A Microporous Metal‐Organic Framework with Channels Constructed from Nonpolar Aromatic Rings for the Selective Separation of Ethane/Ethylene Mixtures

The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2H6/C2H4 is challenging. Herein, we report the selective adsorption of ethane over...

Full description

Saved in:
Bibliographic Details
Published in:ChemPlusChem (Weinheim, Germany) Vol. 87; no. 3; pp. e202100482 - n/a
Main Authors: Liu, Lizhen, Bo, Yiyang, Zhuang, Weitang, Xie, Zhixuan, Yang, Yisi, Lin, Quanjie, Chen, Dinggui, Yao, Zizhu, Xiang, Shengchang
Format: Journal Article
Language:English
Published: Germany 01-03-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2H6/C2H4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal‐organic framework with nonpolar aromatic rings constructed channels, [Co1.5(TATB)(H2O)0.5] ⋅ 5DMA ⋅ 3H2O (Co‐TATB, H3TATB=4,4’,4’’‐(s‐triazine‐2,4,6‐triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol−1. Further, the dynamic breakthrough experimental confirmed that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation. A microporous metal‐organic framework affords nonpolar channels for the selective separation of ethane/ethylene mixtures. This compound shows a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol−1. Further, the ideal adsorbed solution theory (IAST) and dynamic breakthrough experimental confirm that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation.
AbstractList The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2H6/C2H4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal‐organic framework with nonpolar aromatic rings constructed channels, [Co1.5(TATB)(H2O)0.5] ⋅ 5DMA ⋅ 3H2O (Co‐TATB, H3TATB=4,4’,4’’‐(s‐triazine‐2,4,6‐triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol−1. Further, the dynamic breakthrough experimental confirmed that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation. A microporous metal‐organic framework affords nonpolar channels for the selective separation of ethane/ethylene mixtures. This compound shows a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol−1. Further, the ideal adsorbed solution theory (IAST) and dynamic breakthrough experimental confirm that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation.
The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2 H6 /C2 H4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal-organic framework with nonpolar aromatic rings constructed channels, [Co1.5 (TATB)(H2 O)0.5 ] ⋅ 5DMA ⋅ 3H2 O (Co-TATB, H3 TATB=4,4',4''-(s-triazine-2,4,6-triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol-1 . Further, the dynamic breakthrough experimental confirmed that Co-TATB can selectively adsorb ethane from ethane/ethylene separation.The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C2 H6 /C2 H4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal-organic framework with nonpolar aromatic rings constructed channels, [Co1.5 (TATB)(H2 O)0.5 ] ⋅ 5DMA ⋅ 3H2 O (Co-TATB, H3 TATB=4,4',4''-(s-triazine-2,4,6-triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol-1 . Further, the dynamic breakthrough experimental confirmed that Co-TATB can selectively adsorb ethane from ethane/ethylene separation.
The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C H /C H is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal-organic framework with nonpolar aromatic rings constructed channels, [Co (TATB)(H O) ] ⋅ 5DMA ⋅ 3H O (Co-TATB, H TATB=4,4',4''-(s-triazine-2,4,6-triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol . Further, the dynamic breakthrough experimental confirmed that Co-TATB can selectively adsorb ethane from ethane/ethylene separation.
The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their similar physical and chemical properties, the separation of C 2 H 6 /C 2 H 4 is challenging. Herein, we report the selective adsorption of ethane over ethylene by a microporous metal‐organic framework with nonpolar aromatic rings constructed channels, [Co 1.5 (TATB)(H 2 O) 0.5 ] ⋅ 5DMA ⋅ 3H 2 O ( Co‐TATB , H 3 TATB=4,4’,4’’‐(s‐triazine‐2,4,6‐triyl) tribenzoic acid). This compound showed a higher ethane capacity than that of ethylene, and a low adsorption enthalpy of ethane only of 19.4 kJ mol −1 . Further, the dynamic breakthrough experimental confirmed that Co‐TATB can selectively adsorb ethane from ethane/ethylene separation.
Author Yang, Yisi
Chen, Dinggui
Zhuang, Weitang
Xie, Zhixuan
Yao, Zizhu
Liu, Lizhen
Bo, Yiyang
Lin, Quanjie
Xiang, Shengchang
Author_xml – sequence: 1
  givenname: Lizhen
  orcidid: 0000-0001-5846-309X
  surname: Liu
  fullname: Liu, Lizhen
  organization: Fujian University of Technology
– sequence: 2
  givenname: Yiyang
  surname: Bo
  fullname: Bo, Yiyang
  organization: Fujian University of Technology
– sequence: 3
  givenname: Weitang
  surname: Zhuang
  fullname: Zhuang, Weitang
  organization: Fujian University of Technology
– sequence: 4
  givenname: Zhixuan
  surname: Xie
  fullname: Xie, Zhixuan
  organization: Fujian Normal University
– sequence: 5
  givenname: Yisi
  surname: Yang
  fullname: Yang, Yisi
  organization: Fujian Normal University
– sequence: 6
  givenname: Quanjie
  surname: Lin
  fullname: Lin, Quanjie
  organization: Fujian Normal University
– sequence: 7
  givenname: Dinggui
  surname: Chen
  fullname: Chen, Dinggui
  organization: Fujian University of Technology
– sequence: 8
  givenname: Zizhu
  surname: Yao
  fullname: Yao, Zizhu
  email: yaozizhu@fjnu.edu.cn
  organization: Fujian Normal University
– sequence: 9
  givenname: Shengchang
  orcidid: 0000-0001-6016-2587
  surname: Xiang
  fullname: Xiang, Shengchang
  email: scxiang@fjnu.edu.cn
  organization: Fujian Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35014214$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PGzEQhi0EKh_lyhH52EuCPZtd7x6jFbRIoaC2nFeOMyYLXnuxvU1z4ydw6__rL6mj8NFb5zIz0juPRu97SHats0jICWdjzhicqd4MY2CQlkkJO-QAeAWjImfF7j_zPjkO4Z6lKlgOIvtA9rOc8QnwyQH5PaVXrfKud94NgV5hlObP0_O1v5O2VfTCyw5Xzj_QVRuXtF5Ka9EEWjsboh9UxAXV3nX0q7O9M9LTadpkTKffWnsXqHaexiXS72hQxfbnZuqlTwpnqdP0PCYknqW2NmgxPfMrDh7DR7KnpQl4_NKPyO3F-Y_6y2h2_fmyns5GKhMZjKAQMhMMBS8rpkWmQEjkKodSqXyOC6G1yBVyDqBL1BVDxsRiDrIE5FCJ7Ih82nJ77x4HDLHp2qDQmPRVMqSBYkPOBfAkHW-lya4QPOqm920n_brhrNnk0WzyaN7ySAenL-xh3uHiTf7qfhJUW8GqNbj-D66pb2a37_C_ur-cYw
CitedBy_id crossref_primary_10_1039_D4NJ00605D
crossref_primary_10_1021_acsami_2c21261
Cites_doi 10.1107/S0021889808042726
10.1021/jp300961j
10.1021/jacs.9b10923
10.1016/j.ces.2016.04.016
10.1021/la961040c
10.1016/j.enchem.2019.100006
10.1016/j.cej.2013.05.048
10.1016/j.ces.2008.05.038
10.1021/la803042z
10.1038/s41557-021-00740-z
10.1002/aic.690110125
10.1002/adma.202002603
10.1021/jacs.9b12924
10.1021/jacs.6b02030
10.1002/advs.201901918
10.1021/jacs.8b07563
10.1021/ie8008814
10.1039/D1NJ00414J
10.1107/S0021889807029238
10.1039/C9QI00195F
10.1016/j.seppur.2014.06.060
10.1021/acsami.9b22410
10.1038/ncomms9697
10.1039/b903811f
10.1021/acs.inorgchem.0c02229
10.1021/jacs.7b10110
10.1039/D0CC04645K
10.1016/j.energy.2005.04.001
10.1080/08927022.2011.592832
10.1039/C9CS00756C
10.1021/ja1089765
10.1039/D0QI01138J
10.1002/cplu.202000072
10.1002/anie.202100342
10.1039/C9TA02822F
10.1016/j.ces.2017.09.032
10.1021/jacs.9b00913
10.1039/b802426j
10.1021/jacs.0c00612
10.1039/C9TA12671F
10.1021/acs.chemmater.1c01892
10.1002/anie.202100114
10.1038/s41563-018-0206-2
10.1107/S0021889800007202
10.1002/cplu.201600156
10.1039/D1DT01477C
10.1107/S0021889802022112
10.1039/D1DT00413A
10.1021/ic0624773
10.1021/acs.jpcc.6b11808
10.1002/anie.202109338
10.1107/S0108767307043930
10.1002/adma.201705189
10.1126/science.aat0586
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1002/cplu.202100482
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2192-6506
EndPage n/a
ExternalDocumentID 10_1002_cplu_202100482
35014214
CPLU202100482
Genre article
Journal Article
GrantInformation_xml – fundername: Fujian Education Department Project
  funderid: JAT190418; JAT190075
– fundername: National Natural Science Foundation of China
  funderid: 21971038; 21975044; 22101050
– fundername: Fujian Science and Technology Department
  funderid: 2020J05189; 2020J01152
– fundername: National Natural Science Foundation of China
  grantid: 21975044
– fundername: National Natural Science Foundation of China
  grantid: 22101050
– fundername: Fujian Science and Technology Department
  grantid: 2020J05189
– fundername: Fujian Education Department Project
  grantid: JAT190418
– fundername: Fujian Education Department Project
  grantid: JAT190075
– fundername: National Natural Science Foundation of China
  grantid: 21971038
– fundername: Fujian Science and Technology Department
  grantid: 2020J01152
GroupedDBID 05W
0R~
1OC
31~
33P
3V.
50Y
77Q
8-0
8-1
88I
8AO
8FE
8FG
8FH
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABJCF
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIHN
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEAQA
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CZ9
D1I
DCZOG
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
ESX
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HZ~
KB.
KC.
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MXFUL
MXSTM
MY~
O9-
P2W
PCBAR
PDBOC
PQQKQ
PROAC
R.K
ROL
RX1
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c3732-267a370e71890f73c27ae1c528cc5bed7ff75ce1122f8ef90e007db2a82e12973
IEDL.DBID 33P
ISSN 2192-6506
IngestDate Sat Oct 26 04:27:54 EDT 2024
Thu Nov 21 21:31:11 EST 2024
Sat Nov 02 11:57:41 EDT 2024
Sat Aug 24 00:56:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords gas adsorption
nonpolar channels
ethane-selective MOF
ethane/ethylene separation
metal-organic frameworks
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-267a370e71890f73c27ae1c528cc5bed7ff75ce1122f8ef90e007db2a82e12973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5846-309X
0000-0001-6016-2587
PMID 35014214
PQID 2618905721
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2618905721
crossref_primary_10_1002_cplu_202100482
pubmed_primary_35014214
wiley_primary_10_1002_cplu_202100482_CPLU202100482
PublicationCentury 2000
PublicationDate March 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle ChemPlusChem (Weinheim, Germany)
PublicationTitleAlternate Chempluschem
PublicationYear 2022
References 2018; 362
2021; 8
2019; 7
2009; 25
2015; 6
1965; 11
2006; 31
2019; 6
2021; 45
2018; 140
2009; 42
2020; 85
2020; 142
2019; 1
2013; 228
2003; 36
2020; 59
2020; 56
2020; 12
2016; 148
2011; 37
2020; 32
2021; 50
2014; 133
2019; 141
2009; 48
2017; 139
2020; 8
2018; 175
2021; 13
2020; 6
2018; 17
2021; 33
2000; 33
1997; 13
2010; 132
2020; 49
2018; 30
2016; 138
2008; 63
2016; 81
2007; 40
2017; 121
2008; 64
2021; 60
2012; 116
2009; 38
2007; 46
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Lin R. (e_1_2_9_12_1) 2020; 6
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 40
  start-page: 786
  year: 2007
  end-page: 790
  publication-title: J. Appl. Crystallogr.
– volume: 6
  start-page: 1177
  year: 2019
  end-page: 1183
  publication-title: Inorg. Chem. Front.
– volume: 46
  start-page: 2725
  year: 2007
  end-page: 2734
  publication-title: Inorg. Chem.
– volume: 42
  start-page: 339
  year: 2009
  end-page: 341
  publication-title: J. Appl. Crystallogr.
– volume: 141
  start-page: 5014
  year: 2019
  end-page: 5020
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 4054
  year: 1997
  end-page: 4059
  publication-title: Langmuir
– volume: 7
  start-page: 13585
  year: 2019
  end-page: 13590
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 933
  year: 2021
  end-page: 939
  publication-title: Nat. Chem.
– volume: 37
  start-page: 1248
  year: 2011
  end-page: 1257
  publication-title: Mol. Simul.
– volume: 36
  start-page: 7
  year: 2003
  end-page: 13
  publication-title: J. Appl. Crystallogr.
– volume: 142
  start-page: 9258
  year: 2020
  end-page: 9266
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 5359
  year: 2020
  end-page: 5406
  publication-title: Chem. Soc. Rev.
– volume: 81
  start-page: 850
  year: 2016
  end-page: 856
  publication-title: ChemPlusChem
– volume: 59
  start-page: 13019
  year: 2020
  end-page: 13023
  publication-title: Inorg. Chem.
– volume: 116
  start-page: 9575
  year: 2012
  end-page: 9581
  publication-title: J. Phys. Chem. C
– volume: 31
  start-page: 425
  year: 2006
  end-page: 451
  publication-title: Energy
– volume: 11
  start-page: 121
  year: 1965
  end-page: 127
  publication-title: AIChE J.
– volume: 1
  year: 2019
  publication-title: EnergyChem
– volume: 140
  start-page: 12940
  year: 2018
  end-page: 12946
  publication-title: J. Am. Chem. Soc.
– volume: 148
  start-page: 275
  year: 2016
  end-page: 281
  publication-title: Chem. Eng. Sci.
– volume: 48
  start-page: 4466
  year: 2009
  end-page: 4473
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 1193
  year: 2000
  publication-title: J. Appl. Crystallogr.
– volume: 138
  start-page: 5678
  year: 2016
  end-page: 5684
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 452
  year: 2014
  end-page: 475
  publication-title: Sep. Purif. Technol.
– volume: 85
  start-page: 538
  year: 2020
  end-page: 547
  publication-title: ChemPlusChem
– volume: 8
  start-page: 3613
  year: 2020
  end-page: 3620
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 10423
  year: 2021
  end-page: 10435
  publication-title: Dalton Trans.
– volume: 64
  start-page: 112
  year: 2008
  end-page: 122
  publication-title: Acta Crystallogr. Sect. A.
– volume: 17
  start-page: 1128
  year: 2018
  end-page: 1133
  publication-title: Nat. Mater.
– volume: 142
  start-page: 2222
  year: 2020
  end-page: 2227
  publication-title: J. Am. Chem. Soc.
– volume: 362
  start-page: 443
  year: 2018
  end-page: 446
  publication-title: Science
– volume: 63
  start-page: 4171
  year: 2008
  end-page: 4175
  publication-title: Chem. Eng. Sci.
– volume: 228
  start-page: 1158
  year: 2013
  end-page: 1167
  publication-title: Chem. Eng. J.
– volume: 175
  start-page: 110
  year: 2018
  end-page: 117
  publication-title: Chem. Eng. Sci.
– volume: 33
  start-page: 6193
  year: 2021
  end-page: 6199
  publication-title: Chem. Mater.
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 10419
  year: 2020
  end-page: 10441
  publication-title: Chem. Commun.
– volume: 12
  start-page: 6105
  year: 2020
  end-page: 6111
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 2148
  year: 2009
  end-page: 2152
  publication-title: Langmuir
– volume: 60
  start-page: 27184
  year: 2021
  end-page: 27188
  publication-title: Angew. Chem. Int. Ed.
– volume: 121
  start-page: 3126
  year: 2017
  end-page: 3132
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 1243
  year: 2021
  end-page: 1252
  publication-title: Inorg. Chem. Front.
– volume: 60
  start-page: 10304
  year: 2021
  end-page: 10310
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 8697
  year: 2015
  publication-title: Nat. Commun.
– volume: 141
  start-page: 20390
  year: 2019
  end-page: 20396
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 4932
  year: 2021
  end-page: 4935
  publication-title: Dalton Trans
– volume: 60
  start-page: 9680
  year: 2021
  end-page: 9685
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 7
  year: 2019
  publication-title: Adv. Sci.
– volume: 132
  start-page: 17704
  year: 2010
  end-page: 17706
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 18313
  year: 2017
  end-page: 18321
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 337
  year: 2020
  end-page: 363
  publication-title: B. Chem.
– volume: 45
  start-page: 8045
  year: 2021
  end-page: 8053
  publication-title: New J. Chem.
– volume: 38
  start-page: 1213
  year: 2009
  end-page: 1214
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_9_47_1
  doi: 10.1107/S0021889808042726
– ident: e_1_2_9_55_1
  doi: 10.1021/jp300961j
– ident: e_1_2_9_45_1
  doi: 10.1021/jacs.9b10923
– ident: e_1_2_9_34_1
  doi: 10.1016/j.ces.2016.04.016
– ident: e_1_2_9_52_1
  doi: 10.1021/la961040c
– ident: e_1_2_9_23_1
  doi: 10.1016/j.enchem.2019.100006
– ident: e_1_2_9_1_1
  doi: 10.1016/j.cej.2013.05.048
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ces.2008.05.038
– ident: e_1_2_9_22_1
  doi: 10.1021/la803042z
– ident: e_1_2_9_26_1
  doi: 10.1038/s41557-021-00740-z
– ident: e_1_2_9_53_1
  doi: 10.1002/aic.690110125
– ident: e_1_2_9_35_1
  doi: 10.1002/adma.202002603
– ident: e_1_2_9_28_1
  doi: 10.1021/jacs.9b12924
– ident: e_1_2_9_16_1
  doi: 10.1021/jacs.6b02030
– ident: e_1_2_9_19_1
  doi: 10.1002/advs.201901918
– ident: e_1_2_9_41_1
  doi: 10.1021/jacs.8b07563
– ident: e_1_2_9_54_1
  doi: 10.1021/ie8008814
– ident: e_1_2_9_36_1
  doi: 10.1039/D1NJ00414J
– ident: e_1_2_9_48_1
  doi: 10.1107/S0021889807029238
– ident: e_1_2_9_18_1
  doi: 10.1039/C9QI00195F
– ident: e_1_2_9_5_1
  doi: 10.1016/j.seppur.2014.06.060
– ident: e_1_2_9_44_1
  doi: 10.1021/acsami.9b22410
– ident: e_1_2_9_27_1
  doi: 10.1038/ncomms9697
– ident: e_1_2_9_4_1
  doi: 10.1039/b903811f
– ident: e_1_2_9_46_1
  doi: 10.1021/acs.inorgchem.0c02229
– ident: e_1_2_9_24_1
  doi: 10.1021/jacs.7b10110
– ident: e_1_2_9_11_1
  doi: 10.1039/D0CC04645K
– ident: e_1_2_9_2_1
  doi: 10.1016/j.energy.2005.04.001
– ident: e_1_2_9_50_1
  doi: 10.1080/08927022.2011.592832
– ident: e_1_2_9_13_1
  doi: 10.1039/C9CS00756C
– ident: e_1_2_9_42_1
  doi: 10.1021/ja1089765
– ident: e_1_2_9_6_1
  doi: 10.1039/D0QI01138J
– ident: e_1_2_9_7_1
  doi: 10.1002/cplu.202000072
– ident: e_1_2_9_8_1
  doi: 10.1002/anie.202100342
– ident: e_1_2_9_38_1
  doi: 10.1039/C9TA02822F
– ident: e_1_2_9_43_1
  doi: 10.1016/j.ces.2017.09.032
– ident: e_1_2_9_30_1
  doi: 10.1021/jacs.9b00913
– ident: e_1_2_9_32_1
  doi: 10.1039/b802426j
– ident: e_1_2_9_15_1
  doi: 10.1021/jacs.0c00612
– ident: e_1_2_9_37_1
  doi: 10.1039/C9TA12671F
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.chemmater.1c01892
– ident: e_1_2_9_17_1
  doi: 10.1002/anie.202100114
– ident: e_1_2_9_25_1
  doi: 10.1038/s41563-018-0206-2
– ident: e_1_2_9_40_1
  doi: 10.1107/S0021889800007202
– volume: 6
  start-page: 337
  year: 2020
  ident: e_1_2_9_12_1
  publication-title: B. Chem.
  contributor:
    fullname: Lin R.
– ident: e_1_2_9_14_1
  doi: 10.1002/cplu.201600156
– ident: e_1_2_9_29_1
  doi: 10.1039/D1DT01477C
– ident: e_1_2_9_51_1
  doi: 10.1107/S0021889802022112
– ident: e_1_2_9_21_1
  doi: 10.1039/D1DT00413A
– ident: e_1_2_9_39_1
  doi: 10.1021/ic0624773
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.jpcc.6b11808
– ident: e_1_2_9_10_1
  doi: 10.1002/anie.202109338
– ident: e_1_2_9_49_1
  doi: 10.1107/S0108767307043930
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.201705189
– ident: e_1_2_9_31_1
  doi: 10.1126/science.aat0586
SSID ssj0000605273
Score 2.3515904
Snippet The separation of ethane and ethylene is an important segment in the purification of chemical raw materials in industrial production. However, due to their...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202100482
SubjectTerms ethane-selective MOF
ethane/ethylene separation
gas adsorption
metal-organic frameworks
nonpolar channels
Title A Microporous Metal‐Organic Framework with Channels Constructed from Nonpolar Aromatic Rings for the Selective Separation of Ethane/Ethylene Mixtures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcplu.202100482
https://www.ncbi.nlm.nih.gov/pubmed/35014214
https://www.proquest.com/docview/2618905721
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8H-ElIyExRU3sJE7GqrTqQKuKUoktchx7QkmlqBJs_AQ2_h-_hDunCaoYkGBKMsRxfLbvuzvfd4TcBF4eZRyPVaiQuwGSDUnGM1ckMSgXmYe-xOTk0UxMnuK7AdLktFn8NT9E63DDlWH3a1zgMqu636ShavG8BPuOIeVZjJswmAo2h4NPWyeLB2Cd2SgzLEzmAhqJGuJGj3XXW1hXTD_Q5jp4tdpnuPv_fu-RnRXypL16quyTDV0ckK1-U_DtkHz06BiP5wEiL5cVHWvA5Z9v73W2pqLD5hgXRd8txbQE6EpFseSnJaHVOcVkFTopiwUazPCp0hLC0gd0x1OAxxTgJp3Z0juwy8JdzTxeFrQ0dIBefN2FyyuoQg2decHwRnVE5sPBY3_kruo2uIoLzlwWCcmFp0HtJZ4RXDEhta9CFisVZjoXxohQaUB6zMTaJJ4GoJJnTMZM-1hL65h0irLQp4TGidE6BlihjAkylSWRlFHIRZJHSHwvHHLbCC1d1PQcaU3EzFIc6LQdaIdcNzJNYVwxLAL_BMOZgg0J_QzBFHbISS3sti0bdmV-4BBmZfrLR9L-9H7ePp395aVzss0ww8Iec7sgHRCgviSbVb68snP7C8Yk-sU
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGGDh_ShPIyExRU3tJE7GqrQqoq0qChJblDj2hJJKVSXY-Als_D9-CXcOCaoYkBBTkiGO47N9n-_xHcCl52ZBKiisQvnC8YhsKOEidWQUonJJMr-VUHJyfyJHj-F1l2hy2lUuTMkPURvcaGXY_ZoWOBmkm9-soWr6NMcDHifOsxB34VUvwNlIWRxiXJtZXITr3PqZcWlyB_FIUFE3ury52MSiavqBNxfhq9U_vc1_6PkWbHyBT9YuZ8s2LOl8B9Y6Vc23XXhvsyFF6CEoL-YzNtQIzT9e38qETcV6VSQXI_Mto8wE7MuMUdVPy0OrM0b5KmxU5FM6M-OnCssJy-7IIs8QITNEnGxiq-_gRot3Jfl4kbPCsC4Z8nUTLy-oDTV25pk8HLM9eOh17zt956t0g6OEFNzhgUyEdDVqvsg1UiguE91SPg-V8lOdSWOkrzSCPW5CbSJXI1bJUp6EXLeonNY-rORFrg-BhZHROkRkoYzxUpVGQZIEvpBRFhD3vWzAVSW1eFoydMQlFzOPaaDjeqAbcFEJNcZxJc8I_hMOZ4zHSOynj6fhBhyU0q7bsp5X3vIawK1Qf_lI3BkPHuqno7-8dA5r_fvhIB7cjG6PYZ1TwoWNejuBFRSmPoXlWTY_sxP9E5vr_u0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60gnrx_ajPFQRPoelukk2OUlsUtRRrwVtINrsnSQqloDd_gjf_n7_EmU0TKR4EPSU5ZLOZ2d35dnbmG4Bzz82CVFBYhfKF4xHZUMJF6sgoROOSZH47oeTk66HsP4VXXaLJqbP4S36I2uFGM8Ou1zTBx5lpfZOGqvHzFPd3nCjPQlyElzzE4sSeL8Sg9rK4iNa5PWbGmckdhCNBxdzo8tZ8E_OW6QfcnEev1vz01v_f8Q1Ym0FPdlmOlU1Y0PkWrHSqim_b8HHJ7ik-DyF5MZ2we43A_PPtvUzXVKxXxXExct4yykvArkwY1fy0LLQ6Y5StwvpFPqYdM36qsIyw7IH88QzxMUO8yYa29g4us3hXUo8XOSsM65IbX7fw8oq2UGNnXuh8Y7IDo173sXPtzAo3OEpIwR0eyERIV6Pdi1wjheIy0W3l81ApP9WZNEb6SiPU4ybUJnI1IpUs5UnIdZuKae1CIy9yvQ8sjIzWIeIKZYyXqjQKkiTwhYyygJjvZRMuKqXF45KfIy6ZmHlMgo5rQTfhrNJpjHKlcxH8JxRnjJtI7KePe-Em7JXKrtuy56687TWBW53-8pG4M7gb1U8Hf3npFJYHV7347qZ_ewirnLItbMjbETRQl_oYFifZ9MQO8y-DC_2T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Microporous+Metal%E2%80%90Organic+Framework+with+Channels+Constructed+from+Nonpolar+Aromatic+Rings+for+the+Selective+Separation+of+Ethane%2FEthylene+Mixtures&rft.jtitle=ChemPlusChem+%28Weinheim%2C+Germany%29&rft.au=Liu%2C+Lizhen&rft.au=Bo%2C+Yiyang&rft.au=Zhuang%2C+Weitang&rft.au=Xie%2C+Zhixuan&rft.date=2022-03-01&rft.issn=2192-6506&rft.eissn=2192-6506&rft.volume=87&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcplu.202100482&rft.externalDBID=10.1002%252Fcplu.202100482&rft.externalDocID=CPLU202100482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6506&client=summon