Structural insight into light harvesting for photosystem II in green algae
Green algae and plants rely on light-harvesting complex II (LHCII) to collect photon energy for oxygenic photosynthesis. In Chlamydomonas reinhardtii , LHCII molecules associate with photosystem II (PSII) to form various supercomplexes, including the C 2 S 2 M 2 L 2 type, which is the largest PSII–L...
Saved in:
Published in: | Nature plants Vol. 5; no. 12; pp. 1320 - 1330 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-12-2019
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Green algae and plants rely on light-harvesting complex II (LHCII) to collect photon energy for oxygenic photosynthesis. In
Chlamydomonas reinhardtii
, LHCII molecules associate with photosystem II (PSII) to form various supercomplexes, including the C
2
S
2
M
2
L
2
type, which is the largest PSII–LHCII supercomplex in algae and plants that is presently known. Here, we report high-resolution cryo-electron microscopy (cryo-EM) maps and structural models of the C
2
S
2
M
2
L
2
and C
2
S
2
supercomplexes from
C. reinhardtii
. The C
2
S
2
supercomplex contains an LhcbM1–LhcbM2/7–LhcbM3 heterotrimer in the strongly associated LHCII, and the LhcbM1 subunit assembles with CP43 through two interfacial galactolipid molecules. The loosely and moderately associated LHCII trimers interact closely with the minor antenna complex CP29 to form an intricate subcomplex bound to CP47 in the C
2
S
2
M
2
L
2
supercomplex. A notable direct pathway is established for energy transfer from the loosely associated LHCII to the PSII reaction centre, as well as several indirect routes. Structure-based computational analysis on the excitation energy transfer within the two supercomplexes provides detailed mechanistic insights into the light-harvesting process in green algae.
High-resolution cryo-EM structures of
Chlamydomonas
light-harvesting complex II (LHCII)–photosystem II (PSII) supercomplexes show loosely and moderately associated LHCIIs forming multiple pathways for energy transfer to PSII reaction centres. |
---|---|
AbstractList | Green algae and plants rely on light-harvesting complex II (LHCII) to collect photon energy for oxygenic photosynthesis. In Chlamydomonas reinhardtii, LHCII molecules associate with photosystem II (PSII) to form various supercomplexes, including the C
S
M
L
type, which is the largest PSII-LHCII supercomplex in algae and plants that is presently known. Here, we report high-resolution cryo-electron microscopy (cryo-EM) maps and structural models of the C
S
M
L
and C
S
supercomplexes from C. reinhardtii. The C
S
supercomplex contains an LhcbM1-LhcbM2/7-LhcbM3 heterotrimer in the strongly associated LHCII, and the LhcbM1 subunit assembles with CP43 through two interfacial galactolipid molecules. The loosely and moderately associated LHCII trimers interact closely with the minor antenna complex CP29 to form an intricate subcomplex bound to CP47 in the C
S
M
L
supercomplex. A notable direct pathway is established for energy transfer from the loosely associated LHCII to the PSII reaction centre, as well as several indirect routes. Structure-based computational analysis on the excitation energy transfer within the two supercomplexes provides detailed mechanistic insights into the light-harvesting process in green algae. High-resolution cryo-EM structures of Chlamydomonas light-harvesting complex II (LHCII)–photosystem II (PSII) supercomplexes show loosely and moderately associated LHCIIs forming multiple pathways for energy transfer to PSII reaction centres. Green algae and plants rely on light-harvesting complex II (LHCII) to collect photon energy for oxygenic photosynthesis. In Chlamydomonas reinhardtii , LHCII molecules associate with photosystem II (PSII) to form various supercomplexes, including the C 2 S 2 M 2 L 2 type, which is the largest PSII–LHCII supercomplex in algae and plants that is presently known. Here, we report high-resolution cryo-electron microscopy (cryo-EM) maps and structural models of the C 2 S 2 M 2 L 2 and C 2 S 2 supercomplexes from C. reinhardtii . The C 2 S 2 supercomplex contains an LhcbM1–LhcbM2/7–LhcbM3 heterotrimer in the strongly associated LHCII, and the LhcbM1 subunit assembles with CP43 through two interfacial galactolipid molecules. The loosely and moderately associated LHCII trimers interact closely with the minor antenna complex CP29 to form an intricate subcomplex bound to CP47 in the C 2 S 2 M 2 L 2 supercomplex. A notable direct pathway is established for energy transfer from the loosely associated LHCII to the PSII reaction centre, as well as several indirect routes. Structure-based computational analysis on the excitation energy transfer within the two supercomplexes provides detailed mechanistic insights into the light-harvesting process in green algae. High-resolution cryo-EM structures of Chlamydomonas light-harvesting complex II (LHCII)–photosystem II (PSII) supercomplexes show loosely and moderately associated LHCIIs forming multiple pathways for energy transfer to PSII reaction centres. |
Author | Sheng, Xin Murata, Kazuyoshi Liu, Zhenfeng Watanabe, Akimasa Song, Chihong Song, Danfeng Li, Anjie Minagawa, Jun Kim, Eunchul |
Author_xml | – sequence: 1 givenname: Xin surname: Sheng fullname: Sheng, Xin organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Akimasa orcidid: 0000-0001-6068-1328 surname: Watanabe fullname: Watanabe, Akimasa organization: Division of Environmental Photobiology, National Institute for Basic Biology, Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI – sequence: 3 givenname: Anjie surname: Li fullname: Li, Anjie organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 4 givenname: Eunchul surname: Kim fullname: Kim, Eunchul organization: Division of Environmental Photobiology, National Institute for Basic Biology, Division of Biological Science, Graduate School of Science, Nagoya University – sequence: 5 givenname: Chihong orcidid: 0000-0001-8628-4267 surname: Song fullname: Song, Chihong organization: National Institute for Physiological Sciences – sequence: 6 givenname: Kazuyoshi orcidid: 0000-0001-9446-3652 surname: Murata fullname: Murata, Kazuyoshi organization: National Institute for Physiological Sciences, Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI – sequence: 7 givenname: Danfeng surname: Song fullname: Song, Danfeng organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 8 givenname: Jun orcidid: 0000-0002-3028-3203 surname: Minagawa fullname: Minagawa, Jun email: minagawa@nibb.ac.jp organization: Division of Environmental Photobiology, National Institute for Basic Biology, Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI – sequence: 9 givenname: Zhenfeng surname: Liu fullname: Liu, Zhenfeng email: liuzf@ibp.ac.cn organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31768031$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtKAzEUhoNUbK19ADcy4MbN6MltMl1K8VIRXKjrkM4k0ynTpCYzQt_e1KkXBFfnQL785-c7RgPrrEboFMMlBppfBYaZECngaQqc0ZQdoBEBzlMgIh_82odoEsIKALDgnGZwhIYUiywHikfo4bn1XdF2XjVJbUNdLds4W5c0n-tS-Xcd2tpWiXE-2Sxd68I2tHqdzOcRTCqvtU1UUyl9gg6NaoKe7OcYvd7evMzu08enu_ns-jEtqCBtWlJDCKOC5RTT2KdYAKOFUTgjQEomFvmUYy10aSKCS1FqbAzLFOa8VJQDHaOLPnfj3VsX28l1HQrdNMpq1wVJKM4FmebxyBid_0FXrvM2tosUoSAEAI8U7qnCuxC8NnLj67XyW4lB7lzL3rWMruXOtdwln-2Tu8Val98_vsxGgPRAiE-20v7n9P-pH_XLiVw |
CitedBy_id | crossref_primary_10_1038_s41477_023_01463_4 crossref_primary_10_1093_pcp_pcab072 crossref_primary_10_1111_pce_14313 crossref_primary_10_7554_eLife_69635 crossref_primary_10_1007_s11120_022_00991_y crossref_primary_10_1016_j_giant_2020_100020 crossref_primary_10_1093_plphys_kiad555 crossref_primary_10_1016_j_sbi_2023_102529 crossref_primary_10_1038_s41467_024_48878_x crossref_primary_10_1093_plphys_kiac175 crossref_primary_10_1038_s41477_020_00779_9 crossref_primary_10_1016_j_bbabio_2020_148347 crossref_primary_10_3390_cells12151971 crossref_primary_10_1016_j_jphotobiol_2023_112718 crossref_primary_10_1007_s10811_022_02824_w crossref_primary_10_1021_acs_biochem_1c00504 crossref_primary_10_1042_ETLS20200272 crossref_primary_10_7554_eLife_84488 crossref_primary_10_1111_tpj_14751 crossref_primary_10_1126_sciadv_adk7140 crossref_primary_10_1073_pnas_2018053118 crossref_primary_10_1021_acssuschemeng_3c04955 crossref_primary_10_1007_s11120_022_00905_y crossref_primary_10_1016_j_str_2023_08_001 crossref_primary_10_3390_plants10081501 crossref_primary_10_1038_s41467_024_49532_2 crossref_primary_10_1093_pcp_pcad037 crossref_primary_10_1021_acs_analchem_3c01009 crossref_primary_10_1186_s13068_023_02421_0 crossref_primary_10_1021_acs_biochem_0c00303 crossref_primary_10_1126_science_aay2058 crossref_primary_10_1016_j_jes_2021_04_023 crossref_primary_10_1038_s41467_021_27526_8 crossref_primary_10_1111_ppl_14428 crossref_primary_10_1038_s41467_024_49453_0 crossref_primary_10_1093_pcp_pcab139 crossref_primary_10_32615_ps_2021_055 crossref_primary_10_1111_nph_16758 crossref_primary_10_1016_j_scitotenv_2024_170460 crossref_primary_10_1016_j_bpj_2023_01_002 crossref_primary_10_1038_s41477_021_00960_8 crossref_primary_10_1039_D1MO00197C crossref_primary_10_3390_ijms23020778 crossref_primary_10_1039_D2RA08240C crossref_primary_10_1007_s11120_022_00949_0 crossref_primary_10_1016_j_chemphys_2022_111517 crossref_primary_10_1021_acs_biochem_0c00541 crossref_primary_10_1016_j_scitotenv_2020_137667 crossref_primary_10_1016_j_sbi_2020_03_007 crossref_primary_10_1007_s11120_023_01018_w crossref_primary_10_7554_eLife_81150 crossref_primary_10_1038_s41477_023_01483_0 crossref_primary_10_1007_s11120_021_00888_2 crossref_primary_10_1093_jxb_erac017 crossref_primary_10_1007_s11120_022_00921_y crossref_primary_10_1021_acs_jpclett_0c02098 crossref_primary_10_1038_s41467_022_29294_5 crossref_primary_10_1007_s12551_022_00979_x crossref_primary_10_1016_j_stress_2024_100470 crossref_primary_10_1073_pnas_2116765118 crossref_primary_10_1016_j_jbc_2022_102815 crossref_primary_10_1111_ppl_13598 crossref_primary_10_3390_plants13060811 crossref_primary_10_1021_acs_jpcb_4c00829 crossref_primary_10_1007_s00425_022_03819_0 crossref_primary_10_1038_s41477_021_00961_7 crossref_primary_10_1016_j_rser_2020_110445 crossref_primary_10_1074_jbc_RA120_014198 crossref_primary_10_1016_j_mtchem_2022_100874 crossref_primary_10_3389_fpls_2024_1409116 crossref_primary_10_1016_j_scitotenv_2024_172856 crossref_primary_10_1038_s41467_021_21362_6 crossref_primary_10_5940_jcrsj_63_80 crossref_primary_10_1021_acs_jpcb_2c05823 crossref_primary_10_1007_s00425_020_03487_y crossref_primary_10_1038_s41467_023_44055_8 crossref_primary_10_1016_j_bpj_2021_02_037 crossref_primary_10_1126_sciadv_adi8446 crossref_primary_10_1111_1751_7915_14100 crossref_primary_10_1038_s42003_020_01139_1 crossref_primary_10_1111_tpj_14918 crossref_primary_10_1093_pnasnexus_pgac136 crossref_primary_10_1016_j_joule_2020_07_016 crossref_primary_10_1021_acs_jpcb_2c04061 crossref_primary_10_3389_fpls_2023_1334608 crossref_primary_10_1002_pld3_436 crossref_primary_10_1016_j_cej_2023_145166 crossref_primary_10_1074_jbc_RA120_016181 crossref_primary_10_7554_eLife_53740 crossref_primary_10_1016_j_bbabio_2023_148986 crossref_primary_10_1016_j_bpj_2020_11_2265 crossref_primary_10_1038_s41467_022_28213_y crossref_primary_10_1016_j_jplph_2020_153189 crossref_primary_10_1038_s42003_020_0949_6 crossref_primary_10_3389_fpls_2023_1151131 crossref_primary_10_1038_s41467_023_36245_1 crossref_primary_10_1016_j_isci_2022_105761 crossref_primary_10_1038_s41592_021_01275_4 crossref_primary_10_3390_molecules27175708 |
Cites_doi | 10.1093/jxb/eru400 10.1105/tpc.002154 10.1038/nplants.2016.31 10.1074/jbc.M111.331991 10.1039/c1cp21079c 10.1074/jbc.M003069200 10.1002/jcc.20084 10.1007/978-94-017-7321-8_4 10.1038/nplants.2017.14 10.1074/jbc.M510600200 10.1104/pp.010245 10.1080/21655979.2017.1377867 10.1002/1873-3468.13394 10.1074/jbc.M809360200 10.1038/nmeth.2727 10.1038/nsmb.1559 10.1016/j.jsb.2012.09.006 10.1093/pcp/pcu071 10.1073/pnas.46.1.83 10.1111/tpj.12780 10.1038/nrm1525 10.1074/mcp.M000020-MCP201 10.1046/j.1432-1327.1999.00876.x 10.1016/j.jsb.2015.11.003 10.1609/icwsm.v3i1.13937 10.1111/tpj.12781 10.1074/jbc.RA119.009341 10.1074/jbc.M111.316729 10.1371/journal.pone.0119211 10.1104/pp.15.00094 10.1016/j.jphotobiol.2011.01.024 10.1073/pnas.54.6.1665 10.1073/pnas.0509952103 10.1038/nplants.2017.80 10.1016/S0006-3495(98)77747-1 10.1107/S2059798318006551 10.1126/science.aan0327 10.1016/j.bbabio.2013.07.012 10.1105/tpc.114.124198 10.1126/science.1143609 10.1107/S0907444910007493 10.1038/nature18020 10.1021/bi00032a016 10.1111/tpj.12805 10.1105/tpc.108.059352 10.1007/s11120-004-2079-2 10.1126/science.aat1156 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 Copyright Nature Publishing Group Dec 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: Copyright Nature Publishing Group Dec 2019 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN AFKRA BENPR BHPHI BKSAR C1K CCPQU DWQXO HCIFZ PCBAR PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1038/s41477-019-0543-4 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Ecology Abstracts ProQuest Central ProQuest Databases ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College Ecology Abstracts ProQuest One Academic Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Earth, Atmospheric & Aquatic Science Collection |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2055-0278 |
EndPage | 1330 |
ExternalDocumentID | 10_1038_s41477_019_0543_4 31768031 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Beijing China China Japan |
GeographicLocations_xml | – name: China – name: Beijing China – name: Japan |
GrantInformation_xml | – fundername: the collaborative study program of the National Institute for Physiological Sciences (to JM), and Grant-in-Aid for Scientific Research on Innovative Areas by Japan Society for the Promotion of Science (16H06553 to JM) – fundername: The project is funded by the National Key R&D Program of China (2017YFA0503702 to ZFL), the Strategic Priority Research Program of CAS (XDB27020106 and XDB08020302 to ZFL), the Key Research Program of Frontier Sciences of CAS (QYZDB-SSW-SMC005 to ZFL) and National Natural Science Foundation of China (31670749 to ZFL) |
GroupedDBID | 0R~ 4.4 5BI 8FE 8FH AAEEF AAHBH AARCD AAZLF ABJNI ABLJU ABVXF ACGFS ADBBV AENEX AFKRA AFSHS AFWHJ AGAYW AGEZK AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BENPR BHPHI BKKNO BKSAR CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK5 M7R NNMJJ O9- ODYON PCBAR RNT SHXYY SIXXV SNYQT TAOOD TBHMF TDRGL TSG AAYZH CGR CUY CVF ECM EIF NPM AAYXX ACBWK CITATION 7SN C1K DWQXO PQEST PQQKQ PQUKI 7X8 |
ID | FETCH-LOGICAL-c372t-d3f2243748313536cb043cfa16202d47b8951e7edf7481d7de1ff46a155da3503 |
ISSN | 2055-0278 |
IngestDate | Sat Oct 26 01:18:43 EDT 2024 Tue Nov 19 06:47:17 EST 2024 Fri Nov 22 00:26:56 EST 2024 Wed Oct 16 00:42:06 EDT 2024 Fri Oct 11 20:46:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c372t-d3f2243748313536cb043cfa16202d47b8951e7edf7481d7de1ff46a155da3503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6068-1328 0000-0001-9446-3652 0000-0001-8628-4267 0000-0002-3028-3203 |
PMID | 31768031 |
PQID | 2323077005 |
PQPubID | 2069614 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2318729824 proquest_journals_2323077005 crossref_primary_10_1038_s41477_019_0543_4 pubmed_primary_31768031 springer_journals_10_1038_s41477_019_0543_4 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature plants |
PublicationTitleAbbrev | Nat. Plants |
PublicationTitleAlternate | Nat Plants |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | NovoderezhkinVMarinAvan GrondelleRIntra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield–Förster picturePhys. Chem. Chem. Phys.20111317093171031:CAS:528:DC%2BC3MXht1Slt7nI21866281 WatanabeAKimEBurton-SmithRNTokutsuRMinagawaJAmphipol-assisted purification method for the highly active and stable photosystem II supercomplex of Chlamydomonas reinhardtiiFEBS Lett.2019593107210791:CAS:528:DC%2BC1MXptF2kt7k%3D31017655 Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. in Proc. of the Third International AAAI Conference on Weblogs and Social Media (AAAI press) 361–362 (2009). RubanAVEvolution under the sun: optimizing light harvesting in photosynthesisJ. Exper. Bot.201466723 WeiXStructure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolutionNature201653469741:CAS:528:DC%2BC28XotFOktLg%3D27251276 GuskovACyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chlorideNat. Struct. Mol. Biol.2009163343421:CAS:528:DC%2BD1MXhvFKjt7s%3D19219048 IwaiMTakahashiYMinagawaJMolecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtiiPlant Cell200820217721891:CAS:528:DC%2BD1cXht1Clsb3K187575542553614 ElradDNiyogiKKGrossmanARA major light-harvesting polypeptide of photosystem II functions in thermal dissipationPlant Cell200214180118161:CAS:528:DC%2BD38XmslChu7s%3D12172023151466 LemeilleSTurkinaMVVenerAVRochaixJDStt7-dependent phosphorylation during state transitions in the green alga Chlamydomonas reinhardtiiMol. Cell Proteom.20109128112951:CAS:528:DC%2BC3cXpsFCrtb8%3D NataliACroceRCharacterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtiiPLoS ONE201510e0119211257235344344250 DropBLight-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtiiBiochim. Biophys. Acta2014183763721:CAS:528:DC%2BC3sXhvFWjs7nN23933017 TokutsuRKatoNBuiKHIshikawaTMinagawaJRevisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtiiJ. Biol. Chem.201228731574315811:CAS:528:DC%2BC38XhtlWmu7%2FN228014223438989 RuffleSVPhotosystem II peripheral accessory chlorophyll mutants in Chlamydomonas reinhardtii. biochemical characterization and sensitivity to photo-inhibitionPlant Physiol.20011276336441:CAS:528:DC%2BD3MXnslGlu7w%3D11598237125098 XueHPhotosystem II subunit R is required for efficient binding of light-harvesting complex stress-related protein3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtiiPlant Physiol.2015167156615781:CAS:528:DC%2BC2MXlvVKksrc%3D256995884378180 MerchantSSThe Chlamydomonas genome reveals the evolution of key animal and plant functionsScience20073182452501:CAS:528:DC%2BD2sXhtFCjt7vJ179322922875087 SuXStructure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplexScience20173578158201:CAS:528:DC%2BC2sXhtlKntrrJ28839073 FerrantePBallottariMBonenteGGiulianoGBassiRLHCBM1 and LHCBM2/7 polypeptides, components of major LHCII complex, have distinct functional roles in photosynthetic antenna system of Chlamydomonas reinhardtiiJ. Biol. Chem.201228716276162881:CAS:528:DC%2BC38XmvVKgt7w%3D224317273351333 ScheresSHRELION: implementation of a Bayesian approach to cryo-EM structure determinationJ. Struct. Biol20121805195301:CAS:528:DC%2BC38Xhs12jsLvO230007013690530 ScaifeMAEstablishing Chlamydomonas reinhardtii as an industrial biotechnology hostPlant J.2015825325461:CAS:528:DC%2BC2MXntVWmtL4%3D256415614515103 NelsonNBen-ShemAThe complex architecture of oxygenic photosynthesisNat. Rev. Mol. Cell Biol.200459719821:CAS:528:DC%2BD2cXhtVarsbzP15573135 ZhangKGctf: real-time CTF determination and correctionJ. Struct. Biol.20161931121:CAS:528:DC%2BC2MXhvVOqsbzF265927094711343 GreweSLight-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in Chlamydomonas reinhardtiiPlant Cell201426159816111:CAS:528:DC%2BC2cXpslSjsr4%3D247065114036574 MinagawaJTakahashiYStructure, function and assembly of photosystem II and its light-harvesting proteinsPhotosyn. Res.2004822412631:CAS:528:DC%2BD2MXmvVCisg%3D%3D PanXStructure of the maize photosystem I supercomplex with light-harvesting complexes I and IIScience2018360110911131:CAS:528:DC%2BC1cXhtV2mt7vN29880686 StoffelsLPurtonSGreen biologics: the algal chloroplast as a platform for making biopharmaceuticalsBioengineered20189485428892417 Stern, D. B. in The Chlamydomonas Sourcebook 2nd edn (eds Harris, E. H. et al.) xv–xvii (Academic, 2009). Inoue-KashinoNKashinoYTakahashiYPsb30 is a photosystem II reaction center subunit and is required for optimal growth in high light in Chlamydomonas reinhardtiiJ. Photochem. Photobiol. B20111042202281:CAS:528:DC%2BC3MXntFWjsLw%3D21356599 KucukelbirASigworthFJTagareHDQuantifying the local resolution of cryo-EM density mapsNat. Methods20141163651:CAS:528:DC%2BC3sXhslCmsLrN24213166 Arora, M. & Sahoo, D. in The Algae World (eds Sahoo, D. & Seckbach, J.) 91–120 (Springer, 2015). GradinaruCCThe flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antennaBiophys. J.199875306430771:CAS:528:DyaK1cXnslynu7Y%3D98266261299977 ScrantonMAOstrandJTFieldsFJMayfieldSPChlamydomonas as a model for biofuels and bio-products productionPlant J.2015825235311:CAS:528:DC%2BC2MXntVWmt7c%3D256413905531182 MinagawaJTokutsuRDynamic regulation of photosynthesis in Chlamydomonas reinhardtiiPlant J.2015824134281:CAS:528:DC%2BC2MXntVWmt7g%3D25702778 PettersenEFUCSF Chimera—a visualization system for exploratory research and analysisJ. Comput. Chem.200425160516121:CAS:528:DC%2BD2cXmvVOhsbs%3D15264254 Burton-SmithRaymond N.WatanabeAkimasaTokutsuRyutaroSongChihongMurataKazuyoshiMinagawaJunStructural determination of the large photosystem II–light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipolJournal of Biological Chemistry20192944115003150131:CAS:528:DC%2BC1MXit1ylt7zM314204476791313 TokutsuRIwaiMMinagawaJCP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtiiJ. Biol. Chem.2009284777777821:CAS:528:DC%2BD1MXjtVSmtrw%3D191446432658071 HobeSForsterRKlinglerJPaulsenHN-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex.Biochemistry19953410224102281:CAS:528:DyaK2MXntFCiu7o%3D7640277 SuorsaMPsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem IIJ. Biol. Chem.20062811451501:CAS:528:DC%2BD28Xht1emsw%3D%3D16282331 AfoninePVReal-space refinement in PHENIX for cryo-EM and crystallographyActa Crystallogr. D2018745315441:CAS:528:DC%2BC1cXhtV2ltbzP van BezouwenLSSubunit and chlorophyll organization of the plant photosystem II supercomplexNat. Plants201731708028604725 NawrockiWJSantabarbaraSMosebachLWollmanF-ARappaportFState transitions redistribute rather than dissipate energy between the two photosystems in ChlamydomonasNat. Plants20162160311:CAS:528:DC%2BC28XlvF2ru70%3D27249564 GirolomoniLThe function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtiiJ. Exp. Bot.2017686276411:CAS:528:DC%2BC1cXhsVyrtLfF28007953 TakahashiHIwaiMTakahashiYMinagawaJIdentification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtiiProc. Natl Acad. Sci. USA20061034774821:CAS:528:DC%2BD28XpsVSktw%3D%3D164071701326185 GormanDSLevineRPCytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardiProc. Natl Acad. Sci. USA196554166516691:CAS:528:DyaF28XmtFGjtw%3D%3D4379719300531 BoekemaEJRoonHBreemenJFLDekkerJPSupramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranesEur. J. Biochem.19992664444521:CAS:528:DyaK1MXnslKlur4%3D10561584 SueokaNMitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardiProc. Natl Acad. Sci. USA19604683911:CAS:528:DyaF3cXnsFWltQ%3D%3D16590601285018 NieldJThree-dimensional structure of Chlamydomonas reinhardtii and Synechococcuselongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organizationJ. Biol. Chem.200027527940279461:CAS:528:DC%2BD3cXmsVKksLw%3D10807922 EmsleyPLohkampBScottWGCowtanKFeatures and development of CootActa Crystallogr. D2010664865011:CAS:528:DC%2BC3cXksFKisb8%3D10.1107/S0907444910007493203830022852313 TakahashiHOkamuroAMinagawaJTakahashiYBiochemical characterization of photosystem I-associated light-harvesting complexes I and II isolated from state 2 cells of Chlamydomonas reinhardtiiPlant Cell Physiol.201455143714491:CAS:528:DC%2BC28Xht1CqtL3N24867888 MazorYBorovikovaACaspyINelsonNStructure of the plant photosystem I supercomplex at 2.6 Å resolutionNat. Plants20173170141:CAS:528:DC%2BC2sXlslentrg%3D28248295 MA Scranton (543_CR6) 2015; 82 X Wei (543_CR20) 2016; 534 A Kucukelbir (543_CR44) 2014; 11 A Watanabe (543_CR36) 2019; 593 DS Gorman (543_CR38) 1965; 54 L Stoffels (543_CR5) 2018; 9 P Emsley (543_CR45) 2010; 66 B Drop (543_CR18) 2014; 1837 S Lemeille (543_CR30) 2010; 9 X Pan (543_CR31) 2018; 360 CC Gradinaru (543_CR48) 1998; 75 SH Scheres (543_CR42) 2012; 180 WJ Nawrocki (543_CR35) 2016; 2 R Tokutsu (543_CR17) 2012; 287 H Xue (543_CR25) 2015; 167 M Iwai (543_CR39) 2008; 20 A Natali (543_CR10) 2015; 10 543_CR1 N Inoue-Kashino (543_CR26) 2011; 104 543_CR3 X Su (543_CR22) 2017; 357 A Guskov (543_CR27) 2009; 16 S Hobe (543_CR32) 1995; 34 R Tokutsu (543_CR29) 2009; 284 M Suorsa (543_CR24) 2006; 281 P Ferrante (543_CR15) 2012; 287 V Novoderezhkin (543_CR33) 2011; 13 SV Ruffle (543_CR37) 2001; 127 N Nelson (543_CR7) 2004; 5 J Minagawa (543_CR9) 2004; 82 Y Mazor (543_CR47) 2017; 3 S Grewe (543_CR12) 2014; 26 J Minagawa (543_CR34) 2015; 82 SS Merchant (543_CR2) 2007; 318 543_CR49 N Sueoka (543_CR40) 1960; 46 EJ Boekema (543_CR28) 1999; 266 H Takahashi (543_CR13) 2006; 103 J Nield (543_CR19) 2000; 275 LS van Bezouwen (543_CR21) 2017; 3 PV Afonine (543_CR46) 2018; 74 EF Pettersen (543_CR43) 2004; 25 L Girolomoni (543_CR11) 2017; 68 D Elrad (543_CR16) 2002; 14 H Takahashi (543_CR14) 2014; 55 K Zhang (543_CR41) 2016; 193 Raymond N. Burton-Smith (543_CR23) 2019; 294 AV Ruban (543_CR8) 2014; 66 MA Scaife (543_CR4) 2015; 82 |
References_xml | – volume: 66 start-page: 7 year: 2014 ident: 543_CR8 publication-title: J. Exper. Bot. doi: 10.1093/jxb/eru400 contributor: fullname: AV Ruban – volume: 14 start-page: 1801 year: 2002 ident: 543_CR16 publication-title: Plant Cell doi: 10.1105/tpc.002154 contributor: fullname: D Elrad – volume: 2 start-page: 16031 year: 2016 ident: 543_CR35 publication-title: Nat. Plants doi: 10.1038/nplants.2016.31 contributor: fullname: WJ Nawrocki – volume: 287 start-page: 31574 year: 2012 ident: 543_CR17 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.331991 contributor: fullname: R Tokutsu – volume: 13 start-page: 17093 year: 2011 ident: 543_CR33 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21079c contributor: fullname: V Novoderezhkin – volume: 275 start-page: 27940 year: 2000 ident: 543_CR19 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M003069200 contributor: fullname: J Nield – volume: 25 start-page: 1605 year: 2004 ident: 543_CR43 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 contributor: fullname: EF Pettersen – ident: 543_CR1 doi: 10.1007/978-94-017-7321-8_4 – volume: 3 start-page: 17014 year: 2017 ident: 543_CR47 publication-title: Nat. Plants doi: 10.1038/nplants.2017.14 contributor: fullname: Y Mazor – volume: 281 start-page: 145 year: 2006 ident: 543_CR24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M510600200 contributor: fullname: M Suorsa – volume: 127 start-page: 633 year: 2001 ident: 543_CR37 publication-title: Plant Physiol. doi: 10.1104/pp.010245 contributor: fullname: SV Ruffle – volume: 9 start-page: 48 year: 2018 ident: 543_CR5 publication-title: Bioengineered doi: 10.1080/21655979.2017.1377867 contributor: fullname: L Stoffels – volume: 593 start-page: 1072 year: 2019 ident: 543_CR36 publication-title: FEBS Lett. doi: 10.1002/1873-3468.13394 contributor: fullname: A Watanabe – volume: 284 start-page: 7777 year: 2009 ident: 543_CR29 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809360200 contributor: fullname: R Tokutsu – volume: 11 start-page: 63 year: 2014 ident: 543_CR44 publication-title: Nat. Methods doi: 10.1038/nmeth.2727 contributor: fullname: A Kucukelbir – volume: 16 start-page: 334 year: 2009 ident: 543_CR27 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1559 contributor: fullname: A Guskov – volume: 180 start-page: 519 year: 2012 ident: 543_CR42 publication-title: J. Struct. Biol doi: 10.1016/j.jsb.2012.09.006 contributor: fullname: SH Scheres – volume: 55 start-page: 1437 year: 2014 ident: 543_CR14 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu071 contributor: fullname: H Takahashi – volume: 68 start-page: 627 year: 2017 ident: 543_CR11 publication-title: J. Exp. Bot. contributor: fullname: L Girolomoni – volume: 46 start-page: 83 year: 1960 ident: 543_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.46.1.83 contributor: fullname: N Sueoka – ident: 543_CR3 – volume: 82 start-page: 523 year: 2015 ident: 543_CR6 publication-title: Plant J. doi: 10.1111/tpj.12780 contributor: fullname: MA Scranton – volume: 5 start-page: 971 year: 2004 ident: 543_CR7 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1525 contributor: fullname: N Nelson – volume: 9 start-page: 1281 year: 2010 ident: 543_CR30 publication-title: Mol. Cell Proteom. doi: 10.1074/mcp.M000020-MCP201 contributor: fullname: S Lemeille – volume: 266 start-page: 444 year: 1999 ident: 543_CR28 publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1999.00876.x contributor: fullname: EJ Boekema – volume: 193 start-page: 1 year: 2016 ident: 543_CR41 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.11.003 contributor: fullname: K Zhang – ident: 543_CR49 doi: 10.1609/icwsm.v3i1.13937 – volume: 82 start-page: 532 year: 2015 ident: 543_CR4 publication-title: Plant J. doi: 10.1111/tpj.12781 contributor: fullname: MA Scaife – volume: 294 start-page: 15003 issue: 41 year: 2019 ident: 543_CR23 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.RA119.009341 contributor: fullname: Raymond N. Burton-Smith – volume: 287 start-page: 16276 year: 2012 ident: 543_CR15 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.316729 contributor: fullname: P Ferrante – volume: 10 start-page: e0119211 year: 2015 ident: 543_CR10 publication-title: PLoS ONE doi: 10.1371/journal.pone.0119211 contributor: fullname: A Natali – volume: 167 start-page: 1566 year: 2015 ident: 543_CR25 publication-title: Plant Physiol. doi: 10.1104/pp.15.00094 contributor: fullname: H Xue – volume: 104 start-page: 220 year: 2011 ident: 543_CR26 publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2011.01.024 contributor: fullname: N Inoue-Kashino – volume: 54 start-page: 1665 year: 1965 ident: 543_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.54.6.1665 contributor: fullname: DS Gorman – volume: 103 start-page: 477 year: 2006 ident: 543_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0509952103 contributor: fullname: H Takahashi – volume: 3 start-page: 17080 year: 2017 ident: 543_CR21 publication-title: Nat. Plants doi: 10.1038/nplants.2017.80 contributor: fullname: LS van Bezouwen – volume: 75 start-page: 3064 year: 1998 ident: 543_CR48 publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77747-1 contributor: fullname: CC Gradinaru – volume: 74 start-page: 531 year: 2018 ident: 543_CR46 publication-title: Acta Crystallogr. D doi: 10.1107/S2059798318006551 contributor: fullname: PV Afonine – volume: 357 start-page: 815 year: 2017 ident: 543_CR22 publication-title: Science doi: 10.1126/science.aan0327 contributor: fullname: X Su – volume: 1837 start-page: 63 year: 2014 ident: 543_CR18 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2013.07.012 contributor: fullname: B Drop – volume: 26 start-page: 1598 year: 2014 ident: 543_CR12 publication-title: Plant Cell doi: 10.1105/tpc.114.124198 contributor: fullname: S Grewe – volume: 318 start-page: 245 year: 2007 ident: 543_CR2 publication-title: Science doi: 10.1126/science.1143609 contributor: fullname: SS Merchant – volume: 66 start-page: 486 year: 2010 ident: 543_CR45 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444910007493 contributor: fullname: P Emsley – volume: 534 start-page: 69 year: 2016 ident: 543_CR20 publication-title: Nature doi: 10.1038/nature18020 contributor: fullname: X Wei – volume: 34 start-page: 10224 year: 1995 ident: 543_CR32 publication-title: Biochemistry doi: 10.1021/bi00032a016 contributor: fullname: S Hobe – volume: 82 start-page: 413 year: 2015 ident: 543_CR34 publication-title: Plant J. doi: 10.1111/tpj.12805 contributor: fullname: J Minagawa – volume: 20 start-page: 2177 year: 2008 ident: 543_CR39 publication-title: Plant Cell doi: 10.1105/tpc.108.059352 contributor: fullname: M Iwai – volume: 82 start-page: 241 year: 2004 ident: 543_CR9 publication-title: Photosyn. Res. doi: 10.1007/s11120-004-2079-2 contributor: fullname: J Minagawa – volume: 360 start-page: 1109 year: 2018 ident: 543_CR31 publication-title: Science doi: 10.1126/science.aat1156 contributor: fullname: X Pan |
SSID | ssj0001755360 |
Score | 2.5206032 |
Snippet | Green algae and plants rely on light-harvesting complex II (LHCII) to collect photon energy for oxygenic photosynthesis. In
Chlamydomonas reinhardtii
, LHCII... Green algae and plants rely on light-harvesting complex II (LHCII) to collect photon energy for oxygenic photosynthesis. In Chlamydomonas reinhardtii, LHCII... High-resolution cryo-EM structures of Chlamydomonas light-harvesting complex II (LHCII)–photosystem II (PSII) supercomplexes show loosely and moderately... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1320 |
SubjectTerms | 101/28 631/1647/2258/1258/1259 631/449/1734/2076 82/83 Algae Aquatic plants Biomedical and Life Sciences Chlamydomonas reinhardtii - chemistry Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - metabolism Chlamydomonas reinhardtii - radiation effects Chlorophyll - metabolism Cryoelectron Microscopy Energy Transfer Life Sciences Light Light-harvesting complex Light-Harvesting Protein Complexes - genetics Light-Harvesting Protein Complexes - metabolism Models, Molecular Photosynthesis Photosystem II Photosystem II Protein Complex - chemistry Photosystem II Protein Complex - genetics Photosystem II Protein Complex - metabolism Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Protein Binding |
Title | Structural insight into light harvesting for photosystem II in green algae |
URI | https://link.springer.com/article/10.1038/s41477-019-0543-4 https://www.ncbi.nlm.nih.gov/pubmed/31768031 https://www.proquest.com/docview/2323077005 https://search.proquest.com/docview/2318729824 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2jwMXBG2BhVIZqSeiCMd2YudIYatui5ZDW9Fb5KwddnlsKtIe-PeMH0l2u1SiBy5RlIycyPN5PDMef0boMHc7LpWJM6pIzFMhYpUrFpdaMZkZKomjYzg5F5Mr-XHER4NBmxron_1XTcMz0LXdOfsAbXeNwgO4B53DFbQO13_S-7kjhA1kGo0NvS0lRB39cLcz9cvxaoTyyetZfVN7MudoPLa5j6-2DieyGzxWaoQmjv_TnjkdqJ8CraO3FFfzDmJfFHibqvRp0u_zn6rp7P6nua-g_DbvwBTOch7B5DoLFYohA5Hkd6o5wh_cTZtFlz5Pa5wxoyS1O8H9cT2t5U2XAUaXzKjd1700JUMcTf5q7j25e8MTLmwBbR6DA9ruGlpl0XZr7UwWXrYA2cLKFnwDbVGwUWAit47Oziaf-wSdSFOWdSvhTL5b-86qL7MWoKwtrjuf5eIJehyCDfzeo-QpGpjFDto-qkFFv3fRaQ8VHKCCLVSwgwruoYIBKngJKng8BkHsoIIdVPbQ5fHo4sNJHI7WiKdM0JtYs4paKkoumT34JJuWhLNppZKMEqq5KCV43kYYXYFIooU2SVXxTIH3CYM4JewZ2lzUC_MCYVKWoppWRFem5JpqlSgDMYTRuUxhRjBD9LbtpOLaM6gU92pjiPbbbizCoGoKcPphJhIwXwzRm-41mEG7tqUWpr61MomEOFFSaOK57_7ua-AiZxImryGKWn30jd_7Ky8fJP0KPeqHxj7aBAWa12ij0bcHAVh_AEMvkj8 |
link.rule.ids | 315,782,786,27933,27934,48346,48347,49651,49652 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SXDh_RjPIHECRbRJ2mRHntoYjAMgcYvSJQUk1CI2Dvx7nHQdQsABTq1UN43sxPlS218A9pqh4tI4mjITUZFISU3TcJpZw1XqmIoCHUPrRnbv1emZp8nhdS1MyHavQ5LBU1eF4eqwL2IhfZpkkyLM4FSMw6QnO8fZOHnc6XSvP3-tyCTh6SiG-dO7X1ehb9DyW1g0rDbnc__q5zzMDsElOapGwwKMuWIRpo5LBIDvS3BxE7hiPc8GeSr6fleO10FJnsPto3kNlBvFA0EgS14ey0FZ8TyTdhsFyYNP0SG-9sMtw9352e1Jiw6PUqA9LtmAWp4zTz0oFPcHXaS9LBK8l5s4ZRGzQmYKkZaTzuYoEltpXZznIjWINtBoScRXYKIoC7cGJMoymffyyOYuE5ZZExuHmNHZpkrQA7gG7Neq1S8VY4YOkW6udKUbjbrRXjdaNGCzVr4eTp6-RpCHnkeif2jA7ugxDnsfyzCFK9-8TKxwX6AYNrFaGW30NYREqUJn1YCD2kKfjf_alfU_Se_AdOv26lJftrudDZhh3twhyWUTJtCYbgvG-_Ztezg0PwDdMdx1 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEuLCowW6LQ9X4gSySGwn9p4qKKzYbrUgQSVulrO2AQklq-5y4N937CSLKtoD4pRImTjWjD357Jn5DHDQjRWXxtGcmYSKTEpquobTwhqucsdUEukYLq7l8FadnQeanG9tLUzMdm9DknVNQ2BpKqfHY-ubInF1PBGpkCFlsksRcnAq5mEx7IrhEF88HQyGly_bLDLLeD6LZ_7r3b__SK9g5qsQafzz9Nbe3ed1WG1AJzmpR8kGzLnyAyydVggMnz_Cj-vIIRv4N8hDOQmrdbxOK_IYb-_N70jFUd4RBLhkfF9Nq5r_mfT7KEjuQuoOCTUhbhN-9c5vvl_Q5ogFOuKSTanlngVKQlReOAAjHxWJ4CNv0pwlzApZKERgTjrrUSS10rrUe5EbRCFozCzhW7BQVqX7BCQpCulHPrHeFcIya1LjEEs621UZegbXgcNWzXpcM2noGAHnSte60agbHXSjRQd2WkPoZlJNNII_9EgS_UYHvs4e43QIMQ5TuuopyKQK1wuKYRPbtQFnX0OolCt0Yh04aq310vh_u_L5TdL7sHx11tM_-8PBF1hhwdox92UHFtCWbhfmJ_ZprxmlfwDd_eVX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+insight+into+light+harvesting+for+photosystem+II+in+green+algae&rft.jtitle=Nature+plants&rft.au=Sheng%2C+Xin&rft.au=Watanabe%2C+Akimasa&rft.au=Li%2C+Anjie&rft.au=Kim%2C+Eunchul&rft.date=2019-12-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2055-0278&rft.volume=5&rft.issue=12&rft.spage=1320&rft.epage=1330&rft_id=info:doi/10.1038%2Fs41477-019-0543-4&rft.externalDocID=10_1038_s41477_019_0543_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon |