066748744
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2910197561
proquest_journals_3066748744
crossref_primary_10_1002_smll_202309983
pubmed_primary_38174596
wiley_primary_10_1002_smll_202309983_SMLL202309983
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2021; 8
2021; 6
2021; 26
2015; 6
2021; 4
2021; 3
2019; 6
2015; 3
2020; 20
2020; 120
2021; 426
2019; 39
2019; 19
2020; 14
2011; 10
2023; 3
2013; 263
2016; 18
2019; 141
2020; 829
2018; 20
2017; 217
2021; 13
2010; 44
2023; 62
2018; 18
2011; 129
2017; 92
2006; 45
2018; 237
2000; 104
2023; 331
2019; 48
2020; 512
2016; 42
2022; 58
2022; 33
2015; 359
2018; 11
2018; 54
2010; 5
2022; 404
2016; 8
2014; 10
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 129
  start-page: 1184
  year: 2011
  publication-title: Mater. Chem. Phys.
– volume: 263
  start-page: 541
  year: 2013
  publication-title: J. Hazard. Mater.
– volume: 45
  start-page: 4597
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 7145
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 10
  start-page: 911
  year: 2011
  publication-title: Nat. Mater.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 829
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 1466
  year: 2010
  publication-title: Chem.‐ Asian J.
– volume: 13
  start-page: 3209
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  year: 2021
  publication-title: Surf. Interfaces
– volume: 6
  start-page: 1333
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 33
  start-page: 1154
  year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 217
  start-page: 485
  year: 2017
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 12
  year: 2023
  publication-title: Nat. Rev. Methods Primers
– volume: 8
  start-page: 4672
  year: 2016
  publication-title: Nanoscale
– volume: 331
  year: 2023
  publication-title: Appl. Catal., B
– volume: 426
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 574
  year: 2021
  publication-title: ACS Mater. Lett.
– volume: 11
  start-page: 1505
  year: 2018
  publication-title: ChemSusChem
– volume: 362
  start-page: 69
  year: 2018
  publication-title: Science
– volume: 33
  start-page: 3709
  year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 48
  start-page: 8594
  year: 2019
  publication-title: Dalton Trans.
– volume: 120
  start-page: 986
  year: 2020
  publication-title: Chem. Rev.
– volume: 58
  start-page: 2055
  year: 2022
  publication-title: Chem. Commun.
– volume: 10
  start-page: 4940
  year: 2014
  publication-title: Small
– volume: 404
  year: 2022
  publication-title: Electrochim. Acta
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 7807
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 105
  year: 2019
  publication-title: Environm. Sci.: Nano
– volume: 8
  start-page: 1497
  year: 2021
  publication-title: ACS Photonics
– volume: 18
  start-page: 2545
  year: 2018
  publication-title: Nano Lett.
– volume: 20
  start-page: 9872
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 42
  start-page: 6025
  year: 2016
  publication-title: Res. Chem. Intermed.
– volume: 54
  start-page: 6188
  year: 2018
  publication-title: Chem. Commun.
– volume: 6
  start-page: 6990
  year: 2015
  publication-title: Nat. Commun.
– volume: 237
  start-page: 721
  year: 2018
  publication-title: Appl. Catal., B
– volume: 20
  start-page: 4322
  year: 2020
  publication-title: Nano Lett.
– volume: 104
  start-page: 1153
  year: 2000
  publication-title: J. Phys. Chem. B
– volume: 44
  start-page: 7641
  year: 2010
  publication-title: Env. Sci. Technol.
– volume: 512
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 19
  start-page: 891
  year: 2019
  publication-title: Nano Lett.
– volume: 92
  start-page: 2417
  year: 2017
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 39
  start-page: 110
  year: 2019
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 359
  start-page: 36
  year: 2015
  publication-title: Appl. Surf. Sci.
– ident: e_1_2_8_2_1
  doi: 10.1039/D1CC03779J
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.202216562
– ident: e_1_2_8_45_1
  doi: 10.1016/j.apcatb.2017.05.058
– ident: e_1_2_8_8_1
  doi: 10.1016/j.electacta.2021.139746
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms7990
– ident: e_1_2_8_40_1
  doi: 10.1039/C9DT01046G
– ident: e_1_2_8_41_1
  doi: 10.1021/acsanm.1c01126
– ident: e_1_2_8_4_1
  doi: 10.1039/C8CC03502D
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jhazmat.2013.10.011
– ident: e_1_2_8_17_1
  doi: 10.1016/j.apcatb.2023.122700
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.9b01375
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cclet.2021.10.047
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jallcom.2020.154623
– ident: e_1_2_8_1_1
  doi: 10.1021/acsnano.0c08773
– ident: e_1_2_8_19_1
  doi: 10.1021/acsphotonics.1c00321
– ident: e_1_2_8_20_1
  doi: 10.1002/asia.200900695
– ident: e_1_2_8_29_1
  doi: 10.1021/jp993593c
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.nanolett.8b00241
– ident: e_1_2_8_31_1
  doi: 10.1016/j.apsusc.2015.09.216
– ident: e_1_2_8_36_1
  doi: 10.1021/es101711k
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cocis.2019.01.014
– ident: e_1_2_8_33_1
  doi: 10.1016/j.apsusc.2020.145650
– ident: e_1_2_8_44_1
  doi: 10.1039/C6CP04370D
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cclet.2021.07.059
– ident: e_1_2_8_14_1
  doi: 10.1016/j.apcatb.2018.05.094
– ident: e_1_2_8_16_1
  doi: 10.1038/s43586-023-00195-1
– ident: e_1_2_8_34_1
  doi: 10.1021/acsami.0c20444
– ident: e_1_2_8_35_1
  doi: 10.1016/j.surfin.2021.101436
– ident: e_1_2_8_46_1
  doi: 10.1039/C8EN00930A
– ident: e_1_2_8_9_1
  doi: 10.1021/acsenergylett.1c00366
– ident: e_1_2_8_38_1
  doi: 10.1007/s11164-016-2436-8
– ident: e_1_2_8_11_1
  doi: 10.1038/nmat3151
– ident: e_1_2_8_12_1
  doi: 10.1021/acsmaterialslett.1c00081
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.nanolett.8b04119
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.chemrev.9b00187
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.200601277
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.nanolett.0c01050
– ident: e_1_2_8_3_1
  doi: 10.1002/cssc.201800249
– ident: e_1_2_8_32_1
  doi: 10.1039/C5NR04750A
– ident: e_1_2_8_25_1
  doi: 10.1126/science.aat6967
– ident: e_1_2_8_43_1
  doi: 10.1039/C5TA04566E
– ident: e_1_2_8_39_1
  doi: 10.1002/jctb.5251
– ident: e_1_2_8_37_1
  doi: 10.1016/j.matchemphys.2011.06.004
– ident: e_1_2_8_42_1
  doi: 10.1039/C8CP00621K
– ident: e_1_2_8_18_1
  doi: 10.1016/j.cej.2021.130818
– ident: e_1_2_8_26_1
  doi: 10.1002/smll.201401242
SSID ssj0031247
Score 2.4965303
Snippet Plasmon‐mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light‐to‐chemical transformation, but current approaches suffer from...
Plasmon-mediated catalysis utilizing hybrid photocatalytic ensembles promises effective light-to-chemical transformation, but current approaches suffer from...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2309983
SubjectTerms Catalysis
Catalysts
Chemical reactions
Copper oxides
Electromagnetic fields
electromagnetic hotspots
Focusing
Light
light‐concentrating effect
nanoarchitecture
