Silica-supported Au@hollow-SiO2 particles with outstanding catalytic activity prepared via block copolymer template approach
[Display omitted] Catalytically active Au@hollow-SiO2 particles embedded in porous silica support (Au@hollow-SiO2@PSS) were prepared by using spherical micelles from poly(styrene)-block-poly(4-vinyl pyridine) block copolymer as a sacrificial template. Drastic increase of the shell porosity was obser...
Saved in:
Published in: | Journal of colloid and interface science Vol. 491; pp. 246 - 254 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Inc
01-04-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Catalytically active Au@hollow-SiO2 particles embedded in porous silica support (Au@hollow-SiO2@PSS) were prepared by using spherical micelles from poly(styrene)-block-poly(4-vinyl pyridine) block copolymer as a sacrificial template. Drastic increase of the shell porosity was observed after pyrolytic removal of polymeric template because the stretched poly(4-vinyl pyridine) chains interpenetrating with silica shell acted as an effective porogen. The embedding of Au@hollow-SiO2 particles in porous silica support prevented their fusion during pyrolysis. The catalytic activity of Au@hollow-SiO2@PSS was investigated using a model reaction of catalytic reduction of 4-nitrophenol and reductive degradation of Congo red azo-dye. Significantly, to the best of our knowledge, Au@hollow-SiO2@PSS catalyst shows the highest activity among analogous systems reported till now in literature. Such high activity was attributed to the presence of multiple pores within silica shell of Au@hollow-SiO2 particles and easy accessibility of reagents to the catalytically active sites of the ligand-free gold surface through the porous silica support. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2016.12.051 |