Optimized Growth and Laser Application of Yb:LuAG Single-Crystal Fibers by Micro-Pulling-Down Technique
Single-crystal fibers (SCFs) have a great application potential in high-power lasers due to their excellent performance. In this work, high-quality and crack-free Yb3+:Lu3Al5O12 (Yb:LuAG) SCFs were successfully fabricated by the micro-pulling-down (μ-PD) technology. Based on the laser micrometer and...
Saved in:
Published in: | Crystals (Basel) Vol. 11; no. 2; p. 78 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-02-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single-crystal fibers (SCFs) have a great application potential in high-power lasers due to their excellent performance. In this work, high-quality and crack-free Yb3+:Lu3Al5O12 (Yb:LuAG) SCFs were successfully fabricated by the micro-pulling-down (μ-PD) technology. Based on the laser micrometer and the X-ray Laue diffraction results, these Yb:LuAG SCFs have a less than 5% diameter fluctuation and good crystallinity along the axial direction. More importantly, the distribution of Yb ions is proved to be uniform by electron probe microanalysis (EPMA) and the scanning electron microscope (SEM). In the laser experiment, the continuous-wave (CW) output power using a 1 mm diameter Yb:LuAG single-crystal fiber is determined to be 1.96 W, at the central wavelength of 1047 nm, corresponding to a slope efficiency of 13.55%. Meanwhile, by applying a 3 mm diameter Yb:LuAG SCF, we obtain a 4.7 W CW laser output at 1049 nm with the slope efficiency of 22.17%. The beam quality factor M2 is less than 1.1 in both conditions, indicating a good optical quality of the grown fiber. Our results show that the Yb:LuAG SCF is a potential solid-state laser gain medium for 1 μm high-power lasers. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst11020078 |