Low Detection Limit Circularly Polarized Light Detection Realized by Constructing Chiral Perovskite/Si Heterostructures

Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 33; pp. e2302443 - n/a
Main Authors: Wu, Jianbo, Zhang, Xinyuan, You, Shihai, Zhu, Zeng‐Kui, Zhu, Tingting, Wang, Ziyang, Li, Ruiqing, Guan, Qianwen, Liang, Lishan, Niu, Xinyi, Luo, Junhua
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-08-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R‐MPA)2MAPb2I7/Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high‐sensitive and low‐limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built‐in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure‐based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm−2 under the self‐driven mode. As a pioneering study, this work paves the way for designing high‐sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL. Benefiting from the suppressed dark current and built‐in electric field, the chiral perovskite/Si heterostructure exhibits an impressive circularly polarized light distinguishability with a high anisotropy factor of 0.34 under the self‐driven mode, even the illumination power density down to 890 nW cm−2.
AbstractList Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R‐MPA)2MAPb2I7/Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high‐sensitive and low‐limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built‐in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure‐based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm−2 under the self‐driven mode. As a pioneering study, this work paves the way for designing high‐sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL. Benefiting from the suppressed dark current and built‐in electric field, the chiral perovskite/Si heterostructure exhibits an impressive circularly polarized light distinguishability with a high anisotropy factor of 0.34 under the self‐driven mode, even the illumination power density down to 890 nW cm−2.
Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite-based CPL detectors with both high distinguishability of left- and right-handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R-MPA) MAPb I /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high-sensitive and low-limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built-in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure-based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm under the self-driven mode. As a pioneering study, this work paves the way for designing high-sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.
Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R‐MPA) 2 MAPb 2 I 7 /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high‐sensitive and low‐limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built‐in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure‐based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm −2 under the self‐driven mode. As a pioneering study, this work paves the way for designing high‐sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.
Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R‐MPA)2MAPb2I7/Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high‐sensitive and low‐limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built‐in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure‐based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm−2 under the self‐driven mode. As a pioneering study, this work paves the way for designing high‐sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.
Author Zhu, Tingting
Zhang, Xinyuan
You, Shihai
Wu, Jianbo
Li, Ruiqing
Wang, Ziyang
Guan, Qianwen
Liang, Lishan
Zhu, Zeng‐Kui
Luo, Junhua
Niu, Xinyi
Author_xml – sequence: 1
  givenname: Jianbo
  surname: Wu
  fullname: Wu, Jianbo
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xinyuan
  surname: Zhang
  fullname: Zhang, Xinyuan
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Shihai
  orcidid: 0000-0002-1537-7148
  surname: You
  fullname: You, Shihai
  organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 4
  givenname: Zeng‐Kui
  surname: Zhu
  fullname: Zhu, Zeng‐Kui
  organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 5
  givenname: Tingting
  surname: Zhu
  fullname: Zhu, Tingting
  organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 6
  givenname: Ziyang
  surname: Wang
  fullname: Wang, Ziyang
  organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 7
  givenname: Ruiqing
  surname: Li
  fullname: Li, Ruiqing
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Qianwen
  surname: Guan
  fullname: Guan, Qianwen
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Lishan
  surname: Liang
  fullname: Liang, Lishan
  organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 10
  givenname: Xinyi
  surname: Niu
  fullname: Niu, Xinyi
  organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 11
  givenname: Junhua
  orcidid: 0000-0002-3179-7652
  surname: Luo
  fullname: Luo, Junhua
  email: jhluo@fjirsm.ac.cn
  organization: Jiangxi Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37156749$$D View this record in MEDLINE/PubMed
BookMark eNqFkTlPxDAQhS0E4m4pUSQamt31ESdxicIpBYE46ihxxovBicFOWC2_HsPCgmioZqT3zdPMvC202tkOENojeEwwphPfGjOmmDJM45itoE2SEDZKMipWlz3BG2jL-0eMGaFxuo42WEp4ksZiE80KO4uOoQfZa9tFhW51H-XaycFUzsyjaxuqfoMmSNOH_hd6A5X5FOp5lNvO924IQjeN8gftKhNdg7Ov_kn3MLnV0XmYc3YBDQ78DlpTlfGw-1W30f3pyV1-Piquzi7yo2IkWcrYiAuOk1gxoYSqKW9UIjIgVUNZRmqFK6GSDLiUNaSkZjVhDaZK1InEXEiVAdtGhwvfZ2dfBvB92WovwZiqAzv4kmYkvIKzOAvowR_00Q6uC9sFipM4TrjAgRovKBnO8Q5U-ex0W7l5SXD5EUn5EUm5jCQM7H_ZDnULzRL_ziAAYgHMtIH5P3bl7WVR_Ji_AwLbm_c
CitedBy_id crossref_primary_10_1039_D3MH00745F
Cites_doi 10.1038/nnano.2014.167
10.1016/j.matt.2021.11.011
10.1007/s40843-022-2155-0
10.1038/nmat4703
10.1126/sciadv.abg6716
10.1038/s41565-018-0298-5
10.1002/adma.202001479
10.1039/C7CY02281F
10.1021/acsnano.1c09521
10.1021/jacs.2c10309
10.1038/nmat3864
10.1021/jacs.1c08959
10.1002/adma.202005760
10.1109/TED.2022.3160943
10.1002/smtd.202100517
10.1016/j.cclet.2020.05.017
10.1002/advs.201600018
10.1002/anie.201915912
10.1038/nphoton.2017.43
10.1063/5.0011685
10.1021/acsnano.8b01999
10.1021/ph500084b
10.1063/5.0064455
10.1021/acsnano.9b04437
10.1126/science.1257671
10.1021/acsnano.0c05343
10.1093/nsr/nwab044
10.1021/jacs.2c07891
10.1016/j.cej.2018.12.120
10.1039/C5NR07893H
10.1002/adma.202003615
10.1002/adma.202008785
10.1039/C7MH00197E
10.1002/anie.201705836
10.1002/adma.201907151
10.1038/s41578-020-0181-5
10.1021/acs.chemmater.2c02109
10.1021/acs.chemmater.1c03622
10.1002/advs.201901134
10.1021/acs.accounts.0c00112
10.1021/acsami.7b16329
10.1038/s41467-020-20446-z
10.1021/acsnano.9b00302
10.1021/jacs.9b10919
10.1021/acsami.2c07208
10.1016/j.cclet.2021.06.084
10.1002/adom.202200146
10.1002/adma.201705893
10.1002/inf2.12347
10.1002/adom.202200449
10.1002/adfm.202100773
10.1021/jacs.1c07183
10.1002/adma.202008611
10.1364/OE.23.033564
10.1002/smll.202102884
10.31635/ccschem.021.202101037
10.1038/s41586-020-2526-z
10.1002/adom.202201342
10.1002/anie.202205939
10.1038/s41467-019-09942-z
10.1039/D1MH02073K
10.1021/acsnano.1c09513
10.1038/nature09256
10.1002/adom.202000311
10.1002/adma.202103010
10.1002/adma.202204119
10.1002/adma.202103078
10.1021/jacs.8b12948
10.1002/adma.201104594
10.1002/adom.202202383
10.1002/adma.201605242
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202302443
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202302443
37156749
SMLL202302443
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21833010; 21525104; 21875251; 21971238; 219752586; 61975207; 21921001
– fundername: Youth Innovation Promotion of CAS
  funderid: 2019301; 2020307
– fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
  funderid: ZDBS‐LY‐SLH024
– fundername: NSF of Fujian Province
  funderid: 2018H0047
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB20010200
– fundername: National Natural Science Foundation of China
  grantid: 219752586
– fundername: National Natural Science Foundation of China
  grantid: 21525104
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB20010200
– fundername: National Natural Science Foundation of China
  grantid: 61975207
– fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
  grantid: ZDBS-LY-SLH024
– fundername: Youth Innovation Promotion of CAS
  grantid: 2019301
– fundername: Youth Innovation Promotion of CAS
  grantid: 2020307
– fundername: National Natural Science Foundation of China
  grantid: 21833010
– fundername: National Natural Science Foundation of China
  grantid: 21971238
– fundername: National Natural Science Foundation of China
  grantid: 21921001
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
NPM
31~
AAMNL
AASGY
AAYOK
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3733-595064f39f9fb25df698e1ad2381bf0a9f68e5ccbe71b3b13d02f9b6c059cf8e3
IEDL.DBID 33P
ISSN 1613-6810
IngestDate Fri Aug 16 23:44:52 EDT 2024
Thu Nov 21 04:42:51 EST 2024
Fri Nov 22 00:53:21 EST 2024
Sat Sep 28 08:15:00 EDT 2024
Sat Aug 24 00:59:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords photodetection
circularly polarized light
heterostructures
chiral perovskites
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-595064f39f9fb25df698e1ad2381bf0a9f68e5ccbe71b3b13d02f9b6c059cf8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3179-7652
0000-0002-1537-7148
PMID 37156749
PQID 2851446590
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2811565348
proquest_journals_2851446590
crossref_primary_10_1002_smll_202302443
pubmed_primary_37156749
wiley_primary_10_1002_smll_202302443_SMLL202302443
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 4
2023; 4
2019; 10
2010; 466
2019; 13
2020; 59
2022; 69
2020; 14
2022; 66
2019; 361
2017; 9
2014; 1
2020; 8
2020; 5
2018; 8
2021; 32
2021; 31
2021; 33
2020; 53
2021; 119
2022; 34
2014; 13
2018; 30
2022; 33
2014; 9
2012; 24
2021; 8
2021; 7
2021; 5
2021; 4
2019; 6
2020; 583
2020; 142
2017; 29
2021; 143
2020; 32
2019; 141
2022; 144
2015; 23
2021; 12
2016; 3
2023
2022; 4
2022; 61
2017; 16
2017; 11
2021; 17
2022; 9
2017; 56
2020; 117
2022; 14
2022; 10
2018; 12
2022; 16
2016; 8
2014; 346
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
Yu W. (e_1_2_8_31_1) 2023; 4
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
Wu J. (e_1_2_8_35_1) 2023
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl Mater Interfaces.
– volume: 142
  start-page: 55
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 6442
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 2332
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1083
  year: 2018
  publication-title: Catal. Sci. Technol.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2021
  publication-title: Natl. Sci. Rev.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 423
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 4
  start-page: 2491
  year: 2022
  publication-title: CCS Chem.
– volume: 13
  start-page: 9473
  year: 2019
  publication-title: ACS Nano.
– volume: 13
  start-page: 994
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 4919
  year: 2018
  publication-title: ACS Nano.
– volume: 583
  start-page: 790
  year: 2020
  publication-title: Nature.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 12
  start-page: 282
  year: 2021
  publication-title: Nat. Commun.
– volume: 32
  start-page: 489
  year: 2021
  publication-title: Chin. Chem. Lett.
– volume: 4
  year: 2022
  publication-title: InfoMat.
– volume: 466
  start-page: 730
  year: 2010
  publication-title: Nature.
– volume: 16
  start-page: 3985
  year: 2022
  publication-title: ACS Nano.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2021
  publication-title: Small Methods.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  start-page: 315
  year: 2017
  publication-title: Nat Photonics.
– volume: 9
  start-page: 1479
  year: 2022
  publication-title: Mater. Horiz.
– volume: 9
  year: 2017
  publication-title: ACS Appl Mater Interfaces.
– volume: 66
  start-page: 716
  year: 2022
  publication-title: Sci. China Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 4
  start-page: 851
  year: 2017
  publication-title: Mater. Horizons.
– year: 2023
  publication-title: Adv. Opt. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  year: 2023
  publication-title: T.Innov.
– volume: 9
  start-page: 682
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 119
  year: 2021
  publication-title: Appl. Phys. Lett.
– year: 2023
  publication-title: Mater. Horizons.
– volume: 8
  year: 2016
  publication-title: Nanoscale.
– volume: 4
  start-page: 3835
  year: 2021
  publication-title: Matter.
– volume: 13
  start-page: 286
  year: 2014
  publication-title: Nat. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 1017
  year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 13
  start-page: 3659
  year: 2019
  publication-title: ACS Nano.
– volume: 1
  start-page: 762
  year: 2014
  publication-title: ACS Photonics.
– volume: 34
  year: 2022
  publication-title: Chem. Mater.
– volume: 14
  year: 2020
  publication-title: ACS Nano.
– volume: 346
  start-page: 67
  year: 2014
  publication-title: Science.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 53
  start-page: 1279
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 361
  start-page: 1173
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1927
  year: 2019
  publication-title: Nat. Commun.
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 23
  year: 2015
  publication-title: Opt Express.
– volume: 69
  start-page: 2469
  year: 2022
  publication-title: IEEE Trans. Electron Devices.
– volume: 17
  year: 2021
  publication-title: Small.
– volume: 141
  start-page: 2623
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 2682
  year: 2022
  publication-title: ACS Nano.
– volume: 34
  start-page: 2955
  year: 2022
  publication-title: Chem. Mater.
– volume: 16
  start-page: 170
  year: 2017
  publication-title: Nat. Mater.
– ident: e_1_2_8_26_1
  doi: 10.1038/nnano.2014.167
– ident: e_1_2_8_15_1
  doi: 10.1016/j.matt.2021.11.011
– ident: e_1_2_8_72_1
  doi: 10.1007/s40843-022-2155-0
– ident: e_1_2_8_41_1
  doi: 10.1038/nmat4703
– ident: e_1_2_8_36_1
  doi: 10.1126/sciadv.abg6716
– ident: e_1_2_8_27_1
  doi: 10.1038/s41565-018-0298-5
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.202001479
– ident: e_1_2_8_48_1
  doi: 10.1039/C7CY02281F
– ident: e_1_2_8_68_1
  doi: 10.1021/acsnano.1c09521
– volume: 4
  year: 2023
  ident: e_1_2_8_31_1
  publication-title: T.Innov.
  contributor:
    fullname: Yu W.
– ident: e_1_2_8_65_1
  doi: 10.1021/jacs.2c10309
– year: 2023
  ident: e_1_2_8_35_1
  publication-title: Mater. Horizons.
  contributor:
    fullname: Wu J.
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat3864
– ident: e_1_2_8_29_1
  doi: 10.1021/jacs.1c08959
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202005760
– ident: e_1_2_8_34_1
  doi: 10.1109/TED.2022.3160943
– ident: e_1_2_8_44_1
  doi: 10.1002/smtd.202100517
– ident: e_1_2_8_9_1
  doi: 10.1016/j.cclet.2020.05.017
– ident: e_1_2_8_53_1
  doi: 10.1002/advs.201600018
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201915912
– ident: e_1_2_8_38_1
  doi: 10.1038/nphoton.2017.43
– ident: e_1_2_8_33_1
  doi: 10.1063/5.0011685
– ident: e_1_2_8_61_1
  doi: 10.1021/acsnano.8b01999
– ident: e_1_2_8_6_1
  doi: 10.1021/ph500084b
– ident: e_1_2_8_30_1
  doi: 10.1063/5.0064455
– ident: e_1_2_8_18_1
  doi: 10.1021/acsnano.9b04437
