PS-VTS: particle swarm with visit table strategy for automated emotion recognition with EEG signals
Recognizing emotions accurately in real life is crucial in human–computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively employed to identify emotions. The researchers have used several EEG-based emotion identification datasets to validate their proposed models....
Saved in:
Published in: | Health information science and systems Vol. 11; no. 1; p. 22 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
04-05-2023
BioMed Central Ltd Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Recognizing emotions accurately in real life is crucial in human–computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively employed to identify emotions. The researchers have used several EEG-based emotion identification datasets to validate their proposed models. In this paper, we have employed a novel metaheuristic optimization approach for accurate emotion classification by applying it to select both channel and rhythm of EEG data. In this work, we have proposed the particle swarm with visit table strategy (PS-VTS) metaheuristic technique to improve the effectiveness of EEG-based human emotion identification. First, the EEG signals are denoised using a low pass filter, and then rhythm extraction is done using discrete wavelet transform (DWT). The continuous wavelet transform (CWT) approach transforms each rhythm signal into a rhythm image. The pre-trained MobilNetv2 model has been pre-trained for deep feature extraction, and a support vector machine (SVM) is used to classify the emotions. Two models are developed for optimal channels and rhythm sets. In Model 1, optimal channels are selected separately for each rhythm, and global optima are determined in the optimization process according to the best channel sets of the rhythms. The best rhythms are first determined for each channel, and then the optimal channel-rhythm set is selected in Model 2. Our proposed model obtained an accuracy of 99.2871% and 97.8571% for the classification of HA (high arousal)–LA (low arousal) and HV (high valence)–LV (low valence), respectively with the DEAP dataset. Our generated model obtained the highest classification accuracy compared to the previously reported methods. |
---|---|
AbstractList | Recognizing emotions accurately in real life is crucial in human-computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively employed to identify emotions. The researchers have used several EEG-based emotion identification datasets to validate their proposed models. In this paper, we have employed a novel metaheuristic optimization approach for accurate emotion classification by applying it to select both channel and rhythm of EEG data. In this work, we have proposed the particle swarm with visit table strategy (PS-VTS) metaheuristic technique to improve the effectiveness of EEG-based human emotion identification. First, the EEG signals are denoised using a low pass filter, and then rhythm extraction is done using discrete wavelet transform (DWT). The continuous wavelet transform (CWT) approach transforms each rhythm signal into a rhythm image. The pre-trained MobilNetv2 model has been pre-trained for deep feature extraction, and a support vector machine (SVM) is used to classify the emotions. Two models are developed for optimal channels and rhythm sets. In Model 1, optimal channels are selected separately for each rhythm, and global optima are determined in the optimization process according to the best channel sets of the rhythms. The best rhythms are first determined for each channel, and then the optimal channel-rhythm set is selected in Model 2. Our proposed model obtained an accuracy of 99.2871% and 97.8571% for the classification of HA (high arousal)-LA (low arousal) and HV (high valence)-LV (low valence), respectively with the DEAP dataset. Our generated model obtained the highest classification accuracy compared to the previously reported methods. Recognizing emotions accurately in real life is crucial in human-computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively employed to identify emotions. The researchers have used several EEG-based emotion identification datasets to validate their proposed models. In this paper, we have employed a novel metaheuristic optimization approach for accurate emotion classification by applying it to select both channel and rhythm of EEG data. In this work, we have proposed the particle swarm with visit table strategy (PS-VTS) metaheuristic technique to improve the effectiveness of EEG-based human emotion identification. First, the EEG signals are denoised using a low pass filter, and then rhythm extraction is done using discrete wavelet transform (DWT). The continuous wavelet transform (CWT) approach transforms each rhythm signal into a rhythm image. The pre-trained MobilNetv2 model has been pre-trained for deep feature extraction, and a support vector machine (SVM) is used to classify the emotions. Two models are developed for optimal channels and rhythm sets. In Model 1, optimal channels are selected separately for each rhythm, and global optima are determined in the optimization process according to the best channel sets of the rhythms. The best rhythms are first determined for each channel, and then the optimal channel-rhythm set is selected in Model 2. Our proposed model obtained an accuracy of 99.2871% and 97.8571% for the classification of HA (high arousal)-LA (low arousal) and HV (high valence)-LV (low valence), respectively with the DEAP dataset. Our generated model obtained the highest classification accuracy compared to the previously reported methods. Keywords: EEG signals, Deep features, Metaheuristic optimization, Channel, Rhythm selections |
ArticleNumber | 22 |
Audience | Academic |
Author | Acharya, U. Rajendra Koca, Gonca Ozmen Olmez, Yagmur Sengur, Abdulkadir |
Author_xml | – sequence: 1 givenname: Yagmur surname: Olmez fullname: Olmez, Yagmur organization: Department of Mechatronics Engineering, University of Firat – sequence: 2 givenname: Gonca Ozmen surname: Koca fullname: Koca, Gonca Ozmen organization: Department of Mechatronics Engineering, University of Firat – sequence: 3 givenname: Abdulkadir orcidid: 0000-0003-1614-2639 surname: Sengur fullname: Sengur, Abdulkadir email: ksengur@gmail.com organization: Department of Electrical and Electronics Engineering, University of Firat – sequence: 4 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: School of Mathematics, Physics and Computing, University of Southern Queensland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37151916$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O3TAQha2KqlDgBbqoLHXTTah_4jjpDqFbQEJqJShby7EnqVES39oOCJ6-zr1Q2grVXng8853R2Oct2pn8BAi9o-SIEiI_RcqlEAVhvCCEsbJ4eIX2GCllwQShO3_Eu-gwxhuSV0MZF_QN2uWSCtrQag-Zb5fF9dXlZ7zWITkzAI53Ooz4zqUf-NZFl3DS7ZJOQSfo73HnA9Zz8mO-WgyjT85POIDx_eQ28Ua7Wp3i6PpJD_EAve7yAYeP5z76_mV1dXJWXHw9PT85vigMlywVIIRl0Nq6Y7rSjSgpF8CI6aisbF1ZoyWjXLfSSml0V9XQdjqXdGt1U0PD99HHbd918D9niEmNLhoYBj2Bn6NiNaWMVoKKjH74B73xc1iGzRRpOKtkI5-pXg-g3NT5_AlmaaqOZVnTsqnFQh29QOVtYXQmu9a5nP9LwLYCE3yMATq1Dm7U4V5RohZz1dZclc1VG3PVQxa9f5x4bkewvyVPVmaAb4GYS1MP4flJ_2n7C3mAsJ8 |
CitedBy_id | crossref_primary_10_1038_s41598_023_45543_z crossref_primary_10_1007_s13755_024_00271_0 crossref_primary_10_1016_j_bspc_2023_105875 crossref_primary_10_1016_j_chaos_2024_114869 |
Cites_doi | 10.1109/TIM.2020.3006611 10.1016/j.energy.2022.124848 10.1109/IJCNN.2018.8489331 10.1016/j.neucom.2015.09.085 10.1109/ACCESS.2022.3181887 10.1016/j.cmpb.2022.106646 10.1023/A:1009715923555 10.1186/s40708-020-00111-3 10.1109/MED.2007.4433821 10.1007/s13042-021-01414-5 10.1016/j.bspc.2022.103660 10.1007/s11042-022-12327-y 10.1016/j.artmed.2021.102210 10.1016/j.cma.2021.114194 10.1017/CBO9780511527883.005 10.3389/fnbot.2019.00037 10.1016/j.compbiomed.2021.104428 10.1109/JSEN.2020.3020915 10.1049/el.2020.2380 10.1109/ACCESS.2021.3135805 10.1016/j.asoc.2021.108176 10.1016/j.compbiomed.2021.105048 10.1109/JBHI.2020.2995767 10.24018/ejece.2021.5.1.265 10.1109/JSEN.2021.3070373 10.1007/BF00994018 10.1016/j.compbiomed.2022.105303 10.3390/s22062092 10.1155/2017/8317357 10.1007/s13755-018-0048-y 10.1049/el.2020.2685 10.1016/j.compbiomed.2021.104867 10.1016/j.cmpb.2022.107161 10.1016/j.compbiomed.2022.105519 10.1016/j.smhl.2021.100261 10.1016/j.compbiomed.2021.105080 10.1016/j.bspc.2021.102755 10.1016/j.bspc.2021.102991 10.1016/j.neucom.2017.03.027 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 BioMed Central Ltd. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 BioMed Central Ltd. |
DBID | NPM AAYXX CITATION JQ2 K9. 7X8 |
DOI | 10.1007/s13755-023-00224-z |
DatabaseName | PubMed CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 2047-2501 |
EndPage | 22 |
ExternalDocumentID | A748149857 10_1007_s13755_023_00224_z 37151916 |
Genre | Journal Article |
GroupedDBID | -A0 -EM 406 5VS 7X7 AAFGU AAHNG AANZL AATNV AATVU AAUYE AAYFA ABDZT ABECU ABFGW ABFTV ABJOX ABKAS ABKCH ABMQK ABSXP ABTEG ABTKH ABTMW ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACMLO ACOKC ACTTH ACVWB ACWMK ADBBV ADHHG ADINQ ADKNI ADMDM ADOXG ADRAZ ADURQ ADYFF ADZKW AEFTE AEJRE AESKC AESTI AEVLU AEVTX AEXYK AFNRJ AFQWF AGDGC AGGBP AGJBK AGMZJ AHBYD AHYZX AIAKS AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AOIJS ARAPS ASPBG AXYYD BAWUL BENPR BFQNJ C24 DIK DNIVK DPUIP EBLON EBS EIOEI FERAY FNLPD GGCAI GJIRD GROUPED_DOAJ HCIFZ IAO IHR IKXTQ INH INR ITC IWAJR J-C JZLTJ KOV KQ8 LLZTM M~E NPVJJ NQJWS O9J OK1 PT4 RBZ RPM RSV SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW XH6 Z83 ZMTXR 0R~ 3V. 8FE 8FG 8FI 8FJ AACDK AAJBT AASML ABAKF ABUWG ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFKRA AGQEE AGRTI AHSBF AIGIU AZQEC BGLVJ BGNMA BPHCQ BVXVI CCPQU DWQXO EJD FIGPU FINBP FSGXE FYUFA GNUQQ H13 HMCUK HYE K6V K7- M0N M48 M4Y NPM NU0 P62 PQQKQ PROAC ROL SJYHP UKHRP AAYXX CITATION JQ2 K9. 7X8 |
ID | FETCH-LOGICAL-c372t-e55d2ebd8f2a6a954135e20cf176d86dca7213ab7d77caf68ebfa76dabda98e93 |
ISSN | 2047-2501 |
IngestDate | Sat Oct 26 00:06:43 EDT 2024 Mon Nov 18 02:57:44 EST 2024 Tue Nov 19 21:25:19 EST 2024 Tue Nov 12 22:41:15 EST 2024 Thu Sep 12 19:45:40 EDT 2024 Sat Nov 02 12:15:23 EDT 2024 Sat Dec 16 10:33:26 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rhythm selections Metaheuristic optimization EEG signals Deep features Channel |
Language | English |
License | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c372t-e55d2ebd8f2a6a954135e20cf176d86dca7213ab7d77caf68ebfa76dabda98e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1614-2639 |
PMID | 37151916 |
PQID | 2809326797 |
PQPubID | 2040228 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2811216515 proquest_journals_2809326797 gale_infotracmisc_A748149857 gale_infotracacademiconefile_A748149857 crossref_primary_10_1007_s13755_023_00224_z pubmed_primary_37151916 springer_journals_10_1007_s13755_023_00224_z |
PublicationCentury | 2000 |
PublicationDate | 2023-05-04 |
PublicationDateYYYYMMDD | 2023-05-04 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: London |
PublicationTitle | Health information science and systems |
PublicationTitleAbbrev | Health Inf Sci Syst |
PublicationTitleAlternate | Health Inf Sci Syst |
PublicationYear | 2023 |
Publisher | Springer International Publishing BioMed Central Ltd Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: BioMed Central Ltd – name: Springer Nature B.V |
References | XingXSAE+ LSTM: a new framework for emotion recognition from multi-channel EEGFront Neurorobot2019133710.3389/fnbot.2019.00037 GaoQYangYKangQEEG-based emotion recognition with feature fusion networksInt J Mach Learn Cybern20221342142910.1007/s13042-021-01414-5 BajajVTaranSSengurAEmotion classification using flexible analytic wavelet transform for electroencephalogram signalsHealth Inf Sci Syst2018611710.1007/s13755-018-0048-y ChengJChenMLiCLiuYSongRLiuAChenXEmotion recognition from multi-channel eeg via deep forestIEEE J Biomed Health Inform202025245346410.1109/JBHI.2020.2995767 IsmaelAMAlçinÖFAbdallaKHŞengürATwo-stepped majority voting for efficient EEG-based emotion classificationBrain Inform20207111210.1186/s40708-020-00111-3 MaheshwariDGhoshSKTripathyRKSharmaMAcharyaURAutomated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signalsComput Biol Med202113410442810.1016/j.compbiomed.2021.104428 BurgesCJA tutorial on support vector machines for pattern recognitionData Min Knowl Disc19982212116710.1023/A:1009715923555 Polikar R (1996) The wavelet tutorial part I. Fundamental concepts and an overview of the wavelet theory. VapnikVGuyonIHastieTSupport vector machinesMach Learn199520327329710.1007/BF00994018 SarmaPBarmaSEmotion recognition by distinguishing appropriate EEG segments based on random matrix theoryBiomed Signal Process Control20217010299110.1016/j.bspc.2021.102991 Loh, H. W., Ooi, C. P., Seoni, S., Barua, P. D., Molinari, F., & Acharya, U. R. (2022). Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in Biomedicine, 107161. TuncerTDoganSBayginMAcharyaURTetromino pattern based accurate EEG emotion classification modelArtif Intell Med202212310221010.1016/j.artmed.2021.102210 ZhaoWWangLMirjaliliSArtificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applicationsComput Methods Appl Mech Eng2022388114194433775310.1016/j.cma.2021.114194 KhareSKBajajVAn evolutionary optimized variational mode decomposition for emotion recognitionIEEE Sens J20202122035204210.1109/JSEN.2020.3020915 ZhuangNZengYTongLZhangCZhangHYanBEmotion recognition from EEG signals using multidimensional information in EMD domainBioMed Res Int201710.1155/2017/8317357 LiJWuXZhangYYangHWuXDRS-Net: A spatial–temporal affective computing model based on multichannel EEG dataBiomed Signal Process Control20227610366010.1016/j.bspc.2022.103660 DemirFSobahiNSiulySSengurAExploring deep learning features for automatic classification of human emotion using EEG rhythmsIEEE Sens J20212113149231493010.1109/JSEN.2021.3070373 MaithriMRaghavendraUGudigarASamanthJBaruaPDMurugappanMAcharyaURAutomated emotion recognition: Current trends and future perspectivesComput Methods Programs Biomed202221510664610.1016/j.cmpb.2022.106646 AriBSiddiqueKAlçinÖFAslanMŞengürAMehmoodRMWavelet ELM-AE based data augmentation and deep learning for efficient emotion recognition using EEG recordingsIEEE Access202210721717218110.1109/ACCESS.2022.3181887 AlyasseriZAAAlomariOAPapaJPAl-BetarMAAbdulkareemKHMohammedMAKhuwuthyakornPEEG channel selection based user identification via improved flower pollination algorithmSensors2022226209210.3390/s22062092 ÖlmezYSengurAOzmen KocaGMultilevel thresholding with metaheuristic methodsJ Fac Eng Architect Gazi Univ2020361213224 GuptaRFalkTHRelevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterizationNeurocomputing201617487588410.1016/j.neucom.2015.09.085 JoshiVMGhongadeRBEEG based emotion detection using fourth order spectral moment and deep learningBiomed Signal Process Control20216810275510.1016/j.bspc.2021.102755 KhareSKBajajVSinhaGRAdaptive tunable Q wavelet transform-based emotion identificationIEEE Trans Instrum Meas202069129609961710.1109/TIM.2020.3006611 Arnau-GonzálezPArevalillo-HerráezMRamzanNFusing highly dimensional energy and connectivity features to identify affective states from EEG signalsNeurocomputing2017244818910.1016/j.neucom.2017.03.027 HeZZhongYPanJAn adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognitionComput Biol Med202214110504810.1016/j.compbiomed.2021.105048 SengürDSiulySEfficient approach for EEG-based emotion recognitionElectron Lett202056251361136410.1049/el.2020.2685 AlyasseriZAAAlomariOAMakhadmehSNMirjaliliSAl-BetarMAAbdullahSAbasiAKEEG channel selection for person identification using binary grey wolf optimizerIEEE Access202210105001051310.1109/ACCESS.2021.3135805 MandalSKNaskarMMeta heuristic assisted automated channel selection model for motor imagery brain computer interfaceMultimed Tools Appl20228112171111713010.1007/s11042-022-12327-y HussienHREl-KenawyESMEl-DesoukyAIEEG channel selection using a modified grey wolf optimizerEur J Electr Eng Comput Sci202151172410.24018/ejece.2021.5.1.265 Martínez-CagigalVSantamaría-VázquezEHorneroRBrain–computer interface channel selection optimization using meta-heuristics and evolutionary algorithmsAppl Soft Comput202211510.1016/j.asoc.2021.108176 YanZZhouJWongWFEEG classification with spiking neural network: Smaller, better, more energy efficientSmart Health20222410026110.1016/j.smhl.2021.100261 LiCWangBZhangSLiuYSongRChengJChenXEmotion recognition from EEG based on multi-task learning with capsule network and attention mechanismComput Biol Med202214310530310.1016/j.compbiomed.2022.105303 DoganAAkayMBaruaPDBayginMDoganSTuncerTAcharyaURPrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognitionComput Biol Med202113810486710.1016/j.compbiomed.2021.104867 LiJHuaHXuZShuLXuXKuangFWuSCross-subject EEG emotion recognition combined with connectivity features and meta-transfer learningComput Biol Med202214510551910.1016/j.compbiomed.2022.105519 XingZZhuJZhangZQinYJiaLEnergy consumption optimization of tramway operation based on improved PSO algorithmEnergy202225812484810.1016/j.energy.2022.124848 KhareSKNishadAUpadhyayABajajVClassification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural networkElectron Lett202056251359136110.1049/el.2020.2380 LiRRenCZhangXHuBA novel ensemble learning method using multiple objective particle swarm optimization for subject-independent EEG-based emotion recognitionComput Biol Med202214010508010.1016/j.compbiomed.2021.105080 Khanesar MA, Teshnehlab M, Shoorehdeli MA (2007) A novel binary particle swarm optimization. In: 2007 Mediterranean Conference on Control & Automation, pp 1–6. https://doi.org/10.1109/MED.2007.4433821. Scherer KR. Emotions as episodes of subsystem synchronization driven by nonlinear appraisal processes. emotion, development, and self-organization: dynamic systems approaches to emotional development, 7099; 2000 XingXLiZXuTShuLHuBXuXSAE+ LSTM: A New framework for emotion recognition from multi-channel EEGFront Neurorobot2019133710.3389/fnbot.2019.00037 Yang Y, Wu Q, Qiu M, Wang Y, Chen X (2018) Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network. In: 2018 International Joint Conference on Neural Networks (IJCNN) (pp 1–7). IEEE C Li (224_CR40) 2022; 143 224_CR1 X Xing (224_CR33) 2019; 13 SK Khare (224_CR7) 2020; 56 ZAA Alyasseri (224_CR20) 2022; 10 A Dogan (224_CR3) 2021; 138 B Ari (224_CR4) 2022; 10 D Maheshwari (224_CR2) 2021; 134 SK Khare (224_CR6) 2020; 21 P Arnau-González (224_CR31) 2017; 244 Y Ölmez (224_CR24) 2020; 36 Q Gao (224_CR14) 2022; 13 Z Xing (224_CR25) 2022; 258 224_CR42 224_CR22 D Sengür (224_CR16) 2020; 56 224_CR27 P Sarma (224_CR35) 2021; 70 VM Joshi (224_CR13) 2021; 68 W Zhao (224_CR26) 2022; 388 CJ Burges (224_CR28) 1998; 2 X Xing (224_CR15) 2019; 13 R Gupta (224_CR29) 2016; 174 V Martínez-Cagigal (224_CR21) 2022; 115 N Zhuang (224_CR30) 2017 AM Ismael (224_CR12) 2020; 7 J Li (224_CR41) 2022; 76 Z He (224_CR37) 2022; 141 ZAA Alyasseri (224_CR18) 2022; 22 J Cheng (224_CR34) 2020; 25 J Li (224_CR38) 2022; 145 V Bajaj (224_CR9) 2018; 6 SK Khare (224_CR5) 2020; 69 T Tuncer (224_CR11) 2022; 123 224_CR32 R Li (224_CR36) 2022; 140 SK Mandal (224_CR17) 2022; 81 V Vapnik (224_CR23) 1995; 20 F Demir (224_CR10) 2021; 21 Z Yan (224_CR39) 2022; 24 M Maithri (224_CR8) 2022; 215 HR Hussien (224_CR19) 2021; 5 |
References_xml | – volume: 69 start-page: 9609 issue: 12 year: 2020 ident: 224_CR5 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2020.3006611 contributor: fullname: SK Khare – volume: 258 start-page: 124848 year: 2022 ident: 224_CR25 publication-title: Energy doi: 10.1016/j.energy.2022.124848 contributor: fullname: Z Xing – ident: 224_CR32 doi: 10.1109/IJCNN.2018.8489331 – volume: 174 start-page: 875 year: 2016 ident: 224_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.085 contributor: fullname: R Gupta – volume: 10 start-page: 72171 year: 2022 ident: 224_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3181887 contributor: fullname: B Ari – volume: 215 start-page: 106646 year: 2022 ident: 224_CR8 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106646 contributor: fullname: M Maithri – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 224_CR28 publication-title: Data Min Knowl Disc doi: 10.1023/A:1009715923555 contributor: fullname: CJ Burges – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 224_CR12 publication-title: Brain Inform doi: 10.1186/s40708-020-00111-3 contributor: fullname: AM Ismael – volume: 36 start-page: 213 issue: 1 year: 2020 ident: 224_CR24 publication-title: J Fac Eng Architect Gazi Univ contributor: fullname: Y Ölmez – ident: 224_CR27 doi: 10.1109/MED.2007.4433821 – volume: 13 start-page: 421 year: 2022 ident: 224_CR14 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-021-01414-5 contributor: fullname: Q Gao – volume: 76 start-page: 103660 year: 2022 ident: 224_CR41 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103660 contributor: fullname: J Li – volume: 81 start-page: 17111 issue: 12 year: 2022 ident: 224_CR17 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12327-y contributor: fullname: SK Mandal – ident: 224_CR22 – volume: 123 start-page: 102210 year: 2022 ident: 224_CR11 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2021.102210 contributor: fullname: T Tuncer – volume: 388 start-page: 114194 year: 2022 ident: 224_CR26 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.114194 contributor: fullname: W Zhao – ident: 224_CR1 doi: 10.1017/CBO9780511527883.005 – volume: 13 start-page: 37 year: 2019 ident: 224_CR15 publication-title: Front Neurorobot doi: 10.3389/fnbot.2019.00037 contributor: fullname: X Xing – volume: 134 start-page: 104428 year: 2021 ident: 224_CR2 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104428 contributor: fullname: D Maheshwari – volume: 21 start-page: 2035 issue: 2 year: 2020 ident: 224_CR6 publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3020915 contributor: fullname: SK Khare – volume: 56 start-page: 1359 issue: 25 year: 2020 ident: 224_CR7 publication-title: Electron Lett doi: 10.1049/el.2020.2380 contributor: fullname: SK Khare – volume: 10 start-page: 10500 year: 2022 ident: 224_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3135805 contributor: fullname: ZAA Alyasseri – volume: 115 year: 2022 ident: 224_CR21 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.108176 contributor: fullname: V Martínez-Cagigal – volume: 141 start-page: 105048 year: 2022 ident: 224_CR37 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105048 contributor: fullname: Z He – volume: 13 start-page: 37 year: 2019 ident: 224_CR33 publication-title: Front Neurorobot doi: 10.3389/fnbot.2019.00037 contributor: fullname: X Xing – volume: 25 start-page: 453 issue: 2 year: 2020 ident: 224_CR34 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2995767 contributor: fullname: J Cheng – volume: 5 start-page: 17 issue: 1 year: 2021 ident: 224_CR19 publication-title: Eur J Electr Eng Comput Sci doi: 10.24018/ejece.2021.5.1.265 contributor: fullname: HR Hussien – volume: 21 start-page: 14923 issue: 13 year: 2021 ident: 224_CR10 publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3070373 contributor: fullname: F Demir – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 224_CR23 publication-title: Mach Learn doi: 10.1007/BF00994018 contributor: fullname: V Vapnik – volume: 143 start-page: 105303 year: 2022 ident: 224_CR40 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105303 contributor: fullname: C Li – volume: 22 start-page: 2092 issue: 6 year: 2022 ident: 224_CR18 publication-title: Sensors doi: 10.3390/s22062092 contributor: fullname: ZAA Alyasseri – year: 2017 ident: 224_CR30 publication-title: BioMed Res Int doi: 10.1155/2017/8317357 contributor: fullname: N Zhuang – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 224_CR9 publication-title: Health Inf Sci Syst doi: 10.1007/s13755-018-0048-y contributor: fullname: V Bajaj – volume: 56 start-page: 1361 issue: 25 year: 2020 ident: 224_CR16 publication-title: Electron Lett doi: 10.1049/el.2020.2685 contributor: fullname: D Sengür – volume: 138 start-page: 104867 year: 2021 ident: 224_CR3 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104867 contributor: fullname: A Dogan – ident: 224_CR42 doi: 10.1016/j.cmpb.2022.107161 – volume: 145 start-page: 105519 year: 2022 ident: 224_CR38 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105519 contributor: fullname: J Li – volume: 24 start-page: 100261 year: 2022 ident: 224_CR39 publication-title: Smart Health doi: 10.1016/j.smhl.2021.100261 contributor: fullname: Z Yan – volume: 140 start-page: 105080 year: 2022 ident: 224_CR36 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105080 contributor: fullname: R Li – volume: 68 start-page: 102755 year: 2021 ident: 224_CR13 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102755 contributor: fullname: VM Joshi – volume: 70 start-page: 102991 year: 2021 ident: 224_CR35 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102991 contributor: fullname: P Sarma – volume: 244 start-page: 81 year: 2017 ident: 224_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.027 contributor: fullname: P Arnau-González |
SSID | ssj0000912351 |
Score | 2.3048196 |
Snippet | Recognizing emotions accurately in real life is crucial in human–computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively... Recognizing emotions accurately in real life is crucial in human-computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively... |
SourceID | proquest gale crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 22 |
SubjectTerms | Arousal Bioinformatics Channels Classification Computational Biology/Bioinformatics Computer Science Continuous wavelet transform Datasets Discrete Wavelet Transform Electroencephalography Emotion recognition Emotions Feature extraction Health Informatics Heuristic methods Human-computer interface Information Systems and Communication Service Low pass filters Model accuracy Optimization Rhythm Support vector machines Wavelet transforms |
Title | PS-VTS: particle swarm with visit table strategy for automated emotion recognition with EEG signals |
URI | https://link.springer.com/article/10.1007/s13755-023-00224-z https://www.ncbi.nlm.nih.gov/pubmed/37151916 https://www.proquest.com/docview/2809326797 https://search.proquest.com/docview/2811216515 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELa2RUK8cBQogYKMhMRDCEqcww5vFV0oqjjEbhE8RU7sVIJuUm02QuyvZ3zk2K0q0Qf2IVrFY-eYbz3j2fnGCL3IKeWCsdyjOZVeFJLCU3XRvNJPoUMaFGGo-M7HM_rpOzuaRtPJpNtlbzj3XzUN50DXijl7DW33g8IJ-A46hyNoHY7_pPcvM-_bfKYW-he21W1-8-XCRFwVlXzlrjRfqjGFaU3GJm9XNTiv4H5Ks7GP26cW1Ybp7U6n712V7sHPm7FLa4lMtgKrFu-4QjooPyqJroO5CxOz_sHPFm2fGXwCJlWH6Ouq4O7n9WJgqM1kddaaLbdz0Z7_4mCFe5gq0tgf3fP0tfuV_5SVWPJxJIOYvMHLkcytWOgQjjMmS8-NxBSYsHGQbiIPtgF7yT74li8d0lgR0-EWlA_jrQdr2OcoDvWclXAGwpkWztY76AaBaU0lkB59OOkjeuB5kTAOLDPL8DO3r7Ph_Wz7ACMnaOtfee3szO-i23aVgg8NgO6hiaz20J1uBxBsDcIeuvnRpmbcR4UB3hvcwQ5r2GEFHaxhhzXscAc7DHjBPeywhR0ewc70BdhhC7sH6PTddP722LM7eHhFSMnKk3EsiMwFKwlPeBqDxxRL4hdlQBPBElFwSoKQ51RQWvAyYTIvOTTxXPCUyTR8iHarupKPECYs4UEJn5TKqIz8XNKwJGWalkLkMISD3O7NZhemUEt2tQod9FK9_EyBA5664JaMAtdS9dCyQxqxIEpZTB10sCEJs2-x2dypL7OzQJMR5qtlEU2h-XnfrHqqjMZK1q2SgZVOkMBywkH7Ru39fYcU_HBYtznoVYeDYfCrH-rx9cSfoFvDr_AA7a6WrXyKdhrRPtPA_guKU9QL |
link.rule.ids | 315,782,786,27935,27936,48346,48349,49651,49654 |
linkProvider | Flying Publisher |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xTgJeGAwGgQFGQuIBLDV2Etu8VayjiG1CakHbk2XH9hvttKZC7K_nnDgtneAB8hTpfI4_7nJn-35ngNdWCOOktFRY4WnBWU1jXjQahgoZVF5zHvHOk6k4O5dH45gmp-ixMG20e38k2f6pN2A3LsqIJua0NTz0egd2Y7bzYgC7o_OLi6P13graQMbLPGFk_sy8ZYdu_o1_M0c3zkdbs3O8938Nvg_3kptJRp1cPIBbfr4Pe_0VDiRp9D7cPk1n6w-h_jKl32bT9-QySRNZ_jBX30ncqSURgt6QJuKsyLJLaPuToL9LzKpZoNPrHfHdhUBkHZKE7y3vePyRxDARFPRH8PV4PPswoekKBlpzwRrqy9Ixb50MzFRGlWjySs-GdchF5WTlaoMrSG6scELUJlTS22CQZKwzSnrFD2AwX8z9EyBMViYP-Cjhi1AMrRc8sKBUcM5iFRm87SdEX3aZNvQmp3IcSo1Dqduh1NcZvIlzpqMaYq9rk9AE-K2Y0EqPRCFx8SdLkcHhVklUn3qb3M-6Tuq71EwOo18rFJJfrcmRM4akzf1iFcugq5rHm-QzeNxJy7rdXKAjhY53Bu960dhU_vdOPf234i_hzmR2eqJPPp19fgZ3WStpKHDFIQyaq5V_DjtLt3qRtOMXlMULVg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xTZp4YTBgBAYYCYkHsNbYSezwVrF2m4BpUgvizXJi-420WlMh9tdzl6_SCR4QeYp0Pscfd7mzfb8zwOtCKeu0LrgqlOeJFCWnvGg8jHJkyONSSsI7n8_U5Td9OqE0OQOKv4l2748kW0wDZWmq6pOlCycb4JtUKSGLJW-MEL_ZgT3aFkMZ3xtfzM-mwz4L2kMh07jDy_yZecsm3f4z_2aabp2VNiZoevD_jb8P9zr3k41beXkAd3x1CAf91Q6s0_RD2P_cnbk_hPJqxr_OZ-_ZspMytvphr78z2sFlBE2vWU34K7ZqE93-ZOgHM7uuF-gMe8d8e1EQG0KV8L3hnUzOGIWPoAI8gi_TyfzDOe-uZuClVKLmPk2d8IXTQdjM5imawtSLURlilTmdudLiylLaQjmlShsy7YtgkWQLZ3Ptc_kYdqtF5Z8AEzqzccAnVz4JyajwSgYR8jw4V2AVEbztJ8cs2wwcZpNrmYbS4FCaZijNTQRvaP4MqSf2urQdygC_RYmuzFglGheFOlURHG-VRLUqt8m9BJhOrVdG6BH5uypH8quBTJwUqlb5xZrKoAsb0w3zERy1kjO0Wyp0sNAhj-BdLyabyv_eqaf_Vvwl7F-dTs2ni8uPz-CuaAQN5S05ht36eu2fw87KrV90ivILuAYT7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PS-VTS%3A+particle+swarm+with+visit+table+strategy+for+automated+emotion+recognition+with+EEG+signals&rft.jtitle=Health+information+science+and+systems&rft.au=Olmez%2C+Yagmur&rft.au=Koca%2C+Gonca+Ozmen&rft.au=Sengur%2C+Abdulkadir&rft.au=Acharya%2C+U.+Rajendra&rft.date=2023-05-04&rft.pub=Springer+International+Publishing&rft.eissn=2047-2501&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs13755-023-00224-z&rft.externalDocID=10_1007_s13755_023_00224_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-2501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-2501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-2501&client=summon |