Dispersion estimates for one-dimensional discrete Dirac equations
We derive dispersion estimates for solutions of the one-dimensional discrete perturbed Dirac equation. To this end, we develop basic scattering theory and establish a limiting absorption principle for discrete perturbed Dirac operators.
Saved in:
Published in: | Journal of mathematical analysis and applications Vol. 434; no. 1; pp. 191 - 208 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
01-02-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We derive dispersion estimates for solutions of the one-dimensional discrete perturbed Dirac equation. To this end, we develop basic scattering theory and establish a limiting absorption principle for discrete perturbed Dirac operators. |
---|---|
AbstractList | We derive dispersion estimates for solutions of the one-dimensional discrete perturbed Dirac equation. To this end, we develop basic scattering theory and establish a limiting absorption principle for discrete perturbed Dirac operators. |
Author | Teschl, Gerald Kopylova, Elena |
Author_xml | – sequence: 1 givenname: Elena surname: Kopylova fullname: Kopylova, Elena email: Elena.Kopylova@univie.ac.at organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria – sequence: 2 givenname: Gerald orcidid: 0000-0002-1036-9173 surname: Teschl fullname: Teschl, Gerald email: Gerald.Teschl@univie.ac.at organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria |
BookMark | eNp9kE1LxDAQhoOsYHf1D3jqH2idSb_By7LrFyx4UfAW0mQCKdt2TaLgvzdlPTuXObw8My_Pmq2meSLGbhFyBKzvhnwYpcw5YJVDm0NTXbAEoaszaLFYsQSA84yXzccVW3s_ACBWDSZsu7f-RM7beUrJBzvKQD41s0vjg0zbkaYlk8dUW68cBUr31kmV0ueXDDHx1-zSyKOnm7-9Ye-PD2-75-zw-vSy2x4yVTQQMtW1SLzkqAstSXfGaKqw5n3ZlUhV30JvDFaq6TuJLeekeVk3oKGPQ1gUG8bPd5WbvXdkxMnFuu5HIIhFghjEIkEsEgS0IkqI0P0Zotjs25ITXlmaFGnrSAWhZ_sf_gtZ62jO |
CitedBy_id | crossref_primary_10_1016_j_jfa_2019_108289 crossref_primary_10_1002_mana_202000033 crossref_primary_10_1007_s00028_020_00605_x crossref_primary_10_1007_s00023_020_00916_2 crossref_primary_10_1088_1751_8121_aa97ac crossref_primary_10_1515_jiip_2017_0018 crossref_primary_10_1007_s11005_016_0831_0 crossref_primary_10_1070_RM9900 crossref_primary_10_4213_rm9900 |
Cites_doi | 10.4310/DPDE.2011.v8.n2.a3 10.1137/080732821 10.1080/00036810601074321 10.1063/1.3005597 10.1142/S0129055X01000843 10.1016/0022-1236(82)90084-2 10.1006/jfan.1999.3507 10.1070/RM2010v065n01ABEH004662 10.1080/03605300903419783 10.4171/JST/110 10.1007/s00220-004-1140-5 10.1186/1029-242X-2014-73 10.1155/2010/306571 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmaa.2015.08.075 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0813 |
EndPage | 208 |
ExternalDocumentID | 10_1016_j_jmaa_2015_08_075 S0022247X15008136 |
GrantInformation_xml | – fundername: Austrian Science Fund grantid: P27492-N25 funderid: http://dx.doi.org/10.13039/501100002428 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 4.4 457 4G. 5GY 6I. 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 TWZ UPT WH7 XPP YQT ZMT ZU3 ~G- 1~5 29L 5VS 6TJ 7-5 AAQFI AAQXK AAXKI AAYXX ABDPE ABEFU ABFNM ABXDB ADFGL ADIYS ADMUD ADVLN AFFNX AFJKZ AGHFR AI. AKRWK ASPBG AVWKF AZFZN CAG CITATION COF FGOYB G-2 HZ~ H~9 MVM OHT R2- SEW VH1 VOH WUQ XOL YYP ZCG |
ID | FETCH-LOGICAL-c370t-c981e2421d3daed9ffde5162b4941e5b80bff15c7b9a1822ed24670d0bbbbe133 |
ISSN | 0022-247X |
IngestDate | Thu Nov 21 21:05:30 EST 2024 Fri Feb 23 02:33:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Discrete Dirac equation Dispersive decay Limiting absorption principle Cauchy problem |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c370t-c981e2421d3daed9ffde5162b4941e5b80bff15c7b9a1822ed24670d0bbbbe133 |
ORCID | 0000-0002-1036-9173 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1016_j_jmaa_2015_08_075 elsevier_sciencedirect_doi_10_1016_j_jmaa_2015_08_075 |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of mathematical analysis and applications |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Teschl (br0150) 2000; vol. 72 Bairamov, Aygar, Olgun (br0020) 2010; 2010 Jensen, Nenciu (br0070) 2001; 13 Komech, Kopylova (br0080) 2010; 35 Egorova, Kopylova, Teschl (br0030) 2015 Murata (br0120) 1982; 49 Kopylova (br0100) 2011; 8 Cuccagna, Tarulli (br0050) 2009; 41 Komech, Kopylova, Kunze (br0090) 2006; 85 Aygar, Olgun (br0010) 2014 Egorova, Kopylova, Marchenko, Teschl (br0040) Goldberg, Schlag (br0060) 2004; 251 Pelinovsky, Stefanov (br0130) 2008; 49 Stein (br0140) 1993; vol. 43 Kopylova (br0110) 2010; 65 Weder (br0160) 2000; 170 Stein (10.1016/j.jmaa.2015.08.075_br0140) 1993; vol. 43 Cuccagna (10.1016/j.jmaa.2015.08.075_br0050) 2009; 41 Weder (10.1016/j.jmaa.2015.08.075_br0160) 2000; 170 Egorova (10.1016/j.jmaa.2015.08.075_br0040) Murata (10.1016/j.jmaa.2015.08.075_br0120) 1982; 49 Pelinovsky (10.1016/j.jmaa.2015.08.075_br0130) 2008; 49 Komech (10.1016/j.jmaa.2015.08.075_br0090) 2006; 85 Kopylova (10.1016/j.jmaa.2015.08.075_br0110) 2010; 65 Jensen (10.1016/j.jmaa.2015.08.075_br0070) 2001; 13 Teschl (10.1016/j.jmaa.2015.08.075_br0150) 2000; vol. 72 Egorova (10.1016/j.jmaa.2015.08.075_br0030) 2015 Bairamov (10.1016/j.jmaa.2015.08.075_br0020) 2010; 2010 Komech (10.1016/j.jmaa.2015.08.075_br0080) 2010; 35 Goldberg (10.1016/j.jmaa.2015.08.075_br0060) 2004; 251 Aygar (10.1016/j.jmaa.2015.08.075_br0010) 2014 Kopylova (10.1016/j.jmaa.2015.08.075_br0100) 2011; 8 |
References_xml | – volume: 251 start-page: 157 year: 2004 end-page: 178 ident: br0060 article-title: Dispersive estimates for Schrödinger operators in dimensions one and three publication-title: Comm. Math. Phys. contributor: fullname: Schlag – volume: vol. 43 year: 1993 ident: br0140 article-title: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals publication-title: Princeton Math. Ser. contributor: fullname: Stein – volume: vol. 72 year: 2000 ident: br0150 article-title: Jacobi Operators and Completely Integrable Nonlinear Lattices publication-title: Math. Surveys Monogr. contributor: fullname: Teschl – volume: 65 start-page: 95 year: 2010 end-page: 142 ident: br0110 article-title: Dispersion estimates for Schrödinger and Klein–Gordon equation publication-title: Russian Math. Surveys contributor: fullname: Kopylova – volume: 170 start-page: 37 year: 2000 end-page: 68 ident: br0160 article-title: estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrd̈inger equation with a potential publication-title: J. Funct. Anal. contributor: fullname: Weder – volume: 49 start-page: 10 year: 1982 end-page: 56 ident: br0120 article-title: Asymptotic expansions in time for solutions of Schrödinger-type equations publication-title: J. Funct. Anal. contributor: fullname: Murata – start-page: 73 year: 2014 ident: br0010 article-title: Investigation of the spectrum and the Jost solutions of discrete Dirac system on the whole axis publication-title: J. Inequal. Appl. contributor: fullname: Olgun – ident: br0040 article-title: Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited contributor: fullname: Teschl – volume: 35 start-page: 353 year: 2010 end-page: 374 ident: br0080 article-title: Weighted energy decay