Nanoparticles
Oxidation
Photocatalysis
photocatalyst
Photocatalysts
Plasmonics
Plasmons
plasmon‐mediated catalysis
Rate constants
Utilization
Title Catalyst‐On‐Hotspot Nanoarchitecture: Plasmonic Focusing of Light onto Co‐Photocatalyst for Efficient Light‐To‐Chemical Transformation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202309983
https://www.ncbi.nlm.nih.gov/pubmed/38174596
https://www.proquest.com/docview/3066748744
https://search.proquest.com/docview/2910197561
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTuMwFIaPmK5gMVxnCDcZCYlVBLGD3bBDpRWLApUoErsotpOZBcSIpAt2PEKfkSfhnKQJrWaBNGyiRLYTK76c__jyGeCoG5jA2CDwNZovP9Qm8TW3qW-0lDwwaSZtdYjtnbp56F72CZPT7uKv-RDtgBu1jKq_pgae6OLkExpaPD3S1AFKaPQYCPeJrkK1h0OMmq5YoPGqTldBm-UTeKuhNp7yk8Xki1bpH6m5qFwr0zNY_X6m1-DnTHayi7qerMNSmm_AyhyMcBOmPRrJeS3K97fpbY6XK1eiz1sy7IDd_HzDORuh5H4ipi4bOEMr5_8wl7Eh-fmMeAis5zD96K8rnZm9lKE4Zv2KV4Fmro6LccYUsYEWsPGcinb5FtwP-uPelT87r8E3QgnhR1lo0JsxnFssdPS6DVdWoj7oWqVlpLjMuLACBabgKjrjWiYy0ujRWCMSDBS_oJO7PN0GJlI6BT0TXZUQPSfUinOTaSNDdao1Nx4cN-UVP9dYjrgGMPOY_nHc_mMP9prijGfNs4gFLe0NifzvwWEbjA2LZkuSPHWTIuYopIJIob704HddDdpPEdYwPIukB7wq7S_yEN9dD4ft087_JNqFZbwP60Vqe9ApXybpPvwo7OSgqvIficIHjQ
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VeoAe-uDRpqXUlZA4RRA72Jve0HZXWxHoSiwSNyu2E3oocdVkD731J_Ab-SXMJJt0Vz0gVb1ESmwnVmbG840f3wAcDCIbWRdFoUH3FcbGZqHhLg-tkZJHNi-ka5LYXqqL68HnEdHknHZnYVp-iH7CjSyjGa_JwGlC-ugPa2h1-53WDhBDY8gg1uBpLFEb6RSHmHaDsUD31eRXQa8VEvVWx9t4zI9W26_6pb_A5ip2bZzP-MV_6PZLeL5Anuy0VZVX8CQvt-DZEh_hNtwNaTLnV1Xf_777WuJl4msMe2uGY7BfXnL4xKaIum-JVpeNvaXN8zfMFyylUJ8RJQIbemw__eZrbxcvZYiP2aihrEBP19bFOjOq2PEWsNkSkPblDlyNR7PhJFykbAitUEKESRFbDGgs5w7ljoG35cpJhAgDp4xMFJcFF04gxhRcJSfcyEwmBoMaZ0WGhWIX1ktf5m-AiZwSoRdioDIi0ImN4twWxspYHRvDbQCHncD0j5aZQ7cczFzTP9b9Pw5gr5OnXlhopQXt7o2J_D-Aj30x2hYtmGRl7ueV5oilokQhxAzgdasH_aeI2TA-SWQAvBH3I33Ql-dp2t-9_ZdGH2BjMjtPdfrl4uwdbOLzuN2ztgfr9c95_h7WKjffb_T_ARnkC7U
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdHhUoVHEpbvgK0GKkSpwhiB3vTW7XsiootrMRW4mbFdkIPJUYke-DGI_CMfRJmkk26qx6Q2kukKHZi2R7Pf2znZ4DPvchG1kVRaNB9hbGxaWi4y0JrpOSRzXLp6kNsr9TFde90QJic7i_-hg_RTbiRZdTjNRn4ncuP_kBDy9tftHSAEhojBrEEr2PU4kTPF2LcjsUCvVd9vAo6rZDIWy228ZgfLeZfdEt_ac1F6Vr7nuHa_5f6Hbyd6U72teko7-FVVnyA1Tka4To89Wkq56Gsfj8-XRZ4OfMVBr0VwxHYzy84fGFj1Ny3BNVlQ29p6_wN8zkbUaDPCIjA-h7zj3_6ytvZSxmqYzaogRXo55q0mGZCCVtqAZvMyWhfbMCP4WDSPwtnBzaEVighwiSPLYYzlnOHrY5ht-XKSRQIPaeMTBSXORdOoMIUXCUn3MhUJgZDGmdFig_FJiwXvsi2gYmMjkHPRU-lhM-JjeLc5sbKWB0bw20Ah2176buGy6EbAjPXVMe6q-MA9trm1DP7LLWgvb0xof8DOOgeo2XRcklaZH5aao5KKkoUCswAtppu0H2KuIbxSSID4HVrv1AGffV9NOrudv4l0z68GZ8O9ejbxfkurKBsS5pNw3uwXN1Ps4-wVLrpp7r3PwPaKQpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalyst%E2%80%90On%E2%80%90Hotspot+Nanoarchitecture%3A+Plasmonic+Focusing+of+Light+onto+Co%E2%80%90Photocatalyst+for+Efficient+Light%E2%80%90To%E2%80%90Chemical+Transformation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chong%2C+Carice&rft.au=Boong%2C+Siew+Kheng&rft.au=Raja+Mogan%2C+Tharishinny&rft.au=Lee%2C+Jinn%E2%80%90Kye&rft.date=2024-06-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202309983&rft.externalDBID=10.1002%252Fsmll.202309983&rft.externalDocID=SMLL202309983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon