A Microporous Metal‐Organic Framework with Channels Constructed from Nonpolar Aromatic Rings for the Selective Separation of Ethane/Ethylene Mixtures
The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2H6/C2H4 is challenging. Herein, we report the selective adsorption of ethane over...
Saved in:
Published in: | ChemPlusChem (Weinheim, Germany) Vol. 87; no. 3; pp. e202100482 - n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
01-03-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2H6/C2H4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal‐organic framework with nonpolar aromatic rings constructed channels, [Co1.5(TATB)(H2O)0.5] ⋅ 5DMA ⋅ 3H2O (Co‐TATB, H3TATB=4,4’,4’’‐(s‐triazine‐2,4,6‐triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol−1. Further, the dynamic breakthrough experimental confirmed that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation.
A microporous metal‐organic framework affords nonpolar channels for the selective separation of ethane/ethylene mixtures. This compound shows a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol−1. Further, the ideal adsorbed solution theory (IAST) and dynamic breakthrough experimental confirm that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation. |
---|---|
AbstractList | The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2H6/C2H4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal‐organic framework with nonpolar aromatic rings constructed channels, [Co1.5(TATB)(H2O)0.5] ⋅ 5DMA ⋅ 3H2O (Co‐TATB, H3TATB=4,4’,4’’‐(s‐triazine‐2,4,6‐triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol−1. Further, the dynamic breakthrough experimental confirmed that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation.
A microporous metal‐organic framework affords nonpolar channels for the selective separation of ethane/ethylene mixtures. This compound shows a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol−1. Further, the ideal adsorbed solution theory (IAST) and dynamic breakthrough experimental confirm that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation. The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2 H6 /C2 H4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal-organic framework with nonpolar aromatic rings constructed channels, [Co1.5 (TATB)(H2 O)0.5 ] ⋅ 5DMA ⋅ 3H2 O (Co-TATB, H3 TATB=4,4',4''-(s-triazine-2,4,6-triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol-1 . Further, the dynamic breakthrough experimental confirmed that Co-TATB can selectively adsorb ethane from ethane/ethylene separation.The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2 H6 /C2 H4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal-organic framework with nonpolar aromatic rings constructed channels, [Co1.5 (TATB)(H2 O)0.5 ] ⋅ 5DMA ⋅ 3H2 O (Co-TATB, H3 TATB=4,4',4''-(s-triazine-2,4,6-triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol-1 . Further, the dynamic breakthrough experimental confirmed that Co-TATB can selectively adsorb ethane from ethane/ethylene separation. The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C H /C H is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal-organic framework with nonpolar aromatic rings constructed channels, [Co (TATB)(H O) ] ⋅ 5DMA ⋅ 3H O (Co-TATB, H TATB=4,4',4''-(s-triazine-2,4,6-triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol . Further, the dynamic breakthrough experimental confirmed that Co-TATB can selectively adsorb ethane from ethane/ethylene separation. The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C 2 H 6 /C 2 H 4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal‐organic framework with nonpolar aromatic rings constructed channels, [Co 1.5 (TATB)(H 2 O) 0.5 ] ⋅ 5DMA ⋅ 3H 2 O ( Co‐TATB , H 3 TATB=4,4’,4’’‐(s‐triazine‐2,4,6‐triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol −1 . Further, the dynamic breakthrough experimental confirmed that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation. |
Author | Yang, Yisi Chen, Dinggui Zhuang, Weitang Xie, Zhixuan Yao, Zizhu Liu, Lizhen Bo, Yiyang Lin, Quanjie Xiang, Shengchang |
Author_xml | – sequence: 1 givenname: Lizhen orcidid: 0000-0001-5846-309X surname: Liu fullname: Liu, Lizhen organization: Fujian University of Technology – sequence: 2 givenname: Yiyang surname: Bo fullname: Bo, Yiyang organization: Fujian University of Technology – sequence: 3 givenname: Weitang surname: Zhuang fullname: Zhuang, Weitang organization: Fujian University of Technology – sequence: 4 givenname: Zhixuan surname: Xie fullname: Xie, Zhixuan organization: Fujian Normal University – sequence: 5 givenname: Yisi surname: Yang fullname: Yang, Yisi organization: Fujian Normal University – sequence: 6 givenname: Quanjie surname: Lin fullname: Lin, Quanjie organization: Fujian Normal University – sequence: 7 givenname: Dinggui surname: Chen fullname: Chen, Dinggui organization: Fujian University of Technology – sequence: 8 givenname: Zizhu surname: Yao fullname: Yao, Zizhu email: yaozizhu@fjnu.edu.cn organization: Fujian Normal University – sequence: 9 givenname: Shengchang orcidid: 0000-0001-6016-2587 surname: Xiang fullname: Xiang, Shengchang email: scxiang@fjnu.edu.cn organization: Fujian Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35014214$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PGzEQhi0EKh_lyhH52EuCPZtd7x6jFbRIoaC2nFeOMyYLXnuxvU1z4ydw6__rL6mj8NFb5zIz0juPRu97SHats0jICWdjzhicqd4MY2CQlkkJO-QAeAWjImfF7j_zPjkO4Z6lKlgOIvtA9rOc8QnwyQH5PaVXrfKud94NgV5hlObP0_O1v5O2VfTCyw5Xzj_QVRuXtF5Ka9EEWjsboh9UxAXV3nX0q7O9M9LTadpkTKffWnsXqHaexiXS72hQxfbnZuqlTwpnqdP0PCYknqW2NmgxPfMrDh7DR7KnpQl4_NKPyO3F-Y_6y2h2_fmyns5GKhMZjKAQMhMMBS8rpkWmQEjkKodSqXyOC6G1yBVyDqBL1BVDxsRiDrIE5FCJ7Ih82nJ77x4HDLHp2qDQmPRVMqSBYkPOBfAkHW-lya4QPOqm920n_brhrNnk0WzyaN7ySAenL-xh3uHiTf7qfhJUW8GqNbj-D66pb2a37_C_ur-cYw |
CitedBy_id | crossref_primary_10_1039_D4NJ00605D crossref_primary_10_1021_acsami_2c21261 |
Cites_doi | 10.1107/S0021889808042726 10.1021/jp300961j 10.1021/jacs.9b10923 10.1016/j.ces.2016.04.016 10.1021/la961040c 10.1016/j.enchem.2019.100006 10.1016/j.cej.2013.05.048 10.1016/j.ces.2008.05.038 10.1021/la803042z 10.1038/s41557-021-00740-z 10.1002/aic.690110125 10.1002/adma.202002603 10.1021/jacs.9b12924 10.1021/jacs.6b02030 10.1002/advs.201901918 10.1021/jacs.8b07563 10.1021/ie8008814 10.1039/D1NJ00414J 10.1107/S0021889807029238 10.1039/C9QI00195F 10.1016/j.seppur.2014.06.060 10.1021/acsami.9b22410 10.1038/ncomms9697 10.1039/b903811f 10.1021/acs.inorgchem.0c02229 10.1021/jacs.7b10110 10.1039/D0CC04645K 10.1016/j.energy.2005.04.001 10.1080/08927022.2011.592832 10.1039/C9CS00756C 10.1021/ja1089765 10.1039/D0QI01138J 10.1002/cplu.202000072 10.1002/anie.202100342 10.1039/C9TA02822F 10.1016/j.ces.2017.09.032 10.1021/jacs.9b00913 10.1039/b802426j 10.1021/jacs.0c00612 10.1039/C9TA12671F 10.1021/acs.chemmater.1c01892 10.1002/anie.202100114 10.1038/s41563-018-0206-2 10.1107/S0021889800007202 10.1002/cplu.201600156 10.1039/D1DT01477C 10.1107/S0021889802022112 10.1039/D1DT00413A 10.1021/ic0624773 10.1021/acs.jpcc.6b11808 10.1002/anie.202109338 10.1107/S0108767307043930 10.1002/adma.201705189 10.1126/science.aat0586 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1002/cplu.202100482 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2192-6506 |
EndPage | n/a |
ExternalDocumentID | 10_1002_cplu_202100482 35014214 CPLU202100482 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fujian Education Department Project funderid: JAT190418; JAT190075 – fundername: National Natural Science Foundation of China funderid: 21971038; 21975044; 22101050 – fundername: Fujian Science and Technology Department funderid: 2020J05189; 2020J01152 – fundername: National Natural Science Foundation of China grantid: 21975044 – fundername: National Natural Science Foundation of China grantid: 22101050 – fundername: Fujian Science and Technology Department grantid: 2020J05189 – fundername: Fujian Education Department Project grantid: JAT190418 – fundername: Fujian Education Department Project grantid: JAT190075 – fundername: National Natural Science Foundation of China grantid: 21971038 – fundername: Fujian Science and Technology Department grantid: 2020J01152 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3V. 50Y 77Q 8-0 8-1 88I 8AO 8FE 8FG 8FH A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABDBF ABJCF ABJNI ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIHN ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEAQA AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFKRA AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CZ9 D1I DCZOG DPXWK DRFUL DRSTM DWQXO EBS EJD ESX G-S GNUQQ GODZA HCIFZ HGLYW HZ~ KB. KC. LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MXFUL MXSTM MY~ O9- P2W PCBAR PDBOC PQQKQ PROAC R.K ROL RX1 SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c3732-267a370e71890f73c27ae1c528cc5bed7ff75ce1122f8ef90e007db2a82e12973 |
IEDL.DBID | 33P |
ISSN | 2192-6506 |
IngestDate | Sat Oct 26 04:27:54 EDT 2024 Thu Nov 21 21:31:11 EST 2024 Sat Nov 02 11:57:41 EDT 2024 Sat Aug 24 00:56:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | gas adsorption nonpolar channels ethane-selective MOF ethane/ethylene separation metal-organic frameworks |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-267a370e71890f73c27ae1c528cc5bed7ff75ce1122f8ef90e007db2a82e12973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5846-309X 0000-0001-6016-2587 |
PMID | 35014214 |
PQID | 2618905721 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2618905721 crossref_primary_10_1002_cplu_202100482 pubmed_primary_35014214 wiley_primary_10_1002_cplu_202100482_CPLU202100482 |
PublicationCentury | 2000 |
PublicationDate | March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | ChemPlusChem (Weinheim, Germany) |
PublicationTitleAlternate | Chempluschem |
PublicationYear | 2022 |
References | 2018; 362 2021; 8 2019; 7 2009; 25 2015; 6 1965; 11 2006; 31 2019; 6 2021; 45 2018; 140 2009; 42 2020; 85 2020; 142 2019; 1 2013; 228 2003; 36 2020; 59 2020; 56 2020; 12 2016; 148 2011; 37 2020; 32 2021; 50 2014; 133 2019; 141 2009; 48 2017; 139 2020; 8 2018; 175 2021; 13 2020; 6 2018; 17 2021; 33 2000; 33 1997; 13 2010; 132 2020; 49 2018; 30 2016; 138 2008; 63 2016; 81 2007; 40 2017; 121 2008; 64 2021; 60 2012; 116 2009; 38 2007; 46 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Lin R. (e_1_2_9_12_1) 2020; 6 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 40 start-page: 786 year: 2007 end-page: 790 publication-title: J. Appl. Crystallogr. – volume: 6 start-page: 1177 year: 2019 end-page: 1183 publication-title: Inorg. Chem. Front. – volume: 46 start-page: 2725 year: 2007 end-page: 2734 publication-title: Inorg. Chem. – volume: 42 start-page: 339 year: 2009 end-page: 341 publication-title: J. Appl. Crystallogr. – volume: 141 start-page: 5014 year: 2019 end-page: 5020 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 4054 year: 1997 end-page: 4059 publication-title: Langmuir – volume: 7 start-page: 13585 year: 2019 end-page: 13590 publication-title: J. Mater. Chem. A – volume: 13 start-page: 933 year: 2021 end-page: 939 publication-title: Nat. Chem. – volume: 37 start-page: 1248 year: 2011 end-page: 1257 publication-title: Mol. Simul. – volume: 36 start-page: 7 year: 2003 end-page: 13 publication-title: J. Appl. Crystallogr. – volume: 142 start-page: 9258 year: 2020 end-page: 9266 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 5359 year: 2020 end-page: 5406 publication-title: Chem. Soc. Rev. – volume: 81 start-page: 850 year: 2016 end-page: 856 publication-title: ChemPlusChem – volume: 59 start-page: 13019 year: 2020 end-page: 13023 publication-title: Inorg. Chem. – volume: 116 start-page: 9575 year: 2012 end-page: 9581 publication-title: J. Phys. Chem. C – volume: 31 start-page: 425 year: 2006 end-page: 451 publication-title: Energy – volume: 11 start-page: 121 year: 1965 end-page: 127 publication-title: AIChE J. – volume: 1 year: 2019 publication-title: EnergyChem – volume: 140 start-page: 12940 year: 2018 end-page: 12946 publication-title: J. Am. Chem. Soc. – volume: 148 start-page: 275 year: 2016 end-page: 281 publication-title: Chem. Eng. Sci. – volume: 48 start-page: 4466 year: 2009 end-page: 4473 publication-title: Ind. Eng. Chem. Res. – volume: 33 start-page: 1193 year: 2000 publication-title: J. Appl. Crystallogr. – volume: 138 start-page: 5678 year: 2016 end-page: 5684 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 452 year: 2014 end-page: 475 publication-title: Sep. Purif. Technol. – volume: 85 start-page: 538 year: 2020 end-page: 547 publication-title: ChemPlusChem – volume: 8 start-page: 3613 year: 2020 end-page: 3620 publication-title: J. Mater. Chem. A – volume: 50 start-page: 10423 year: 2021 end-page: 10435 publication-title: Dalton Trans. – volume: 64 start-page: 112 year: 2008 end-page: 122 publication-title: Acta Crystallogr. Sect. A. – volume: 17 start-page: 1128 year: 2018 end-page: 1133 publication-title: Nat. Mater. – volume: 142 start-page: 2222 year: 2020 end-page: 2227 publication-title: J. Am. Chem. Soc. – volume: 362 start-page: 443 year: 2018 end-page: 446 publication-title: Science – volume: 63 start-page: 4171 year: 2008 end-page: 4175 publication-title: Chem. Eng. Sci. – volume: 228 start-page: 1158 year: 2013 end-page: 1167 publication-title: Chem. Eng. J. – volume: 175 start-page: 110 year: 2018 end-page: 117 publication-title: Chem. Eng. Sci. – volume: 33 start-page: 6193 year: 2021 end-page: 6199 publication-title: Chem. Mater. – volume: 38 start-page: 1477 year: 2009 end-page: 1504 publication-title: Chem. Soc. Rev. – volume: 56 start-page: 10419 year: 2020 end-page: 10441 publication-title: Chem. Commun. – volume: 12 start-page: 6105 year: 2020 end-page: 6111 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 2148 year: 2009 end-page: 2152 publication-title: Langmuir – volume: 60 start-page: 27184 year: 2021 end-page: 27188 publication-title: Angew. Chem. Int. Ed. – volume: 121 start-page: 3126 year: 2017 end-page: 3132 publication-title: J. Phys. Chem. C – volume: 8 start-page: 1243 year: 2021 end-page: 1252 publication-title: Inorg. Chem. Front. – volume: 60 start-page: 10304 year: 2021 end-page: 10310 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 8697 year: 2015 publication-title: Nat. Commun. – volume: 141 start-page: 20390 year: 2019 end-page: 20396 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 4932 year: 2021 end-page: 4935 publication-title: Dalton Trans – volume: 60 start-page: 9680 year: 2021 end-page: 9685 publication-title: Angew. Chem. Int. Ed. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 7 year: 2019 publication-title: Adv. Sci. – volume: 132 start-page: 17704 year: 2010 end-page: 17706 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 18313 year: 2017 end-page: 18321 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 337 year: 2020 end-page: 363 publication-title: B. Chem. – volume: 45 start-page: 8045 year: 2021 end-page: 8053 publication-title: New J. Chem. – volume: 38 start-page: 1213 year: 2009 end-page: 1214 publication-title: Chem. Soc. Rev. – ident: e_1_2_9_47_1 doi: 10.1107/S0021889808042726 – ident: e_1_2_9_55_1 doi: 10.1021/jp300961j – ident: e_1_2_9_45_1 doi: 10.1021/jacs.9b10923 – ident: e_1_2_9_34_1 doi: 10.1016/j.ces.2016.04.016 – ident: e_1_2_9_52_1 doi: 10.1021/la961040c – ident: e_1_2_9_23_1 doi: 10.1016/j.enchem.2019.100006 – ident: e_1_2_9_1_1 doi: 10.1016/j.cej.2013.05.048 – ident: e_1_2_9_3_1 doi: 10.1016/j.ces.2008.05.038 – ident: e_1_2_9_22_1 doi: 10.1021/la803042z – ident: e_1_2_9_26_1 doi: 10.1038/s41557-021-00740-z – ident: e_1_2_9_53_1 doi: 10.1002/aic.690110125 – ident: e_1_2_9_35_1 doi: 10.1002/adma.202002603 – ident: e_1_2_9_28_1 doi: 10.1021/jacs.9b12924 – ident: e_1_2_9_16_1 doi: 10.1021/jacs.6b02030 – ident: e_1_2_9_19_1 doi: 10.1002/advs.201901918 – ident: e_1_2_9_41_1 doi: 10.1021/jacs.8b07563 – ident: e_1_2_9_54_1 doi: 10.1021/ie8008814 – ident: e_1_2_9_36_1 doi: 10.1039/D1NJ00414J – ident: e_1_2_9_48_1 doi: 10.1107/S0021889807029238 – ident: e_1_2_9_18_1 doi: 10.1039/C9QI00195F – ident: e_1_2_9_5_1 doi: 10.1016/j.seppur.2014.06.060 – ident: e_1_2_9_44_1 doi: 10.1021/acsami.9b22410 – ident: e_1_2_9_27_1 doi: 10.1038/ncomms9697 – ident: e_1_2_9_4_1 doi: 10.1039/b903811f – ident: e_1_2_9_46_1 doi: 10.1021/acs.inorgchem.0c02229 – ident: e_1_2_9_24_1 doi: 10.1021/jacs.7b10110 – ident: e_1_2_9_11_1 doi: 10.1039/D0CC04645K – ident: e_1_2_9_2_1 doi: 10.1016/j.energy.2005.04.001 – ident: e_1_2_9_50_1 doi: 10.1080/08927022.2011.592832 – ident: e_1_2_9_13_1 doi: 10.1039/C9CS00756C – ident: e_1_2_9_42_1 doi: 10.1021/ja1089765 – ident: e_1_2_9_6_1 doi: 10.1039/D0QI01138J – ident: e_1_2_9_7_1 doi: 10.1002/cplu.202000072 – ident: e_1_2_9_8_1 doi: 10.1002/anie.202100342 – ident: e_1_2_9_38_1 doi: 10.1039/C9TA02822F – ident: e_1_2_9_43_1 doi: 10.1016/j.ces.2017.09.032 – ident: e_1_2_9_30_1 doi: 10.1021/jacs.9b00913 – ident: e_1_2_9_32_1 doi: 10.1039/b802426j – ident: e_1_2_9_15_1 doi: 10.1021/jacs.0c00612 – ident: e_1_2_9_37_1 doi: 10.1039/C9TA12671F – ident: e_1_2_9_33_1 doi: 10.1021/acs.chemmater.1c01892 – ident: e_1_2_9_17_1 doi: 10.1002/anie.202100114 – ident: e_1_2_9_25_1 doi: 10.1038/s41563-018-0206-2 – ident: e_1_2_9_40_1 doi: 10.1107/S0021889800007202 – volume: 6 start-page: 337 year: 2020 ident: e_1_2_9_12_1 publication-title: B. Chem. contributor: fullname: Lin R. – ident: e_1_2_9_14_1 doi: 10.1002/cplu.201600156 – ident: e_1_2_9_29_1 doi: 10.1039/D1DT01477C – ident: e_1_2_9_51_1 doi: 10.1107/S0021889802022112 – ident: e_1_2_9_21_1 doi: 10.1039/D1DT00413A – ident: e_1_2_9_39_1 doi: 10.1021/ic0624773 – ident: e_1_2_9_20_1 doi: 10.1021/acs.jpcc.6b11808 – ident: e_1_2_9_10_1 doi: 10.1002/anie.202109338 – ident: e_1_2_9_49_1 doi: 10.1107/S0108767307043930 – ident: e_1_2_9_9_1 doi: 10.1002/adma.201705189 – ident: e_1_2_9_31_1 doi: 10.1126/science.aat0586 |
SSID | ssj0000605273 |
Score | 2.3515904 |
Snippet | The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202100482 |
SubjectTerms | ethane-selective MOF ethane/ethylene separation gas adsorption metal-organic frameworks nonpolar channels |
Title | A Microporous Metal‐Organic Framework with Channels Constructed from Nonpolar Aromatic Rings for the Selective Separation of Ethane/Ethylene Mixtures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcplu.202100482 https://www.ncbi.nlm.nih.gov/pubmed/35014214 https://www.proquest.com/docview/2618905721 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8H-ElIyExRU3sJE7GqrTqQKuKUoktchx7QkmlqBJs_AQ2_h-_hDunCaoYkGBKMsRxfLbvuzvfd4TcBF4eZRyPVaiQuwGSDUnGM1ckMSgXmYe-xOTk0UxMnuK7AdLktFn8NT9E63DDlWH3a1zgMqu636ShavG8BPuOIeVZjJswmAo2h4NPWyeLB2Cd2SgzLEzmAhqJGuJGj3XXW1hXTD_Q5jp4tdpnuPv_fu-RnRXypL16quyTDV0ckK1-U_DtkHz06BiP5wEiL5cVHWvA5Z9v73W2pqLD5hgXRd8txbQE6EpFseSnJaHVOcVkFTopiwUazPCp0hLC0gd0x1OAxxTgJp3Z0juwy8JdzTxeFrQ0dIBefN2FyyuoQg2decHwRnVE5sPBY3_kruo2uIoLzlwWCcmFp0HtJZ4RXDEhta9CFisVZjoXxohQaUB6zMTaJJ4GoJJnTMZM-1hL65h0irLQp4TGidE6BlihjAkylSWRlFHIRZJHSHwvHHLbCC1d1PQcaU3EzFIc6LQdaIdcNzJNYVwxLAL_BMOZgg0J_QzBFHbISS3sti0bdmV-4BBmZfrLR9L-9H7ePp395aVzss0ww8Iec7sgHRCgviSbVb68snP7C8Yk-sU |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGGDh_ShPIyExRU3tJE7GqrQqoq0qChJblDj2hJJKVSXY-Als_D9-CXcOCaoYkBBTkiGO47N9n-_xHcCl52ZBKiisQvnC8YhsKOEidWQUonJJMr-VUHJyfyJHj-F1l2hy2lUuTMkPURvcaGXY_ZoWOBmkm9-soWr6NMcDHifOsxB34VUvwNlIWRxiXJtZXITr3PqZcWlyB_FIUFE3ury52MSiavqBNxfhq9U_vc1_6PkWbHyBT9YuZ8s2LOl8B9Y6Vc23XXhvsyFF6CEoL-YzNtQIzT9e38qETcV6VSQXI_Mto8wE7MuMUdVPy0OrM0b5KmxU5FM6M-OnCssJy-7IIs8QITNEnGxiq-_gRot3Jfl4kbPCsC4Z8nUTLy-oDTV25pk8HLM9eOh17zt956t0g6OEFNzhgUyEdDVqvsg1UiguE91SPg-V8lOdSWOkrzSCPW5CbSJXI1bJUp6EXLeonNY-rORFrg-BhZHROkRkoYzxUpVGQZIEvpBRFhD3vWzAVSW1eFoydMQlFzOPaaDjeqAbcFEJNcZxJc8I_hMOZ4zHSOynj6fhBhyU0q7bsp5X3vIawK1Qf_lI3BkPHuqno7-8dA5r_fvhIB7cjG6PYZ1TwoWNejuBFRSmPoXlWTY_sxP9E5vr_u0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gnrx_ajPFQRPoelukk2OUlsUtRRrwVtINrsnSQqloDd_gjf_n7_EmU0TKR4EPSU5ZLOZ2d35dnbmG4Bzz82CVFBYhfKF4xHZUMJF6sgoROOSZH47oeTk66HsP4VXXaLJqbP4S36I2uFGM8Ou1zTBx5lpfZOGqvHzFPd3nCjPQlyElzzE4sSeL8Sg9rK4iNa5PWbGmckdhCNBxdzo8tZ8E_OW6QfcnEev1vz01v_f8Q1Ym0FPdlmOlU1Y0PkWrHSqim_b8HHJ7ik-DyF5MZ2we43A_PPtvUzXVKxXxXExct4yykvArkwY1fy0LLQ6Y5StwvpFPqYdM36qsIyw7IH88QzxMUO8yYa29g4us3hXUo8XOSsM65IbX7fw8oq2UGNnXuh8Y7IDo173sXPtzAo3OEpIwR0eyERIV6Pdi1wjheIy0W3l81ApP9WZNEb6SiPU4ybUJnI1IpUs5UnIdZuKae1CIy9yvQ8sjIzWIeIKZYyXqjQKkiTwhYyygJjvZRMuKqXF45KfIy6ZmHlMgo5rQTfhrNJpjHKlcxH8JxRnjJtI7KePe-Em7JXKrtuy56687TWBW53-8pG4M7gb1U8Hf3npFJYHV7347qZ_ewirnLItbMjbETRQl_oYFifZ9MQO8y-DC_2T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Microporous+Metal%E2%80%90Organic+Framework+with+Channels+Constructed+from+Nonpolar+Aromatic+Rings+for+the+Selective+Separation+of+Ethane%2FEthylene+Mixtures&rft.jtitle=ChemPlusChem+%28Weinheim%2C+Germany%29&rft.au=Liu%2C+Lizhen&rft.au=Bo%2C+Yiyang&rft.au=Zhuang%2C+Weitang&rft.au=Xie%2C+Zhixuan&rft.date=2022-03-01&rft.issn=2192-6506&rft.eissn=2192-6506&rft.volume=87&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcplu.202100482&rft.externalDBID=10.1002%252Fcplu.202100482&rft.externalDocID=CPLU202100482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6506&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6506&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6506&client=summon |