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1257671
– ident: e_1_2_8_70_1
  doi: 10.1021/acsnano.0c05343
– ident: e_1_2_8_32_1
  doi: 10.1093/nsr/nwab044
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.2c07891
– ident: e_1_2_8_47_1
  doi: 10.1016/j.cej.2018.12.120
– ident: e_1_2_8_49_1
  doi: 10.1039/C5NR07893H
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.202003615
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.202008785
– ident: e_1_2_8_19_1
  doi: 10.1039/C7MH00197E
– ident: e_1_2_8_57_1
  doi: 10.1002/anie.201705836
– ident: e_1_2_8_67_1
  doi: 10.1002/adma.201907151
– ident: e_1_2_8_10_1
  doi: 10.1038/s41578-020-0181-5
– ident: e_1_2_8_60_1
  doi: 10.1021/acs.chemmater.2c02109
– ident: e_1_2_8_69_1
  doi: 10.1021/acs.chemmater.1c03622
– ident: e_1_2_8_50_1
  doi: 10.1002/advs.201901134
– ident: e_1_2_8_66_1
  doi: 10.1021/acs.accounts.0c00112
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.7b16329
– ident: e_1_2_8_62_1
  doi: 10.1038/s41467-020-20446-z
– ident: e_1_2_8_13_1
  doi: 10.1021/acsnano.9b00302
– ident: e_1_2_8_59_1
  doi: 10.1021/jacs.9b10919
– ident: e_1_2_8_64_1
  doi: 10.1021/acsami.2c07208
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cclet.2021.06.084
– ident: e_1_2_8_17_1
  doi: 10.1002/adom.202200146
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.201705893
– ident: e_1_2_8_71_1
  doi: 10.1002/inf2.12347
– ident: e_1_2_8_51_1
  doi: 10.1002/adom.202200449
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202100773
– ident: e_1_2_8_12_1
  doi: 10.1021/jacs.1c07183
– ident: e_1_2_8_63_1
  doi: 10.1002/adma.202008611
– ident: e_1_2_8_5_1
  doi: 10.1364/OE.23.033564
– ident: e_1_2_8_39_1
  doi: 10.1002/smll.202102884
– ident: e_1_2_8_7_1
  doi: 10.31635/ccschem.021.202101037
– ident: e_1_2_8_37_1
  doi: 10.1038/s41586-020-2526-z
– ident: e_1_2_8_24_1
  doi: 10.1002/adom.202201342
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.202205939
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-019-09942-z
– ident: e_1_2_8_45_1
  doi: 10.1039/D1MH02073K
– ident: e_1_2_8_46_1
  doi: 10.1021/acsnano.1c09513
– ident: e_1_2_8_3_1
  doi: 10.1038/nature09256
– ident: e_1_2_8_43_1
  doi: 10.1002/adom.202000311
– ident: e_1_2_8_54_1
  doi: 10.1002/adma.202103010
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.202204119
– ident: e_1_2_8_73_1
  doi: 10.1002/adma.202103078
– ident: e_1_2_8_58_1
  doi: 10.1021/jacs.8b12948
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.201104594
– ident: e_1_2_8_52_1
  doi: 10.1002/adom.202202383
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.201605242
SSID ssj0031247
Score 2.4672368
Snippet Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2302443
SubjectTerms Anisotropy
Charge transport
chiral perovskites
Chirality
Circular polarization
circularly polarized light
Dark current
Detectors
Electric fields
Heterostructures
Nanotechnology
Optical communication
Perovskites
