Investigating the effects of reduced size on the properties of ferroelectrics
A series of experiments has been undertaken to understand more about the fundamental origin of the thickness-induced permittivity collapse often observed in conventional thin film ferroelectric heterostructures. The various experiments are discussed, highlighting the eventual need to examine permitt...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 53; no. 12; pp. 2208 - 2225 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-12-2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of experiments has been undertaken to understand more about the fundamental origin of the thickness-induced permittivity collapse often observed in conventional thin film ferroelectric heterostructures. The various experiments are discussed, highlighting the eventual need to examine permittivity collapse in thin film single crystal material. It has been seen that dielectric collapse is not a direct consequence of reduced size, and neither is it a consequence of unavoidable physics associated with the ferroelectric-electrode boundary. Research on three-dimensional shape-constrained ferroelectrics, emphasizing self-assembled structures based on nanoporous alumina templates and on FIB-milled single crystals, is also presented, and appears to represent an exciting area for ongoing research |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/TUFFC.2006.168 |