for 1D Klein–Gordon equation publication-title: Comm. Partial Differential Equations contributor: fullname: Kopylova – volume: 41 start-page: 861 year: 2009 end-page: 885 ident: br0050 article-title: On asymptotic stability of standing waves of discrete Schrödinger equation in publication-title: SIAM J. Math. Anal. contributor: fullname: Tarulli – volume: 2010 year: 2010 ident: br0020 article-title: Jost solution and the spectrum of the discrete Dirac systems publication-title: Bound. Value Probl. contributor: fullname: Olgun – volume: 13 start-page: 717 year: 2001 end-page: 754 ident: br0070 article-title: A unified approach to resolvent expansions at thresholds publication-title: Rev. Math. Phys. contributor: fullname: Nenciu – volume: 49 start-page: 113501 year: 2008 ident: br0130 article-title: On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension publication-title: J. Math. Phys. contributor: fullname: Stefanov – year: 2015 ident: br0030 article-title: Dispersion estimates for one-dimensional discrete Schrödinger and wave equations publication-title: J. Spectr. Theory contributor: fullname: Teschl – volume: 8 start-page: 113 year: 2011 end-page: 125 ident: br0100 article-title: Weighted energy decay for 1D Dirac equation publication-title: Dyn. Partial Differ. Equ. contributor: fullname: Kopylova – volume: 85 start-page: 1487 year: 2006 end-page: 1508 ident: br0090 article-title: Dispersion estimates for 1D discrete Schrödinger and Klein–Gordon equations publication-title: Appl. Anal. contributor: fullname: Kunze – volume: vol. 43 year: 1993 ident: 10.1016/j.jmaa.2015.08.075_br0140 article-title: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals contributor: fullname: Stein – volume: 8 start-page: 113 year: 2011 ident: 10.1016/j.jmaa.2015.08.075_br0100 article-title: Weighted energy decay for 1D Dirac equation publication-title: Dyn. Partial Differ. Equ. doi: 10.4310/DPDE.2011.v8.n2.a3 contributor: fullname: Kopylova – volume: vol. 72 year: 2000 ident: 10.1016/j.jmaa.2015.08.075_br0150 article-title: Jacobi Operators and Completely Integrable Nonlinear Lattices contributor: fullname: Teschl – volume: 41 start-page: 861 year: 2009 ident: 10.1016/j.jmaa.2015.08.075_br0050 article-title: On asymptotic stability of standing waves of discrete Schrödinger equation in Z publication-title: SIAM J. Math. Anal. doi: 10.1137/080732821 contributor: fullname: Cuccagna – volume: 85 start-page: 1487 year: 2006 ident: 10.1016/j.jmaa.2015.08.075_br0090 article-title: Dispersion estimates for 1D discrete Schrödinger and Klein–Gordon equations publication-title: Appl. Anal. doi: 10.1080/00036810601074321 contributor: fullname: Komech – volume: 49 start-page: 113501 year: 2008 ident: 10.1016/j.jmaa.2015.08.075_br0130 article-title: On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension publication-title: J. Math. Phys. doi: 10.1063/1.3005597 contributor: fullname: Pelinovsky – volume: 13 start-page: 717 year: 2001 ident: 10.1016/j.jmaa.2015.08.075_br0070 article-title: A unified approach to resolvent expansions at thresholds publication-title: Rev. Math. Phys. doi: 10.1142/S0129055X01000843 contributor: fullname: Jensen – volume: 49 start-page: 10 year: 1982 ident: 10.1016/j.jmaa.2015.08.075_br0120 article-title: Asymptotic expansions in time for solutions of Schrödinger-type equations publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(82)90084-2 contributor: fullname: Murata – ident: 10.1016/j.jmaa.2015.08.075_br0040 contributor: fullname: Egorova – volume: 170 start-page: 37 year: 2000 ident: 10.1016/j.jmaa.2015.08.075_br0160 article-title: Lp–Lp˙ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrd̈inger equation with a potential publication-title: J. Funct. Anal. doi: 10.1006/jfan.1999.3507 contributor: fullname: Weder – volume: 65 start-page: 95 year: 2010 ident: 10.1016/j.jmaa.2015.08.075_br0110 article-title: Dispersion estimates for Schrödinger and Klein–Gordon equation publication-title: Russian Math. Surveys doi: 10.1070/RM2010v065n01ABEH004662 contributor: fullname: Kopylova – volume: 35 start-page: 353 year: 2010 ident: 10.1016/j.jmaa.2015.08.075_br0080 article-title: Weighted energy decay for 1D Klein–Gordon equation publication-title: Comm. Partial Differential Equations doi: 10.1080/03605300903419783 contributor: fullname: Komech – year: 2015 ident: 10.1016/j.jmaa.2015.08.075_br0030 article-title: Dispersion estimates for one-dimensional discrete Schrödinger and wave equations publication-title: J. Spectr. Theory doi: 10.4171/JST/110 contributor: fullname: Egorova – volume: 251 start-page: 157 year: 2004 ident: 10.1016/j.jmaa.2015.08.075_br0060 article-title: Dispersive estimates for Schrödinger operators in dimensions one and three publication-title: Comm. Math. Phys. doi: 10.1007/s00220-004-1140-5 contributor: fullname: Goldberg – start-page: 73 year: 2014 ident: 10.1016/j.jmaa.2015.08.075_br0010 article-title: Investigation of the spectrum and the Jost solutions of discrete Dirac system on the whole axis publication-title: J. Inequal. Appl. doi: 10.1186/1029-242X-2014-73 contributor: fullname: Aygar – volume: 2010 year: 2010 ident: 10.1016/j.jmaa.2015.08.075_br0020 article-title: Jost solution and the spectrum of the discrete Dirac systems publication-title: Bound. Value Probl. doi: 10.1155/2010/306571 contributor: fullname: Bairamov |
SSID | ssj0011571 |
Score | 2.2957294 |
Snippet | We derive dispersion estimates for solutions of the one-dimensional discrete perturbed Dirac equation. To this end, we develop basic scattering theory and... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 191 |
SubjectTerms | Cauchy problem Discrete Dirac equation Dispersive decay Limiting absorption principle |
Title | Dispersion estimates for one-dimensional discrete Dirac equations |
URI | https://dx.doi.org/10.1016/j.jmaa.2015.08.075 |
Volume | 434 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS-QwEA6nvtw9iJ7K-ZM-3NtSadK0aR8XXVFBX1xh30raTOGW2109dw_8751J2mxvleM8sA-hBNKGzMdkMpn5hrHvKajUKClDKUUVSqV4qIWuQ2Jer2pZcp5TcvLlnbodZecDOViGBC37PlTS2IeypszZd0jbfxQ78B1lji1KHdt_kvv5D-L-Jh9Yjwg0JmRL2ljC2RRCQ1z-joeDrmbQYpwDaT1d9eBx0XHevTZXJ57f1bILNFQmluq1cwfu9ffs4fnn7Ld2kWMw9cp_CHicdkW9rDes63XgPlC5dYW16TB_RGva1AAh1chtLk6jRhTlnLmE01blysaB2cWWU6Dc1e5q9mJhOR9eq3nncRifjieauKN4YmlYXQmWFfrsO5vui3NCy5emka6xDYFKCXXiRv9qMLr2d048UbzllqcBTYqViwZc_dPbZkzHNBlusc1GSEHfgWGbfYLpV_blxgvsaYf1l7AIPCwChEWwAoughUVgYRF4WOyy-4vB8OwybKpnhFWsonlY5RkHuvA3sdFg8ro2kPBUlDKXHJIyi8q65kmlylzjIVOAEbhpRiYq8QEex3tsfYpz-MYCEJDlvNSRACXTGo1CPKVq4nHKqjLW-T7rtYtRPDiSlKKNHhwXtHQFLV1BBU9Vss-Sdr2Kxsxz5luB4v3LuIP_HHfIPi8RfMTW578WcMzWnszipIHAC0wodo4 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dispersion+estimates+for+one-dimensional+discrete+Dirac+equations&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Kopylova%2C+Elena&rft.au=Teschl%2C+Gerald&rft.date=2016-02-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=434&rft.issue=1&rft.spage=191&rft.epage=208&rft_id=info:doi/10.1016%2Fj.jmaa.2015.08.075&rft.externalDocID=S0022247X15008136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |