Low Detection Limit Circularly Polarized Light Detection Realized by Constructing Chiral Perovskite/Si Heterostructures
Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 33; pp. e2302443 - n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-08-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R‐MPA)2MAPb2I7/Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high‐sensitive and low‐limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built‐in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure‐based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm−2 under the self‐driven mode. As a pioneering study, this work paves the way for designing high‐sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.
Benefiting from the suppressed dark current and built‐in electric field, the chiral perovskite/Si heterostructure exhibits an impressive circularly polarized light distinguishability with a high anisotropy factor of 0.34 under the self‐driven mode, even the illumination power density down to 890 nW cm−2. |
---|---|
AbstractList | Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R‐MPA)2MAPb2I7/Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high‐sensitive and low‐limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built‐in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure‐based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm−2 under the self‐driven mode. As a pioneering study, this work paves the way for designing high‐sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL.
Benefiting from the suppressed dark current and built‐in electric field, the chiral perovskite/Si heterostructure exhibits an impressive circularly polarized light distinguishability with a high anisotropy factor of 0.34 under the self‐driven mode, even the illumination power density down to 890 nW cm−2. Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite-based CPL detectors with both high distinguishability of left- and right-handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R-MPA) MAPb I /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high-sensitive and low-limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built-in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure-based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm under the self-driven mode. As a pioneering study, this work paves the way for designing high-sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL. Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R‐MPA) 2 MAPb 2 I 7 /Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high‐sensitive and low‐limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built‐in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure‐based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm −2 under the self‐driven mode. As a pioneering study, this work paves the way for designing high‐sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL. Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and excellent charge transport ability. However, chiral perovskite‐based CPL detectors with both high distinguishability of left‐ and right‐handed optical signals and low detection limit remain unexplored. Here, a heterostructure, (R‐MPA)2MAPb2I7/Si (MPA = methylphenethylamine, MA = methylammonium) is constructed, to achieve high‐sensitive and low‐limit CPL detection. The heterostructures with high crystalline quality and sharp interface exhibit a strong built‐in electric field and a suppressed dark current, not only improving the separation and transport of the photogenerated carriers but also laying a foundation for weak CPL signals detection. Consequently, the heterostructure‐based CPL detector obtains a high anisotropy factor up to 0.34 with a remarkably low CPL detection limit of 890 nW cm−2 under the self‐driven mode. As a pioneering study, this work paves the way for designing high‐sensitive CPL detectors that simultaneously have great distinguishing capability and low detection limit of CPL. |
Author | Zhu, Tingting Zhang, Xinyuan You, Shihai Wu, Jianbo Li, Ruiqing Wang, Ziyang Guan, Qianwen Liang, Lishan Zhu, Zeng‐Kui Luo, Junhua Niu, Xinyi |
Author_xml | – sequence: 1 givenname: Jianbo surname: Wu fullname: Wu, Jianbo organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xinyuan surname: Zhang fullname: Zhang, Xinyuan organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Shihai orcidid: 0000-0002-1537-7148 surname: You fullname: You, Shihai organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 4 givenname: Zeng‐Kui surname: Zhu fullname: Zhu, Zeng‐Kui organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 5 givenname: Tingting surname: Zhu fullname: Zhu, Tingting organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 6 givenname: Ziyang surname: Wang fullname: Wang, Ziyang organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 7 givenname: Ruiqing surname: Li fullname: Li, Ruiqing organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Qianwen surname: Guan fullname: Guan, Qianwen organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Lishan surname: Liang fullname: Liang, Lishan organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 10 givenname: Xinyi surname: Niu fullname: Niu, Xinyi organization: Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 11 givenname: Junhua orcidid: 0000-0002-3179-7652 surname: Luo fullname: Luo, Junhua email: jhluo@fjirsm.ac.cn organization: Jiangxi Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37156749$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTlPxDAQhS0E4m4pUSQamt31ESdxicIpBYE46ihxxovBicFOWC2_HsPCgmioZqT3zdPMvC202tkOENojeEwwphPfGjOmmDJM45itoE2SEDZKMipWlz3BG2jL-0eMGaFxuo42WEp4ksZiE80KO4uOoQfZa9tFhW51H-XaycFUzsyjaxuqfoMmSNOH_hd6A5X5FOp5lNvO924IQjeN8gftKhNdg7Ov_kn3MLnV0XmYc3YBDQ78DlpTlfGw-1W30f3pyV1-Piquzi7yo2IkWcrYiAuOk1gxoYSqKW9UIjIgVUNZRmqFK6GSDLiUNaSkZjVhDaZK1InEXEiVAdtGhwvfZ2dfBvB92WovwZiqAzv4kmYkvIKzOAvowR_00Q6uC9sFipM4TrjAgRovKBnO8Q5U-ex0W7l5SXD5EUn5EUm5jCQM7H_ZDnULzRL_ziAAYgHMtIH5P3bl7WVR_Ji_AwLbm_c |
CitedBy_id | crossref_primary_10_1039_D3MH00745F |
Cites_doi | 10.1038/nnano.2014.167 10.1016/j.matt.2021.11.011 10.1007/s40843-022-2155-0 10.1038/nmat4703 10.1126/sciadv.abg6716 10.1038/s41565-018-0298-5 10.1002/adma.202001479 10.1039/C7CY02281F 10.1021/acsnano.1c09521 10.1021/jacs.2c10309 10.1038/nmat3864 10.1021/jacs.1c08959 10.1002/adma.202005760 10.1109/TED.2022.3160943 10.1002/smtd.202100517 10.1016/j.cclet.2020.05.017 10.1002/advs.201600018 10.1002/anie.201915912 10.1038/nphoton.2017.43 10.1063/5.0011685 10.1021/acsnano.8b01999 10.1021/ph500084b 10.1063/5.0064455 10.1021/acsnano.9b04437 10.1126/science.1257671 10.1021/acsnano.0c05343 10.1093/nsr/nwab044 10.1021/jacs.2c07891 10.1016/j.cej.2018.12.120 10.1039/C5NR07893H 10.1002/adma.202003615 10.1002/adma.202008785 10.1039/C7MH00197E 10.1002/anie.201705836 10.1002/adma.201907151 10.1038/s41578-020-0181-5 10.1021/acs.chemmater.2c02109 10.1021/acs.chemmater.1c03622 10.1002/advs.201901134 10.1021/acs.accounts.0c00112 10.1021/acsami.7b16329 10.1038/s41467-020-20446-z 10.1021/acsnano.9b00302 10.1021/jacs.9b10919 10.1021/acsami.2c07208 10.1016/j.cclet.2021.06.084 10.1002/adom.202200146 