Novel approaches to probe the binding of recoverin to membranes
Recoverin is a protein involved in the phototransduction cascade by regulating the activity of rhodopsin kinase through a calcium-dependent binding process at the surface of rod outer segment disk membranes. We have investigated the interaction of recoverin with zwitterionic phosphatidylcholine bila...
Saved in:
Published in: | European biophysics journal Vol. 47; no. 6; pp. 679 - 691 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-09-2018
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recoverin is a protein involved in the phototransduction cascade by regulating the activity of rhodopsin kinase through a calcium-dependent binding process at the surface of rod outer segment disk membranes. We have investigated the interaction of recoverin with zwitterionic phosphatidylcholine bilayers, the major lipid component of the rod outer segment disk membranes, using both
31
P and
19
F solid-state nuclear magnetic resonance (NMR) and infrared spectroscopy. In particular, several novel approaches have been used, such as the centerband-only detection of exchange (CODEX) technique to investigate lipid lateral diffusion and
19
F NMR to probe the environment of the recoverin myristoyl group. The results reveal that the lipid bilayer organization is not disturbed by recoverin. Non-myristoylated recoverin induces a small increase in lipid hydration that appears to be correlated with an increased lipid lateral diffusion. The thermal stability of recoverin remains similar in the absence or presence of lipids and Ca
2+
. Fluorine atoms have been strategically introduced at positions 4 or 12 on the myristoyl moiety of recoverin to, respectively, probe its behavior in the interfacial and more hydrophobic regions of the membrane.
19
F NMR results allow the observation of the calcium–myristoyl switch, the myristoyl group experiencing two different environments in the absence of Ca
2+
and the immobilization of the recoverin myristoyl moiety in phosphatidylcholine membranes in the presence of Ca
2+
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0175-7571 1432-1017 |
DOI: | 10.1007/s00249-018-1304-4 |