photodetection
Polarized light
Title Low Detection Limit Circularly Polarized Light Detection Realized by Constructing Chiral Perovskite/Si Heterostructures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202302443
https://www.ncbi.nlm.nih.gov/pubmed/37156749
https://www.proquest.com/docview/2851446590
https://search.proquest.com/docview/2811565348
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xnOCwy2uXLA8ZCWlPURvbaeIjKqAeCqooSHuL7MSGSpCgZrsIfj0zThuo9oC03BKNLVsej-cbe_wZ4NiIxHKho9AUkQhlzuNQqzgNewrdjeO64I4CxcE4ufydnp4RTU57i7_hh2g33Mgy_HpNBq5N3XkjDa0f7unoACE0eiii-8RQwd_hEKPFUizQefnXVdBnhUS8tWBt7PLOcvVlr_QP1FxGrt71nH_7fKc34OscdrKTZp5swoott2D9HRnhNjwNqyd2av_43KyS-ZtPrD-Z-kTV-2c2oiB48mILFGFA_67oFYJNLzDPjB4AbShpy1vWv5tMsdWRnVZ_a9om7ownbEAJOFVTaIbB_g7cnJ9d9wfh_FmGMBeJEGGsiOTOCeWUMzwuHOrVRqhVdP7GdbVyvdTGeW5sEhlhIlF0uVOmlyOSy11qxXdYLavS7gKT2hjJndax5DIXUqtcWgyZiTbfFU4G8GuhluyxYd_IGp5lntFQZu1QBrC_0Fo2t8I64wgniRBOdQM4asVoP3QooktbzagMYuJeLGQawI9G221TIkFRIlUA3Cv1gz5k44vhsP37-T-V9mCNvpsMw31YRV3YA_hSF7NDP7NfAULv-aA
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7yOLQ59N3EbdqqUOjJ7FqSHzqGTcKGOGHpptCbkWwpXUjssJttSH99Z-S1m6WHQunRHgkJjUbzjTT6BPDJiNRyoaPQVJEIZcnjUKs4CxOF7sZxXXFHgeJ4mp5_yw6PiCbnoLsL0_JD9BtuZBl-vSYDpw3pwW_W0MX1FZ0dIIZGFyU2YVsmOBvpFoeYdIuxQPfl31dBrxUS9VbH2zjkg_X6637pD7C5jl298zl--h-6_QyerJAnO2inynPYsPUL2HnAR_gS7vLmjh3aW5-eVTN_-YmNZnOfq3p1zyYUB89-2gpFGNM_KPoF8aYXmHtGb4C2rLT1JRt9n82x1YmdNz8WtFM8mM7YmHJwmrbQEuP9V_D1-OhiNA5XLzOEpUiFCGNFPHdOKKec4XHlULU2QsWi_zduqJVLMhuXpbFpZISJRDXkTpmkRDBXusyK17BVN7XdAya1MZI7rWPJZSmkVqW0GDUTc76rnAzgc6eX4qYl4ChaqmVe0FAW_VAGsN-prVgZ4qLgiCiJE04NA_jYi9GE6FxE17ZZUhmExUksZBbAbqvuvimRoiiVKgDutfqXPhTTszzvv978S6UP8Gh8cZYX-cn56Vt4TP_bhMN92EK92HewuaiW7_00_wUKF_3I
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xISF4YPwmY4CRkHiK2vicJn5E7aoiylRRkHiL7MQelUYytZRp_PW7c9psFQ9I8JicLVs-n-87-_wZ4K3FzEk0SWyrBGNVyjQ2Os3jgSZ346WppOdAcTLPTr7lo2Omyelu8bf8EN2GG1tGWK_ZwM8r37smDV39OOOjA4LQ5KFwD24rwuLMno84267FSN4rPK9CTitm5q0tbWNf9nbr77qlP7DmLnQNvmd88P-9fgD3N7hTvG8nykO45epHcO8GG-FjuJg2F2LkfobkrFqEq09iuFiGTNWzSzHjKHjx21Ukooj-RtHPhDaDwF4KfgG05aStT8Xw-2JJrc7csvm14n3i3nwhJpyB07SF1hTtP4Gv4-Mvw0m8eZchLjFDjFPNLHcetdfeyrTypFiXkFrJ-1vfN9oPcpeWpXVZYtEmWPWl13ZQEpQrfe7wKezXTe2eg1DGWiW9MamSqkRldKkcxczMm-8rryJ4t1VLcd7SbxQt0bIseCiLbigjONpqrdiY4aqQhCeZEU73I3jTicmA-FTE1K5ZcxkCxYMUVR7Bs1bbXVOYkShTOgIZlPqXPhTzT9Np93X4L5Vew53ZaFxMP5x8fAF3-XebbXgE-6QW9xL2VtX6VZjkV_LR_G4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Detection+Limit+Circularly+Polarized+Light+Detection+Realized+by+Constructing+Chiral+Perovskite%2FSi+Heterostructures&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wu%2C+Jianbo&rft.au=Zhang%2C+Xinyuan&rft.au=You%2C+Shihai&rft.au=Zhu%2C+Zeng%E2%80%90Kui&rft.date=2023-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202302443&rft.externalDBID=10.1002%252Fsmll.202302443&rft.externalDocID=SMLL202302443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon