PS-VTS: particle swarm with visit table strategy for automated emotion recognition with EEG signals

Recognizing emotions accurately in real life is crucial in human–computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively employed to identify emotions. The researchers have used several EEG-based emotion identification datasets to validate their proposed models....

Full description

Saved in:
Bibliographic Details
Published in:Health information science and systems Vol. 11; no. 1; p. 22
Main Authors: Olmez, Yagmur, Koca, Gonca Ozmen, Sengur, Abdulkadir, Acharya, U. Rajendra
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 04-05-2023
BioMed Central Ltd
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recognizing emotions accurately in real life is crucial in human–computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively employed to identify emotions. The researchers have used several EEG-based emotion identification datasets to validate their proposed models. In this paper, we have employed a novel metaheuristic optimization approach for accurate emotion classification by applying it to select both channel and rhythm of EEG data. In this work, we have proposed the particle swarm with visit table strategy (PS-VTS) metaheuristic technique to improve the effectiveness of EEG-based human emotion identification. First, the EEG signals are denoised using a low pass filter, and then rhythm extraction is done using discrete wavelet transform (DWT). The continuous wavelet transform (CWT) approach transforms each rhythm signal into a rhythm image. The pre-trained MobilNetv2 model has been pre-trained for deep feature extraction, and a support vector machine (SVM) is used to classify the emotions. Two models are developed for optimal channels and rhythm sets. In Model 1, optimal channels are selected separately for each rhythm, and global optima are determined in the optimization process according to the best channel sets of the rhythms. The best rhythms are first determined for each channel, and then the optimal channel-rhythm set is selected in Model 2. Our proposed model obtained an accuracy of 99.2871% and 97.8571% for the classification of HA (high arousal)–LA (low arousal) and HV (high valence)–LV (low valence), respectively with the DEAP dataset. Our generated model obtained the highest classification accuracy compared to the previously reported methods.
AbstractList Recognizing emotions accurately in real life is crucial in human-computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively employed to identify emotions. The researchers have used several EEG-based emotion identification datasets to validate their proposed models. In this paper, we have employed a novel metaheuristic optimization approach for accurate emotion classification by applying it to select both channel and rhythm of EEG data. In this work, we have proposed the particle swarm with visit table strategy (PS-VTS) metaheuristic technique to improve the effectiveness of EEG-based human emotion identification. First, the EEG signals are denoised using a low pass filter, and then rhythm extraction is done using discrete wavelet transform (DWT). The continuous wavelet transform (CWT) approach transforms each rhythm signal into a rhythm image. The pre-trained MobilNetv2 model has been pre-trained for deep feature extraction, and a support vector machine (SVM) is used to classify the emotions. Two models are developed for optimal channels and rhythm sets. In Model 1, optimal channels are selected separately for each rhythm, and global optima are determined in the optimization process according to the best channel sets of the rhythms. The best rhythms are first determined for each channel, and then the optimal channel-rhythm set is selected in Model 2. Our proposed model obtained an accuracy of 99.2871% and 97.8571% for the classification of HA (high arousal)-LA (low arousal) and HV (high valence)-LV (low valence), respectively with the DEAP dataset. Our generated model obtained the highest classification accuracy compared to the previously reported methods.
Recognizing emotions accurately in real life is crucial in human-computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively employed to identify emotions. The researchers have used several EEG-based emotion identification datasets to validate their proposed models. In this paper, we have employed a novel metaheuristic optimization approach for accurate emotion classification by applying it to select both channel and rhythm of EEG data. In this work, we have proposed the particle swarm with visit table strategy (PS-VTS) metaheuristic technique to improve the effectiveness of EEG-based human emotion identification. First, the EEG signals are denoised using a low pass filter, and then rhythm extraction is done using discrete wavelet transform (DWT). The continuous wavelet transform (CWT) approach transforms each rhythm signal into a rhythm image. The pre-trained MobilNetv2 model has been pre-trained for deep feature extraction, and a support vector machine (SVM) is used to classify the emotions. Two models are developed for optimal channels and rhythm sets. In Model 1, optimal channels are selected separately for each rhythm, and global optima are determined in the optimization process according to the best channel sets of the rhythms. The best rhythms are first determined for each channel, and then the optimal channel-rhythm set is selected in Model 2. Our proposed model obtained an accuracy of 99.2871% and 97.8571% for the classification of HA (high arousal)-LA (low arousal) and HV (high valence)-LV (low valence), respectively with the DEAP dataset. Our generated model obtained the highest classification accuracy compared to the previously reported methods. Keywords: EEG signals, Deep features, Metaheuristic optimization, Channel, Rhythm selections
ArticleNumber 22
Audience Academic
Author Acharya, U. Rajendra
Koca, Gonca Ozmen
Olmez, Yagmur
Sengur, Abdulkadir
Author_xml – sequence: 1
  givenname: Yagmur
  surname: Olmez
  fullname: Olmez, Yagmur
  organization: Department of Mechatronics Engineering, University of Firat
– sequence: 2
  givenname: Gonca Ozmen
  surname: Koca
  fullname: Koca, Gonca Ozmen
  organization: Department of Mechatronics Engineering, University of Firat
– sequence: 3
  givenname: Abdulkadir
  orcidid: 0000-0003-1614-2639
  surname: Sengur
  fullname: Sengur, Abdulkadir
  email: ksengur@gmail.com
  organization: Department of Electrical and Electronics Engineering, University of Firat
– sequence: 4
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37151916$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3TAQha2KqlDgBbqoLHXTTah_4jjpDqFbQEJqJShby7EnqVES39oOCJ6-zr1Q2grVXng8853R2Oct2pn8BAi9o-SIEiI_RcqlEAVhvCCEsbJ4eIX2GCllwQShO3_Eu-gwxhuSV0MZF_QN2uWSCtrQag-Zb5fF9dXlZ7zWITkzAI53Ooz4zqUf-NZFl3DS7ZJOQSfo73HnA9Zz8mO-WgyjT85POIDx_eQ28Ua7Wp3i6PpJD_EAve7yAYeP5z76_mV1dXJWXHw9PT85vigMlywVIIRl0Nq6Y7rSjSgpF8CI6aisbF1ZoyWjXLfSSml0V9XQdjqXdGt1U0PD99HHbd918D9niEmNLhoYBj2Bn6NiNaWMVoKKjH74B73xc1iGzRRpOKtkI5-pXg-g3NT5_AlmaaqOZVnTsqnFQh29QOVtYXQmu9a5nP9LwLYCE3yMATq1Dm7U4V5RohZz1dZclc1VG3PVQxa9f5x4bkewvyVPVmaAb4GYS1MP4flJ_2n7C3mAsJ8
CitedBy_id crossref_primary_10_1038_s41598_023_45543_z
crossref_primary_10_1007_s13755_024_00271_0
crossref_primary_10_1016_j_bspc_2023_105875
crossref_primary_10_1016_j_chaos_2024_114869
Cites_doi 10.1109/TIM.2020.3006611
10.1016/j.energy.2022.124848
10.1109/IJCNN.2018.8489331
10.1016/j.neucom.2015.09.085
10.1109/ACCESS.2022.3181887
10.1016/j.cmpb.2022.106646
10.1023/A:1009715923555
10.1186/s40708-020-00111-3
10.1109/MED.2007.4433821
10.1007/s13042-021-01414-5
10.1016/j.bspc.2022.103660
10.1007/s11042-022-12327-y
10.1016/j.artmed.2021.102210
10.1016/j.cma.2021.114194
10.1017/CBO9780511527883.005
10.3389/fnbot.2019.00037
10.1016/j.compbiomed.2021.104428
10.1109/JSEN.2020.3020915
10.1049/el.2020.2380
10.1109/ACCESS.2021.3135805
10.1016/j.asoc.2021.108176
10.1016/j.compbiomed.2021.105048
10.1109/JBHI.2020.2995767
10.24018/ejece.2021.5.1.265
10.1109/JSEN.2021.3070373
10.1007/BF00994018
10.1016/j.compbiomed.2022.105303
10.3390/s22062092
10.1155/2017/8317357
10.1007/s13755-018-0048-y
10.1049/el.2020.2685
10.1016/j.compbiomed.2021.104867
10.1016/j.cmpb.2022.107161
10.1016/j.compbiomed.2022.105519
10.1016/j.smhl.2021.100261
10.1016/j.compbiomed.2021.105080
10.1016/j.bspc.2021.102755
10.1016/j.bspc.2021.102991
10.1016/j.neucom.2017.03.027
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 BioMed Central Ltd.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 BioMed Central Ltd.
DBID NPM
AAYXX
CITATION
JQ2
K9.
7X8
DOI 10.1007/s13755-023-00224-z
DatabaseName PubMed
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList PubMed


ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 2047-2501
EndPage 22
ExternalDocumentID A748149857
10_1007_s13755_023_00224_z
37151916
Genre Journal Article
GroupedDBID -A0
-EM
406
5VS
7X7
AAFGU
AAHNG
AANZL
AATNV
AATVU
AAUYE
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMQK
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADINQ
ADKNI
ADMDM
ADOXG
ADRAZ
ADURQ
ADYFF
ADZKW
AEFTE
AEJRE
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFNRJ
AFQWF
AGDGC
AGGBP
AGJBK
AGMZJ
AHBYD
AHYZX
AIAKS
AILAN
AIMYW
AITGF
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AOIJS
ARAPS
ASPBG
AXYYD
BAWUL
BENPR
BFQNJ
C24
DIK
DNIVK
DPUIP
EBLON
EBS
EIOEI
FERAY
FNLPD
GGCAI
GJIRD
GROUPED_DOAJ
HCIFZ
IAO
IHR
IKXTQ
INH
INR
ITC
IWAJR
J-C
JZLTJ
KOV
KQ8
LLZTM
M~E
NPVJJ
NQJWS
O9J
OK1
PT4
RBZ
RPM
RSV
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
XH6
Z83
ZMTXR
0R~
3V.
8FE
8FG
8FI
8FJ
AACDK
AAJBT
AASML
ABAKF
ABUWG
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFKRA
AGQEE
AGRTI
AHSBF
AIGIU
AZQEC
BGLVJ
BGNMA
BPHCQ
BVXVI
CCPQU
DWQXO
EJD
FIGPU
FINBP
FSGXE
FYUFA
GNUQQ
H13
HMCUK
HYE
K6V
K7-
M0N
M48
M4Y
NPM
NU0
P62
PQQKQ
PROAC
ROL
SJYHP
UKHRP
AAYXX
CITATION
JQ2
K9.
7X8
ID FETCH-LOGICAL-c372t-e55d2ebd8f2a6a954135e20cf176d86dca7213ab7d77caf68ebfa76dabda98e93
ISSN 2047-2501
IngestDate Sat Oct 26 00:06:43 EDT 2024
Mon Nov 18 02:57:44 EST 2024
Tue Nov 19 21:25:19 EST 2024
Tue Nov 12 22:41:15 EST 2024
Thu Sep 12 19:45:40 EDT 2024
Sat Nov 02 12:15:23 EDT 2024
Sat Dec 16 10:33:26 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rhythm selections
Metaheuristic optimization
EEG signals
Deep features
Channel
Language English
License The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-e55d2ebd8f2a6a954135e20cf176d86dca7213ab7d77caf68ebfa76dabda98e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1614-2639
PMID 37151916
PQID 2809326797
PQPubID 2040228
PageCount 1
ParticipantIDs proquest_miscellaneous_2811216515
proquest_journals_2809326797
gale_infotracmisc_A748149857
gale_infotracacademiconefile_A748149857
crossref_primary_10_1007_s13755_023_00224_z
pubmed_primary_37151916
springer_journals_10_1007_s13755_023_00224_z
PublicationCentury 2000
PublicationDate 2023-05-04
PublicationDateYYYYMMDD 2023-05-04
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-04
  day: 04
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Health information science and systems
PublicationTitleAbbrev Health Inf Sci Syst
PublicationTitleAlternate Health Inf Sci Syst
PublicationYear 2023
Publisher Springer International Publishing
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Springer Nature B.V
References XingXSAE+ LSTM: a new framework for emotion recognition from multi-channel EEGFront Neurorobot2019133710.3389/fnbot.2019.00037
GaoQYangYKangQEEG-based emotion recognition with feature fusion networksInt J Mach Learn Cybern20221342142910.1007/s13042-021-01414-5
BajajVTaranSSengurAEmotion classification using flexible analytic wavelet transform for electroencephalogram signalsHealth Inf Sci Syst2018611710.1007/s13755-018-0048-y
ChengJChenMLiCLiuYSongRLiuAChenXEmotion recognition from multi-channel eeg via deep forestIEEE J Biomed Health Inform202025245346410.1109/JBHI.2020.2995767
IsmaelAMAlçinÖFAbdallaKHŞengürATwo-stepped majority voting for efficient EEG-based emotion classificationBrain Inform20207111210.1186/s40708-020-00111-3
MaheshwariDGhoshSKTripathyRKSharmaMAcharyaURAutomated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signalsComput Biol Med202113410442810.1016/j.compbiomed.2021.104428
BurgesCJA tutorial on support vector machines for pattern recognitionData Min Knowl Disc19982212116710.1023/A:1009715923555
Polikar R (1996) The wavelet tutorial part I. Fundamental concepts and an overview of the wavelet theory.
VapnikVGuyonIHastieTSupport vector machinesMach Learn199520327329710.1007/BF00994018
SarmaPBarmaSEmotion recognition by distinguishing appropriate EEG segments based on random matrix theoryBiomed Signal Process Control20217010299110.1016/j.bspc.2021.102991
Loh, H. W., Ooi, C. P., Seoni, S., Barua, P. D., Molinari, F., & Acharya, U. R. (2022). Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in Biomedicine, 107161.
TuncerTDoganSBayginMAcharyaURTetromino pattern based accurate EEG emotion classification modelArtif Intell Med202212310221010.1016/j.artmed.2021.102210
ZhaoWWangLMirjaliliSArtificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applicationsComput Methods Appl Mech Eng2022388114194433775310.1016/j.cma.2021.114194
KhareSKBajajVAn evolutionary optimized variational mode decomposition for emotion recognitionIEEE Sens J20202122035204210.1109/JSEN.2020.3020915
ZhuangNZengYTongLZhangCZhangHYanBEmotion recognition from EEG signals using multidimensional information in EMD domainBioMed Res Int201710.1155/2017/8317357
LiJWuXZhangYYangHWuXDRS-Net: A spatial–temporal affective computing model based on multichannel EEG dataBiomed Signal Process Control20227610366010.1016/j.bspc.2022.103660
DemirFSobahiNSiulySSengurAExploring deep learning features for automatic classification of human emotion using EEG rhythmsIEEE Sens J20212113149231493010.1109/JSEN.2021.3070373
MaithriMRaghavendraUGudigarASamanthJBaruaPDMurugappanMAcharyaURAutomated emotion recognition: Current trends and future perspectivesComput Methods Programs Biomed202221510664610.1016/j.cmpb.2022.106646
AriBSiddiqueKAlçinÖFAslanMŞengürAMehmoodRMWavelet ELM-AE based data augmentation and deep learning for efficient emotion recognition using EEG recordingsIEEE Access202210721717218110.1109/ACCESS.2022.3181887
AlyasseriZAAAlomariOAPapaJPAl-BetarMAAbdulkareemKHMohammedMAKhuwuthyakornPEEG channel selection based user identification via improved flower pollination algorithmSensors2022226209210.3390/s22062092
ÖlmezYSengurAOzmen KocaGMultilevel thresholding with metaheuristic methodsJ Fac Eng Architect Gazi Univ2020361213224
GuptaRFalkTHRelevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterizationNeurocomputing201617487588410.1016/j.neucom.2015.09.085
JoshiVMGhongadeRBEEG based emotion detection using fourth order spectral moment and deep learningBiomed Signal Process Control20216810275510.1016/j.bspc.2021.102755
KhareSKBajajVSinhaGRAdaptive tunable Q wavelet transform-based emotion identificationIEEE Trans Instrum Meas202069129609961710.1109/TIM.2020.3006611
Arnau-GonzálezPArevalillo-HerráezMRamzanNFusing highly dimensional energy and connectivity features to identify affective states from EEG signalsNeurocomputing2017244818910.1016/j.neucom.2017.03.027
HeZZhongYPanJAn adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognitionComput Biol Med202214110504810.1016/j.compbiomed.2021.105048
SengürDSiulySEfficient approach for EEG-based emotion recognitionElectron Lett202056251361136410.1049/el.2020.2685
AlyasseriZAAAlomariOAMakhadmehSNMirjaliliSAl-BetarMAAbdullahSAbasiAKEEG channel selection for person identification using binary grey wolf optimizerIEEE Access202210105001051310.1109/ACCESS.2021.3135805
MandalSKNaskarMMeta heuristic assisted automated channel selection model for motor imagery brain computer interfaceMultimed Tools Appl20228112171111713010.1007/s11042-022-12327-y
HussienHREl-KenawyESMEl-DesoukyAIEEG channel selection using a modified grey wolf optimizerEur J Electr Eng Comput Sci202151172410.24018/ejece.2021.5.1.265
Martínez-CagigalVSantamaría-VázquezEHorneroRBrain–computer interface channel selection optimization using meta-heuristics and evolutionary algorithmsAppl Soft Comput202211510.1016/j.asoc.2021.108176
YanZZhouJWongWFEEG classification with spiking neural network: Smaller, better, more energy efficientSmart Health20222410026110.1016/j.smhl.2021.100261
LiCWangBZhangSLiuYSongRChengJChenXEmotion recognition from EEG based on multi-task learning with capsule network and attention mechanismComput Biol Med202214310530310.1016/j.compbiomed.2022.105303
DoganAAkayMBaruaPDBayginMDoganSTuncerTAcharyaURPrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognitionComput Biol Med202113810486710.1016/j.compbiomed.2021.104867
LiJHuaHXuZShuLXuXKuangFWuSCross-subject EEG emotion recognition combined with connectivity features and meta-transfer learningComput Biol Med202214510551910.1016/j.compbiomed.2022.105519
XingZZhuJZhangZQinYJiaLEnergy consumption optimization of tramway operation based on improved PSO algorithmEnergy202225812484810.1016/j.energy.2022.124848
KhareSKNishadAUpadhyayABajajVClassification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural networkElectron Lett202056251359136110.1049/el.2020.2380
LiRRenCZhangXHuBA novel ensemble learning method using multiple objective particle swarm optimization for subject-independent EEG-based emotion recognitionComput Biol Med202214010508010.1016/j.compbiomed.2021.105080
Khanesar MA, Teshnehlab M, Shoorehdeli MA (2007) A novel binary particle swarm optimization. In: 2007 Mediterranean Conference on Control & Automation, pp 1–6. https://doi.org/10.1109/MED.2007.4433821.
Scherer KR. Emotions as episodes of subsystem synchronization driven by nonlinear appraisal processes. emotion, development, and self-organization: dynamic systems approaches to emotional development, 7099; 2000
XingXLiZXuTShuLHuBXuXSAE+ LSTM: A New framework for emotion recognition from multi-channel EEGFront Neurorobot2019133710.3389/fnbot.2019.00037
Yang Y, Wu Q, Qiu M, Wang Y, Chen X (2018) Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network. In: 2018 International Joint Conference on Neural Networks (IJCNN) (pp 1–7). IEEE
C Li (224_CR40) 2022; 143
224_CR1
X Xing (224_CR33) 2019; 13
SK Khare (224_CR7) 2020; 56
ZAA Alyasseri (224_CR20) 2022; 10
A Dogan (224_CR3) 2021; 138
B Ari (224_CR4) 2022; 10
D Maheshwari (224_CR2) 2021; 134
SK Khare (224_CR6) 2020; 21
P Arnau-González (224_CR31) 2017; 244
Y Ölmez (224_CR24) 2020; 36
Q Gao (224_CR14) 2022; 13
Z Xing (224_CR25) 2022; 258
224_CR42
224_CR22
D Sengür (224_CR16) 2020; 56
224_CR27
P Sarma (224_CR35) 2021; 70
VM Joshi (224_CR13) 2021; 68
W Zhao (224_CR26) 2022; 388
CJ Burges (224_CR28) 1998; 2
X Xing (224_CR15) 2019; 13
R Gupta (224_CR29) 2016; 174
V Martínez-Cagigal (224_CR21) 2022; 115
N Zhuang (224_CR30) 2017
AM Ismael (224_CR12) 2020; 7
J Li (224_CR41) 2022; 76
Z He (224_CR37) 2022; 141
ZAA Alyasseri (224_CR18) 2022; 22
J Cheng (224_CR34) 2020; 25
J Li (224_CR38) 2022; 145
V Bajaj (224_CR9) 2018; 6
SK Khare (224_CR5) 2020; 69
T Tuncer (224_CR11) 2022; 123
224_CR32
R Li (224_CR36) 2022; 140
SK Mandal (224_CR17) 2022; 81
V Vapnik (224_CR23) 1995; 20
F Demir (224_CR10) 2021; 21
Z Yan (224_CR39) 2022; 24
M Maithri (224_CR8) 2022; 215
HR Hussien (224_CR19) 2021; 5
References_xml – volume: 69
  start-page: 9609
  issue: 12
  year: 2020
  ident: 224_CR5
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.3006611
  contributor:
    fullname: SK Khare
– volume: 258
  start-page: 124848
  year: 2022
  ident: 224_CR25
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124848
  contributor:
    fullname: Z Xing
– ident: 224_CR32
  doi: 10.1109/IJCNN.2018.8489331
– volume: 174
  start-page: 875
  year: 2016
  ident: 224_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.085
  contributor:
    fullname: R Gupta
– volume: 10
  start-page: 72171
  year: 2022
  ident: 224_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3181887
  contributor:
    fullname: B Ari
– volume: 215
  start-page: 106646
  year: 2022
  ident: 224_CR8
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106646
  contributor:
    fullname: M Maithri
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 224_CR28
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009715923555
  contributor:
    fullname: CJ Burges
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 224_CR12
  publication-title: Brain Inform
  doi: 10.1186/s40708-020-00111-3
  contributor:
    fullname: AM Ismael
– volume: 36
  start-page: 213
  issue: 1
  year: 2020
  ident: 224_CR24
  publication-title: J Fac Eng Architect Gazi Univ
  contributor:
    fullname: Y Ölmez
– ident: 224_CR27
  doi: 10.1109/MED.2007.4433821
– volume: 13
  start-page: 421
  year: 2022
  ident: 224_CR14
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-021-01414-5
  contributor:
    fullname: Q Gao
– volume: 76
  start-page: 103660
  year: 2022
  ident: 224_CR41
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103660
  contributor:
    fullname: J Li
– volume: 81
  start-page: 17111
  issue: 12
  year: 2022
  ident: 224_CR17
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12327-y
  contributor:
    fullname: SK Mandal
– ident: 224_CR22
– volume: 123
  start-page: 102210
  year: 2022
  ident: 224_CR11
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2021.102210
  contributor:
    fullname: T Tuncer
– volume: 388
  start-page: 114194
  year: 2022
  ident: 224_CR26
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.114194
  contributor:
    fullname: W Zhao
– ident: 224_CR1
  doi: 10.1017/CBO9780511527883.005
– volume: 13
  start-page: 37
  year: 2019
  ident: 224_CR15
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2019.00037
  contributor:
    fullname: X Xing
– volume: 134
  start-page: 104428
  year: 2021
  ident: 224_CR2
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104428
  contributor:
    fullname: D Maheshwari
– volume: 21
  start-page: 2035
  issue: 2
  year: 2020
  ident: 224_CR6
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3020915
  contributor:
    fullname: SK Khare
– volume: 56
  start-page: 1359
  issue: 25
  year: 2020
  ident: 224_CR7
  publication-title: Electron Lett
  doi: 10.1049/el.2020.2380
  contributor:
    fullname: SK Khare
– volume: 10
  start-page: 10500
  year: 2022
  ident: 224_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3135805
  contributor:
    fullname: ZAA Alyasseri
– volume: 115
  year: 2022
  ident: 224_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.108176
  contributor:
    fullname: V Martínez-Cagigal
– volume: 141
  start-page: 105048
  year: 2022
  ident: 224_CR37
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105048
  contributor:
    fullname: Z He
– volume: 13
  start-page: 37
  year: 2019
  ident: 224_CR33
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2019.00037
  contributor:
    fullname: X Xing
– volume: 25
  start-page: 453
  issue: 2
  year: 2020
  ident: 224_CR34
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2995767
  contributor:
    fullname: J Cheng
– volume: 5
  start-page: 17
  issue: 1
  year: 2021
  ident: 224_CR19
  publication-title: Eur J Electr Eng Comput Sci
  doi: 10.24018/ejece.2021.5.1.265
  contributor:
    fullname: HR Hussien
– volume: 21
  start-page: 14923
  issue: 13
  year: 2021
  ident: 224_CR10
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3070373
  contributor:
    fullname: F Demir
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 224_CR23
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
  contributor:
    fullname: V Vapnik
– volume: 143
  start-page: 105303
  year: 2022
  ident: 224_CR40
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105303
  contributor:
    fullname: C Li
– volume: 22
  start-page: 2092
  issue: 6
  year: 2022
  ident: 224_CR18
  publication-title: Sensors
  doi: 10.3390/s22062092
  contributor:
    fullname: ZAA Alyasseri
– year: 2017
  ident: 224_CR30
  publication-title: BioMed Res Int
  doi: 10.1155/2017/8317357
  contributor:
    fullname: N Zhuang
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 224_CR9
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-018-0048-y
  contributor:
    fullname: V Bajaj
– volume: 56
  start-page: 1361
  issue: 25
  year: 2020
  ident: 224_CR16
  publication-title: Electron Lett
  doi: 10.1049/el.2020.2685
  contributor:
    fullname: D Sengür
– volume: 138
  start-page: 104867
  year: 2021
  ident: 224_CR3
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104867
  contributor:
    fullname: A Dogan
– ident: 224_CR42
  doi: 10.1016/j.cmpb.2022.107161
– volume: 145
  start-page: 105519
  year: 2022
  ident: 224_CR38
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105519
  contributor:
    fullname: J Li
– volume: 24
  start-page: 100261
  year: 2022
  ident: 224_CR39
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2021.100261
  contributor:
    fullname: Z Yan
– volume: 140
  start-page: 105080
  year: 2022
  ident: 224_CR36
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105080
  contributor:
    fullname: R Li
– volume: 68
  start-page: 102755
  year: 2021
  ident: 224_CR13
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102755
  contributor:
    fullname: VM Joshi
– volume: 70
  start-page: 102991
  year: 2021
  ident: 224_CR35
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102991
  contributor:
    fullname: P Sarma
– volume: 244
  start-page: 81
  year: 2017
  ident: 224_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.027
  contributor:
    fullname: P Arnau-González
SSID ssj0000912351
Score 2.3048196
Snippet Recognizing emotions accurately in real life is crucial in human–computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively...
Recognizing emotions accurately in real life is crucial in human-computer interaction (HCI) systems. Electroencephalogram (EEG) signals have been extensively...
SourceID proquest
gale
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 22
SubjectTerms Arousal
Bioinformatics
Channels
Classification
Computational Biology/Bioinformatics
Computer Science
Continuous wavelet transform
Datasets
Discrete Wavelet Transform
Electroencephalography
Emotion recognition
Emotions
Feature extraction
Health Informatics
Heuristic methods
Human-computer interface
Information Systems and Communication Service
Low pass filters
Model accuracy
Optimization
Rhythm
Support vector machines
Wavelet transforms
Title PS-VTS: particle swarm with visit table strategy for automated emotion recognition with EEG signals
URI https://link.springer.com/article/10.1007/s13755-023-00224-z
https://www.ncbi.nlm.nih.gov/pubmed/37151916
https://www.proquest.com/docview/2809326797
https://search.proquest.com/docview/2811216515
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELa2RUK8cBQogYKMhMRDCEqcww5vFV0oqjjEbhE8RU7sVIJuUm02QuyvZ3zk2K0q0Qf2IVrFY-eYbz3j2fnGCL3IKeWCsdyjOZVeFJLCU3XRvNJPoUMaFGGo-M7HM_rpOzuaRtPJpNtlbzj3XzUN50DXijl7DW33g8IJ-A46hyNoHY7_pPcvM-_bfKYW-he21W1-8-XCRFwVlXzlrjRfqjGFaU3GJm9XNTiv4H5Ks7GP26cW1Ybp7U6n712V7sHPm7FLa4lMtgKrFu-4QjooPyqJroO5CxOz_sHPFm2fGXwCJlWH6Ouq4O7n9WJgqM1kddaaLbdz0Z7_4mCFe5gq0tgf3fP0tfuV_5SVWPJxJIOYvMHLkcytWOgQjjMmS8-NxBSYsHGQbiIPtgF7yT74li8d0lgR0-EWlA_jrQdr2OcoDvWclXAGwpkWztY76AaBaU0lkB59OOkjeuB5kTAOLDPL8DO3r7Ph_Wz7ACMnaOtfee3szO-i23aVgg8NgO6hiaz20J1uBxBsDcIeuvnRpmbcR4UB3hvcwQ5r2GEFHaxhhzXscAc7DHjBPeywhR0ewc70BdhhC7sH6PTddP722LM7eHhFSMnKk3EsiMwFKwlPeBqDxxRL4hdlQBPBElFwSoKQ51RQWvAyYTIvOTTxXPCUyTR8iHarupKPECYs4UEJn5TKqIz8XNKwJGWalkLkMISD3O7NZhemUEt2tQod9FK9_EyBA5664JaMAtdS9dCyQxqxIEpZTB10sCEJs2-x2dypL7OzQJMR5qtlEU2h-XnfrHqqjMZK1q2SgZVOkMBywkH7Ru39fYcU_HBYtznoVYeDYfCrH-rx9cSfoFvDr_AA7a6WrXyKdhrRPtPA_guKU9QL
link.rule.ids 315,782,786,27935,27936,48346,48349,49651,49654
linkProvider Flying Publisher
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xTgJeGAwGgQFGQuIBLDV2Etu8VayjiG1CakHbk2XH9hvttKZC7K_nnDgtneAB8hTpfI4_7nJn-35ngNdWCOOktFRY4WnBWU1jXjQahgoZVF5zHvHOk6k4O5dH45gmp-ixMG20e38k2f6pN2A3LsqIJua0NTz0egd2Y7bzYgC7o_OLi6P13graQMbLPGFk_sy8ZYdu_o1_M0c3zkdbs3O8938Nvg_3kptJRp1cPIBbfr4Pe_0VDiRp9D7cPk1n6w-h_jKl32bT9-QySRNZ_jBX30ncqSURgt6QJuKsyLJLaPuToL9LzKpZoNPrHfHdhUBkHZKE7y3vePyRxDARFPRH8PV4PPswoekKBlpzwRrqy9Ixb50MzFRGlWjySs-GdchF5WTlaoMrSG6scELUJlTS22CQZKwzSnrFD2AwX8z9EyBMViYP-Cjhi1AMrRc8sKBUcM5iFRm87SdEX3aZNvQmp3IcSo1Dqduh1NcZvIlzpqMaYq9rk9AE-K2Y0EqPRCFx8SdLkcHhVklUn3qb3M-6Tuq71EwOo18rFJJfrcmRM4akzf1iFcugq5rHm-QzeNxJy7rdXKAjhY53Bu960dhU_vdOPf234i_hzmR2eqJPPp19fgZ3WStpKHDFIQyaq5V_DjtLt3qRtOMXlMULVg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xTZp4YTBgBAYYCYkHsNbYSezwVrF2m4BpUgvizXJi-420WlMh9tdzl6_SCR4QeYp0Pscfd7mzfb8zwOtCKeu0LrgqlOeJFCWnvGg8jHJkyONSSsI7n8_U5Td9OqE0OQOKv4l2748kW0wDZWmq6pOlCycb4JtUKSGLJW-MEL_ZgT3aFkMZ3xtfzM-mwz4L2kMh07jDy_yZecsm3f4z_2aabp2VNiZoevD_jb8P9zr3k41beXkAd3x1CAf91Q6s0_RD2P_cnbk_hPJqxr_OZ-_ZspMytvphr78z2sFlBE2vWU34K7ZqE93-ZOgHM7uuF-gMe8d8e1EQG0KV8L3hnUzOGIWPoAI8gi_TyfzDOe-uZuClVKLmPk2d8IXTQdjM5imawtSLURlilTmdudLiylLaQjmlShsy7YtgkWQLZ3Ptc_kYdqtF5Z8AEzqzccAnVz4JyajwSgYR8jw4V2AVEbztJ8cs2wwcZpNrmYbS4FCaZijNTQRvaP4MqSf2urQdygC_RYmuzFglGheFOlURHG-VRLUqt8m9BJhOrVdG6BH5uypH8quBTJwUqlb5xZrKoAsb0w3zERy1kjO0Wyp0sNAhj-BdLyabyv_eqaf_Vvwl7F-dTs2ni8uPz-CuaAQN5S05ht36eu2fw87KrV90ivILuAYT7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PS-VTS%3A+particle+swarm+with+visit+table+strategy+for+automated+emotion+recognition+with+EEG+signals&rft.jtitle=Health+information+science+and+systems&rft.au=Olmez%2C+Yagmur&rft.au=Koca%2C+Gonca+Ozmen&rft.au=Sengur%2C+Abdulkadir&rft.au=Acharya%2C+U.+Rajendra&rft.date=2023-05-04&rft.pub=Springer+International+Publishing&rft.eissn=2047-2501&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs13755-023-00224-z&rft.externalDocID=10_1007_s13755_023_00224_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-2501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-2501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-2501&client=summon