10.1002/adma.201705893 10.1002/inf2.12347 10.1002/adom.202200449 10.1002/adfm.202100773 10.1021/jacs.1c07183 10.1002/adma.202008611 10.1364/OE.23.033564 10.1002/smll.202102884 10.31635/ccschem.021.202101037 10.1038/s41586-020-2526-z 10.1002/adom.202201342 10.1002/anie.202205939 10.1038/s41467-019-09942-z 10.1039/D1MH02073K 10.1021/acsnano.1c09513 10.1038/nature09256 10.1002/adom.202000311 10.1002/adma.202103010 10.1002/adma.202204119 10.1002/adma.202103078 10.1021/jacs.8b12948 10.1002/adma.201104594 10.1002/adom.202202383 10.1002/adma.201605242 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202302443 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202302443 37156749 SMLL202302443 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21833010; 21525104; 21875251; 21971238; 219752586; 61975207; 21921001 – fundername: Youth Innovation Promotion of CAS funderid: 2019301; 2020307 – fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences funderid: ZDBS‐LY‐SLH024 – fundername: NSF of Fujian Province funderid: 2018H0047 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB20010200 – fundername: National Natural Science Foundation of China grantid: 219752586 – fundername: National Natural Science Foundation of China grantid: 21525104 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB20010200 – fundername: National Natural Science Foundation of China grantid: 61975207 – fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences grantid: ZDBS-LY-SLH024 – fundername: Youth Innovation Promotion of CAS grantid: 2019301 – fundername: Youth Innovation Promotion of CAS grantid: 2020307 – fundername: National Natural Science Foundation of China grantid: 21833010 – fundername: National Natural Science Foundation of China grantid: 21971238 – fundername: National Natural Science Foundation of China grantid: 21921001 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- NPM 31~ AAMNL AASGY AAYOK AAYXX ACBWZ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3733-595064f39f9fb25df698e1ad2381bf0a9f68e5ccbe71b3b13d02f9b6c059cf8e3 |
IEDL.DBID | 33P |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 23:44:52 EDT 2024 Thu Nov 21 04:42:51 EST 2024 Fri Nov 22 00:53:21 EST 2024 Sat Sep 28 08:15:00 EDT 2024 Sat Aug 24 00:59:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | photodetection circularly polarized light heterostructures chiral perovskites |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3733-595064f39f9fb25df698e1ad2381bf0a9f68e5ccbe71b3b13d02f9b6c059cf8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3179-7652 0000-0002-1537-7148 |
PMID | 37156749 |
PQID | 2851446590 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2811565348 proquest_journals_2851446590 crossref_primary_10_1002_smll_202302443 pubmed_primary_37156749 wiley_primary_10_1002_smll_202302443_SMLL202302443 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 4 2023; 4 2019; 10 2010; 466 2019; 13 2020; 59 2022; 69 2020; 14 2022; 66 2019; 361 2017; 9 2014; 1 2020; 8 2020; 5 2018; 8 2021; 32 2021; 31 2021; 33 2020; 53 2021; 119 2022; 34 2014; 13 2018; 30 2022; 33 2014; 9 2012; 24 2021; 8 2021; 7 2021; 5 2021; 4 2019; 6 2020; 583 2020; 142 2017; 29 2021; 143 2020; 32 2019; 141 2022; 144 2015; 23 2021; 12 2016; 3 2023 2022; 4 2022; 61 2017; 16 2017; 11 2021; 17 2022; 9 2017; 56 2020; 117 2022; 14 2022; 10 2018; 12 2022; 16 2016; 8 2014; 346 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 Yu W. (e_1_2_8_31_1) 2023; 4 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 Wu J. (e_1_2_8_35_1) 2023 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl Mater Interfaces. – volume: 142 start-page: 55 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 6442 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 2332 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 1083 year: 2018 publication-title: Catal. Sci. Technol. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2021 publication-title: Natl. Sci. Rev. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 5 start-page: 423 year: 2020 publication-title: Nat. Rev. Mater. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 4 start-page: 2491 year: 2022 publication-title: CCS Chem. – volume: 13 start-page: 9473 year: 2019 publication-title: ACS Nano. – volume: 13 start-page: 994 year: 2018 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 4919 year: 2018 publication-title: ACS Nano. – volume: 583 start-page: 790 year: 2020 publication-title: Nature. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 12 start-page: 282 year: 2021 publication-title: Nat. Commun. – volume: 32 start-page: 489 year: 2021 publication-title: Chin. Chem. Lett. – volume: 4 year: 2022 publication-title: InfoMat. – volume: 466 start-page: 730 year: 2010 publication-title: Nature. – volume: 16 start-page: 3985 year: 2022 publication-title: ACS Nano. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2021 publication-title: Small Methods. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 start-page: 315 year: 2017 publication-title: Nat Photonics. – volume: 9 start-page: 1479 year: 2022 publication-title: Mater. Horiz. – volume: 9 year: 2017 publication-title: ACS Appl Mater Interfaces. – volume: 66 start-page: 716 year: 2022 publication-title: Sci. China Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 4 start-page: 851 year: 2017 publication-title: Mater. Horizons. – year: 2023 publication-title: Adv. Opt. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 4 year: 2023 publication-title: T.Innov. – volume: 9 start-page: 682 year: 2014 publication-title: Nat. Nanotechnol. – volume: 119 year: 2021 publication-title: Appl. Phys. Lett. – year: 2023 publication-title: Mater. Horizons. – volume: 8 year: 2016 publication-title: Nanoscale. – volume: 4 start-page: 3835 year: 2021 publication-title: Matter. – volume: 13 start-page: 286 year: 2014 publication-title: Nat. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 1017 year: 2022 publication-title: Chin. Chem. Lett. – volume: 13 start-page: 3659 year: 2019 publication-title: ACS Nano. – volume: 1 start-page: 762 year: 2014 publication-title: ACS Photonics. – volume: 34 year: 2022 publication-title: Chem. Mater. – volume: 14 year: 2020 publication-title: ACS Nano. – volume: 346 start-page: 67 year: 2014 publication-title: Science. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 53 start-page: 1279 year: 2020 publication-title: Acc. Chem. Res. – volume: 361 start-page: 1173 year: 2019 publication-title: Chem. Eng. J. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 10 start-page: 1927 year: 2019 publication-title: Nat. Commun. – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 23 year: 2015 publication-title: Opt Express. – volume: 69 start-page: 2469 year: 2022 publication-title: IEEE Trans. Electron Devices. – volume: 17 year: 2021 publication-title: Small. – volume: 141 start-page: 2623 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 2682 year: 2022 publication-title: ACS Nano. – volume: 34 start-page: 2955 year: 2022 publication-title: Chem. Mater. – volume: 16 start-page: 170 year: 2017 publication-title: Nat. Mater. – ident: e_1_2_8_26_1 doi: 10.1038/nnano.2014.167 – ident: e_1_2_8_15_1 doi: 10.1016/j.matt.2021.11.011 – ident: e_1_2_8_72_1 doi: 10.1007/s40843-022-2155-0 – ident: e_1_2_8_41_1 doi: 10.1038/nmat4703 – ident: e_1_2_8_36_1 doi: 10.1126/sciadv.abg6716 – ident: e_1_2_8_27_1 doi: 10.1038/s41565-018-0298-5 – ident: e_1_2_8_40_1 doi: 10.1002/adma.202001479 – ident: e_1_2_8_48_1 doi: 10.1039/C7CY02281F – ident: e_1_2_8_68_1 doi: 10.1021/acsnano.1c09521 – volume: 4 year: 2023 ident: e_1_2_8_31_1 publication-title: T.Innov. contributor: fullname: Yu W. – ident: e_1_2_8_65_1 doi: 10.1021/jacs.2c10309 – year: 2023 ident: e_1_2_8_35_1 publication-title: Mater. Horizons. contributor: fullname: Wu J. – ident: e_1_2_8_2_1 doi: 10.1038/nmat3864 – ident: e_1_2_8_29_1 doi: 10.1021/jacs.1c08959 – ident: e_1_2_8_11_1 doi: 10.1002/adma.202005760 – ident: e_1_2_8_34_1 doi: 10.1109/TED.2022.3160943 – ident: e_1_2_8_44_1 doi: 10.1002/smtd.202100517 – ident: e_1_2_8_9_1 doi: 10.1016/j.cclet.2020.05.017 – ident: e_1_2_8_53_1 doi: 10.1002/advs.201600018 – ident: e_1_2_8_21_1 doi: 10.1002/anie.201915912 – ident: e_1_2_8_38_1 doi: 10.1038/nphoton.2017.43 – ident: e_1_2_8_33_1 doi: 10.1063/5.0011685 – ident: e_1_2_8_61_1 doi: 10.1021/acsnano.8b01999 – ident: e_1_2_8_6_1 doi: 10.1021/ph500084b – ident: e_1_2_8_30_1 doi: 10.1063/5.0064455 – ident: e_1_2_8_18_1 doi: 10.1021/acsnano.9b04437 – ident: e_1_2_8_1_1 doi: 10.1126/science.1257671 – ident: e_1_2_8_70_1 doi: 10.1021/acsnano.0c05343 – ident: e_1_2_8_32_1 doi: 10.1093/nsr/nwab044 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.2c07891 – ident: e_1_2_8_47_1 doi: 10.1016/j.cej.2018.12.120 – ident: e_1_2_8_49_1 doi: 10.1039/C5NR07893H – ident: e_1_2_8_4_1 doi: 10.1002/adma.202003615 – ident: e_1_2_8_16_1 doi: 10.1002/adma.202008785 – ident: e_1_2_8_19_1 doi: 10.1039/C7MH00197E – ident: e_1_2_8_57_1 doi: 10.1002/anie.201705836 – ident: e_1_2_8_67_1 doi: 10.1002/adma.201907151 – ident: e_1_2_8_10_1 doi: 10.1038/s41578-020-0181-5 – ident: e_1_2_8_60_1 doi: 10.1021/acs.chemmater.2c02109 – ident: e_1_2_8_69_1 doi: 10.1021/acs.chemmater.1c03622 – ident: e_1_2_8_50_1 doi: 10.1002/advs.201901134 – ident: e_1_2_8_66_1 doi: 10.1021/acs.accounts.0c00112 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.7b16329 – ident: e_1_2_8_62_1 doi: 10.1038/s41467-020-20446-z – ident: e_1_2_8_13_1 doi: 10.1021/acsnano.9b00302 – ident: e_1_2_8_59_1 doi: 10.1021/jacs.9b10919 – ident: e_1_2_8_64_1 doi: 10.1021/acsami.2c07208 – ident: e_1_2_8_8_1 doi: 10.1016/j.cclet.2021.06.084 – ident: e_1_2_8_17_1 doi: 10.1002/adom.202200146 – ident: e_1_2_8_55_1 doi: 10.1002/adma.201705893 – ident: e_1_2_8_71_1 doi: 10.1002/inf2.12347 – ident: e_1_2_8_51_1 doi: 10.1002/adom.202200449 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202100773 – ident: e_1_2_8_12_1 doi: 10.1021/jacs.1c07183 – ident: e_1_2_8_63_1 doi: 10.1002/adma.202008611 – ident: e_1_2_8_5_1 doi: 10.1364/OE.23.033564 – ident: e_1_2_8_39_1 doi: 10.1002/smll.202102884 – ident: e_1_2_8_7_1 doi: 10.31635/ccschem.021.202101037 – ident: e_1_2_8_37_1 doi: 10.1038/s41586-020-2526-z – ident: e_1_2_8_24_1 doi: 10.1002/adom.202201342 – ident: e_1_2_8_28_1 doi: 10.1002/anie.202205939 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-019-09942-z – ident: e_1_2_8_45_1 doi: 10.1039/D1MH02073K – ident: e_1_2_8_46_1 doi: 10.1021/acsnano.1c09513 – ident: e_1_2_8_3_1 doi: 10.1038/nature09256 – ident: e_1_2_8_43_1 doi: 10.1002/adom.202000311 – ident: e_1_2_8_54_1 doi: 10.1002/adma.202103010 – ident: e_1_2_8_22_1 doi: 10.1002/adma.202204119 – ident: e_1_2_8_73_1 doi: 10.1002/adma.202103078 – ident: e_1_2_8_58_1 doi: 10.1021/jacs.8b12948 – ident: e_1_2_8_42_1 doi: 10.1002/adma.201104594 – ident: e_1_2_8_52_1 doi: 10.1002/adom.202202383 – ident: e_1_2_8_56_1 doi: 10.1002/adma.201605242 |
SSID | ssj0031247 |
Score | 2.4672368 |
Snippet | Chiral perovskites have been demonstrated as promising candidates for direct circularly polarized light (CPL) detection due to their intrinsic chirality and... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2302443 |
SubjectTerms | Anisotropy Charge transport chiral perovskites Chirality Circular polarization circularly polarized light Dark current Detectors Electric fields Heterostructures Nanotechnology Optical communication Perovskites photodetection Polarized light |
Title | Low Detection Limit Circularly Polarized Light Detection Realized by Constructing Chiral Perovskite/Si Heterostructures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202302443 https://www.ncbi.nlm.nih.gov/pubmed/37156749 https://www.proquest.com/docview/2851446590 https://search.proquest.com/docview/2811565348 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xnOCwy2uXLA8ZCWlPURvbaeIjKqAeCqooSHuL7MSGSpCgZrsIfj0zThuo9oC03BKNLVsej-cbe_wZ4NiIxHKho9AUkQhlzuNQqzgNewrdjeO64I4CxcE4ufydnp4RTU57i7_hh2g33Mgy_HpNBq5N3XkjDa0f7unoACE0eiii-8RQwd_hEKPFUizQefnXVdBnhUS8tWBt7PLOcvVlr_QP1FxGrt71nH_7fKc34OscdrKTZp5swoott2D9HRnhNjwNqyd2av_43KyS-ZtPrD-Z-kTV-2c2oiB48mILFGFA_67oFYJNLzDPjB4AbShpy1vWv5tMsdWRnVZ_a9om7ownbEAJOFVTaIbB_g7cnJ9d9wfh_FmGMBeJEGGsiOTOCeWUMzwuHOrVRqhVdP7GdbVyvdTGeW5sEhlhIlF0uVOmlyOSy11qxXdYLavS7gKT2hjJndax5DIXUqtcWgyZiTbfFU4G8GuhluyxYd_IGp5lntFQZu1QBrC_0Fo2t8I64wgniRBOdQM4asVoP3QooktbzagMYuJeLGQawI9G221TIkFRIlUA3Cv1gz5k44vhsP37-T-V9mCNvpsMw31YRV3YA_hSF7NDP7NfAULv-aA |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7yOLQ59N3EbdqqUOjJ7FqSHzqGTcKGOGHpptCbkWwpXUjssJttSH99Z-S1m6WHQunRHgkJjUbzjTT6BPDJiNRyoaPQVJEIZcnjUKs4CxOF7sZxXXFHgeJ4mp5_yw6PiCbnoLsL0_JD9BtuZBl-vSYDpw3pwW_W0MX1FZ0dIIZGFyU2YVsmOBvpFoeYdIuxQPfl31dBrxUS9VbH2zjkg_X6637pD7C5jl298zl--h-6_QyerJAnO2inynPYsPUL2HnAR_gS7vLmjh3aW5-eVTN_-YmNZnOfq3p1zyYUB89-2gpFGNM_KPoF8aYXmHtGb4C2rLT1JRt9n82x1YmdNz8WtFM8mM7YmHJwmrbQEuP9V_D1-OhiNA5XLzOEpUiFCGNFPHdOKKec4XHlULU2QsWi_zduqJVLMhuXpbFpZISJRDXkTpmkRDBXusyK17BVN7XdAya1MZI7rWPJZSmkVqW0GDUTc76rnAzgc6eX4qYl4ChaqmVe0FAW_VAGsN-prVgZ4qLgiCiJE04NA_jYi9GE6FxE17ZZUhmExUksZBbAbqvuvimRoiiVKgDutfqXPhTTszzvv978S6UP8Gh8cZYX-cn56Vt4TP_bhMN92EK92HewuaiW7_00_wUKF_3I |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xISF4YPwmY4CRkHiK2vicJn5E7aoiylRRkHiL7MQelUYytZRp_PW7c9psFQ9I8JicLVs-n-87-_wZ4K3FzEk0SWyrBGNVyjQ2Os3jgSZ346WppOdAcTLPTr7lo2Omyelu8bf8EN2GG1tGWK_ZwM8r37smDV39OOOjA4LQ5KFwD24rwuLMno84267FSN4rPK9CTitm5q0tbWNf9nbr77qlP7DmLnQNvmd88P-9fgD3N7hTvG8nykO45epHcO8GG-FjuJg2F2LkfobkrFqEq09iuFiGTNWzSzHjKHjx21Ukooj-RtHPhDaDwF4KfgG05aStT8Xw-2JJrc7csvm14n3i3nwhJpyB07SF1hTtP4Gv4-Mvw0m8eZchLjFDjFPNLHcetdfeyrTypFiXkFrJ-1vfN9oPcpeWpXVZYtEmWPWl13ZQEpQrfe7wKezXTe2eg1DGWiW9MamSqkRldKkcxczMm-8rryJ4t1VLcd7SbxQt0bIseCiLbigjONpqrdiY4aqQhCeZEU73I3jTicmA-FTE1K5ZcxkCxYMUVR7Bs1bbXVOYkShTOgIZlPqXPhTzT9Np93X4L5Vew53ZaFxMP5x8fAF3-XebbXgE-6QW9xL2VtX6VZjkV_LR_G4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Detection+Limit+Circularly+Polarized+Light+Detection+Realized+by+Constructing+Chiral+Perovskite%2FSi+Heterostructures&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wu%2C+Jianbo&rft.au=Zhang%2C+Xinyuan&rft.au=You%2C+Shihai&rft.au=Zhu%2C+Zeng%E2%80%90Kui&rft.date=2023-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202302443&rft.externalDBID=10.1002%252Fsmll.202302443&rft.externalDocID=SMLL202302443 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |