Investigation of the effects of fin perforations on the thermal-hydraulic performance of Plate-Finned heat exchangers

•The present work performs a hybrid numerical-experimental analysis to obtain the thermal and hydraulic performances of the perforated plate-finned heat exchangers.•An experimental apparatus was devised for validation of the numerical data.•The PEC parameter of the heat exchanger was enhanced with i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 187; p. 122561
Main Authors: Rauber, W.K., Silva, U.F., Vaz, M., Alves, M.V.C., Zdanski, P.S.B.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 15-05-2022
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The present work performs a hybrid numerical-experimental analysis to obtain the thermal and hydraulic performances of the perforated plate-finned heat exchangers.•An experimental apparatus was devised for validation of the numerical data.•The PEC parameter of the heat exchanger was enhanced with increasing the size of the fin perforations (either circular or diamond shape).•The optimization metrics, heat transfers per unit mass and specific heat transfer of the fin surface, enhanced when the fins are perforated. Design of fin profiles is a critical step in searching for more efficient heat exchangers. The present work performs a hybrid numerical-experimental analysis to obtain the thermal and hydraulic performances of the plate-finned heat exchangers. The analysis comprises a four-tube heat exchanger with in-line arrangement, being tested three fin patterns, i.e., rectangular with no insert (standard) and rectangular with diamond and circular perforations. The proposed methodology combines numerical simulation of the conjugate heat transfer problem (convection in the fluid/diffusion in the solid) with wind tunnel experimental data as boundary conditions. The ANSYS-Fluent® software is adopted to solve the three-dimensional average turbulent flow of air over the finned tubes within the framework of RANS model. The validation procedure compares the present results against empirical correlations for the Nusselt number available in the literature. Finally, a parametric study is addressed evaluating the influences of both the size and the shape of fin perforations upon the fluid dynamics and heat transfer behaviour. The main results indicate that larger sizes of the fin perforations (either circular or diamond shape) will enhance the comprehensive Performance Evaluation Criterion – the PEC parameter – and mass/volume thermal efficiency of the heat exchanger.
AbstractList •The present work performs a hybrid numerical-experimental analysis to obtain the thermal and hydraulic performances of the perforated plate-finned heat exchangers.•An experimental apparatus was devised for validation of the numerical data.•The PEC parameter of the heat exchanger was enhanced with increasing the size of the fin perforations (either circular or diamond shape).•The optimization metrics, heat transfers per unit mass and specific heat transfer of the fin surface, enhanced when the fins are perforated. Design of fin profiles is a critical step in searching for more efficient heat exchangers. The present work performs a hybrid numerical-experimental analysis to obtain the thermal and hydraulic performances of the plate-finned heat exchangers. The analysis comprises a four-tube heat exchanger with in-line arrangement, being tested three fin patterns, i.e., rectangular with no insert (standard) and rectangular with diamond and circular perforations. The proposed methodology combines numerical simulation of the conjugate heat transfer problem (convection in the fluid/diffusion in the solid) with wind tunnel experimental data as boundary conditions. The ANSYS-Fluent® software is adopted to solve the three-dimensional average turbulent flow of air over the finned tubes within the framework of RANS model. The validation procedure compares the present results against empirical correlations for the Nusselt number available in the literature. Finally, a parametric study is addressed evaluating the influences of both the size and the shape of fin perforations upon the fluid dynamics and heat transfer behaviour. The main results indicate that larger sizes of the fin perforations (either circular or diamond shape) will enhance the comprehensive Performance Evaluation Criterion – the PEC parameter – and mass/volume thermal efficiency of the heat exchanger.
Design of fin profiles is a critical step in searching for more efficient heat exchangers. The present work performs a hybrid numerical-experimental analysis to obtain the thermal and hydraulic performances of the plate-finned heat exchangers. The analysis comprises a four-tube heat exchanger with in-line arrangement, being tested three fin patterns, i.e., rectangular with no insert (standard) and rectangular with diamond and circular perforations. The proposed methodology combines numerical simulation of the conjugate heat transfer problem (convection in the fluid/diffusion in the solid) with wind tunnel experimental data as boundary conditions. The ANSYS-Fluent® software is adopted to solve the three-dimensional average turbulent flow of air over the finned tubes within the framework of RANS model. The validation procedure compares the present results against empirical correlations for the Nusselt number available in the literature. Finally, a parametric study is addressed evaluating the influences of both the size and the shape of fin perforations upon the fluid dynamics and heat transfer behaviour. The main results indicate that larger sizes of the fin perforations (either circular or diamond shape) will enhance the comprehensive Performance Evaluation Criterion – the PEC parameter – and mass/volume thermal efficiency of the heat exchanger.
ArticleNumber 122561
Author Rauber, W.K.
Alves, M.V.C.
Silva, U.F.
Vaz, M.
Zdanski, P.S.B.
Author_xml – sequence: 1
  givenname: W.K.
  surname: Rauber
  fullname: Rauber, W.K.
– sequence: 2
  givenname: U.F.
  surname: Silva
  fullname: Silva, U.F.
– sequence: 3
  givenname: M.
  surname: Vaz
  fullname: Vaz, M.
– sequence: 4
  givenname: M.V.C.
  surname: Alves
  fullname: Alves, M.V.C.
– sequence: 5
  givenname: P.S.B.
  surname: Zdanski
  fullname: Zdanski, P.S.B.
  email: paulo.zdanski@udesc.br
BookMark eNqNkM9PwjAUxxujiYD-D0u8eBn2x1i3m4aIYkj0oOfmrXuFLtBhO4j893bAzYuHpnntp9_X9xmSS9c6JOSe0TGjLH9oxrZZIXQbCKHz4IJBP-aU8zHjfJKzCzJghSxTzorykgwoZTItBaPXZBhC05c0ywdkN3d7DJ1dQmdbl7Qm6VaYoDGou9CXxrpki960_kjEM3dE4vIbWKerQ-1ht7b6TG3Aaewffqyhw3RmncM66X-a4I9egVuiDzfkysA64O15H5Gv2fPn9DVdvL_Mp0-LVAtJu1TWQghZTqo8pyA5LQ0U0lT5JEMqag6CQgGcMcxpJTXPOFBdsQyropI8M0KMyN0pd-vb712cUzXtzrvYUvE846UoSzmJ1OOJ0r4NwaNRW2834A-KUdXLVo36K1v1stVJdox4O0VgnGZv423QFqOJ2vpoUtWt_X_YLxGgmAk
CitedBy_id crossref_primary_10_1177_16878132231205835
crossref_primary_10_1016_j_icheatmasstransfer_2023_106995
crossref_primary_10_1016_j_applthermaleng_2024_122711
crossref_primary_10_2298_TSCI22S1485D
crossref_primary_10_3390_en15041430
crossref_primary_10_1016_j_applthermaleng_2024_122559
crossref_primary_10_1016_j_applthermaleng_2023_120041
crossref_primary_10_1016_j_applthermaleng_2023_122121
crossref_primary_10_1016_j_egyr_2022_09_050
crossref_primary_10_1016_j_csite_2023_103612
crossref_primary_10_3390_en16041948
Cites_doi 10.1016/j.applthermaleng.2008.01.014
10.1016/j.applthermaleng.2019.114634
10.1016/j.applthermaleng.2017.05.027
10.1016/j.ijheatmasstransfer.2021.121758
10.1016/j.icheatmasstransfer.2011.11.009
10.1016/j.icheatmasstransfer.2021.105273
10.3390/en11061398
10.1016/j.applthermaleng.2015.12.107
10.1016/j.applthermaleng.2017.08.010
10.1016/j.applthermaleng.2019.113974
10.1016/j.ijheatmasstransfer.2008.07.006
10.1016/0017-9310(94)00252-Q
10.1016/j.energy.2021.120633
10.1016/j.energy.2020.117806
10.1016/j.applthermaleng.2018.11.068
10.1115/1.2911398
10.1080/01457632.2017.1366238
10.1016/j.ijheatmasstransfer.2019.01.001
10.2514/3.12149
10.1016/j.ijthermalsci.2019.05.002
10.1016/j.ijheatmasstransfer.2014.10.072
10.1016/j.ijheatmasstransfer.2016.09.028
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV May 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV May 15, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2022.122561
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2022_122561
S0017931022000436
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29J
6TJ
AAQXK
AAXKI
AAYXX
ABDMP
ABTAH
ABXDB
ACKIV
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
T9H
VOH
WUQ
ZY4
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-7d333795b660a7209fa87fb654e03d2a30a8a211e60b7c242a0cb14eb8b724f33
ISSN 0017-9310
IngestDate Thu Oct 10 19:12:13 EDT 2024
Thu Sep 26 17:16:35 EDT 2024
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conjugate convection/diffusion problem
Perforated finned surfaces
Numerical simulation
Heat exchanger devices
Wind tunnel experimental analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-7d333795b660a7209fa87fb654e03d2a30a8a211e60b7c242a0cb14eb8b724f33
PQID 2642939975
PQPubID 2045464
ParticipantIDs proquest_journals_2642939975
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122561
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2022_122561
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Liu, Yu, Yan (bib0008) 2020; 166
Wang, Qian, Cheng, Huang, Ren (bib0001) 2019; 134
Xie, Wang, Sunden (bib0026) 2009; 29
Incropera, Witt, Bergman, Lavine (bib0014) 2007
Wang, Li, Wang, Cheng (bib0012) 2017; 123
Ibrahim, Al-Sammarraie, Al-Taha, Salimpour, Al-Jethelah, Abdalla, Tao (bib0020) 2019; 160
Fan, Ding, Zhang, He, Tao (bib0028) 2009; 52
Dezan, Salviano, Yanagihara (bib0011) 2016; 101
Singh, Sørensen, Condra (bib0009) 2017; 126
(bib0021) 2020
Kays (bib0017) 1994; 116 m
Taler, Taler, Trojan (bib0003) 2020; 203
Kaminski, Gross (bib0022) 2000; 36
Abe, Kondoh, Nagano (bib0024) 1995; 38
Xue, Ge, Du, Yang (bib0005) 2018; 11
Frass (bib0023) 2015
González, Vaz, Zdanski (bib0002) 2019; 148
Taler, Taler, Wrona (bib0004) 2021; 228
Lee, Jung, Ha, Cho (bib0025) 2012; 39
Gholami, Wahid, Mohammed (bib0013) 2017; 106
Buyruk, Karabulut (bib0007) 2018; 39
Doebelin (bib0015) 2004
Kurose, Watanabe, Miyata, Mori, Hamamoto, Umezawa (bib0019) 2021; 180
Taler (bib0027) 2019
Li, Wang, Feng, Wang, Liu, Zhu (bib0018) 2021; 124
Menter (bib0016) 1994; 32
Toubiana, Gautier, Bougeard, Russeil (bib0006) 2019; 144
Salviano, Dezan, Yanagihara (bib0010) 2015; 82
Gholami (10.1016/j.ijheatmasstransfer.2022.122561_bib0013) 2017; 106
Taler (10.1016/j.ijheatmasstransfer.2022.122561_bib0003) 2020; 203
Li (10.1016/j.ijheatmasstransfer.2022.122561_bib0018) 2021; 124
Xie (10.1016/j.ijheatmasstransfer.2022.122561_bib0026) 2009; 29
Kurose (10.1016/j.ijheatmasstransfer.2022.122561_bib0019) 2021; 180
Frass (10.1016/j.ijheatmasstransfer.2022.122561_bib0023) 2015
Fan (10.1016/j.ijheatmasstransfer.2022.122561_bib0028) 2009; 52
Singh (10.1016/j.ijheatmasstransfer.2022.122561_bib0009) 2017; 126
Abe (10.1016/j.ijheatmasstransfer.2022.122561_bib0024) 1995; 38
Lee (10.1016/j.ijheatmasstransfer.2022.122561_bib0025) 2012; 39
(10.1016/j.ijheatmasstransfer.2022.122561_bib0021) 2020
Ibrahim (10.1016/j.ijheatmasstransfer.2022.122561_bib0020) 2019; 160
González (10.1016/j.ijheatmasstransfer.2022.122561_bib0002) 2019; 148
Kaminski (10.1016/j.ijheatmasstransfer.2022.122561_bib0022) 2000; 36
Taler (10.1016/j.ijheatmasstransfer.2022.122561_bib0004) 2021; 228
Kays (10.1016/j.ijheatmasstransfer.2022.122561_bib0017) 1994; 116 m
Buyruk (10.1016/j.ijheatmasstransfer.2022.122561_bib0007) 2018; 39
Wang (10.1016/j.ijheatmasstransfer.2022.122561_bib0012) 2017; 123
Salviano (10.1016/j.ijheatmasstransfer.2022.122561_bib0010) 2015; 82
Incropera (10.1016/j.ijheatmasstransfer.2022.122561_bib0014) 2007
Xue (10.1016/j.ijheatmasstransfer.2022.122561_bib0005) 2018; 11
Doebelin (10.1016/j.ijheatmasstransfer.2022.122561_bib0015) 2004
Menter (10.1016/j.ijheatmasstransfer.2022.122561_bib0016) 1994; 32
Liu (10.1016/j.ijheatmasstransfer.2022.122561_bib0008) 2020; 166
Dezan (10.1016/j.ijheatmasstransfer.2022.122561_bib0011) 2016; 101
Taler (10.1016/j.ijheatmasstransfer.2022.122561_bib0027) 2019
Toubiana (10.1016/j.ijheatmasstransfer.2022.122561_bib0006) 2019; 144
Wang (10.1016/j.ijheatmasstransfer.2022.122561_bib0001) 2019; 134
References_xml – volume: 32
  start-page: 1598
  year: 1994
  end-page: 1605
  ident: bib0016
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
  contributor:
    fullname: Menter
– year: 2019
  ident: bib0027
  article-title: Numerical Modelling and Experimental Testing of Heat Exchangers
  contributor:
    fullname: Taler
– volume: 101
  start-page: 576
  year: 2016
  end-page: 591
  ident: bib0011
  article-title: Heat transfer enhancement and optimization of flat-tube multilouvered fin compact heat exchangers with delta-winglet vortex generator
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Yanagihara
– volume: 203
  year: 2020
  ident: bib0003
  article-title: Thermal calculations of plate-fine and-tube heat exchangers with different heat transfer coefficients on each tube row
  publication-title: Energy
  contributor:
    fullname: Trojan
– volume: 11
  start-page: 1398
  year: 2018
  ident: bib0005
  article-title: On the heat transfer enhancement of plate fin heat exchanger
  publication-title: Energies
  contributor:
    fullname: Yang
– volume: 106
  start-page: 573
  year: 2017
  end-page: 592
  ident: bib0013
  article-title: Thermo-hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Mohammed
– volume: 126
  start-page: 903
  year: 2017
  end-page: 914
  ident: bib0009
  article-title: Investigation of material efficient fin patterns for cost-effective operation of fin and tube heat exchanger
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Condra
– volume: 144
  start-page: 158
  year: 2019
  end-page: 172
  ident: bib0006
  article-title: Large eddy simulation of transitional flows in an elliptical finned-tube heat exchanger
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Russeil
– year: 2020
  ident: bib0021
  article-title: Ansys Fluent Theory Guide
– year: 2004
  ident: bib0015
  article-title: Measurement Systems – Application and Design
  contributor:
    fullname: Doebelin
– volume: 82
  start-page: 373
  year: 2015
  end-page: 387
  ident: bib0010
  article-title: Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: response surface methodology and direct optimization
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Yanagihara
– volume: 116 m
  start-page: 284
  year: 1994
  end-page: 295
  ident: bib0017
  article-title: Turbulent Prandtl Number – Where Are We?
  publication-title: J. Heat Transf.
  contributor:
    fullname: Kays
– volume: 134
  start-page: 388
  year: 2019
  end-page: 397
  ident: bib0001
  article-title: Analysis of thermal hydraulic performance of the elliptical tube in the finned-tube heat exchanger by new method
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Ren
– volume: 36
  start-page: 13
  year: 2000
  end-page: 18
  ident: bib0022
  article-title: Luftseitiger Wärmeübergang und Druckverlust in Lamellenrohr-Wärmeübertragern
  publication-title: Ki Luft- und Kaeltetechnik
  contributor:
    fullname: Gross
– volume: 29
  start-page: 1
  year: 2009
  end-page: 16
  ident: bib0026
  article-title: Parametric study and multiple correlations on air-side heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Sunden
– volume: 228
  year: 2021
  ident: bib0004
  article-title: New analytical-numerical method for modelling of tube cross-flow heat exchangers with complex flow systems
  publication-title: Energy
  contributor:
    fullname: Wrona
– year: 2015
  ident: bib0023
  article-title: Principles of Finned-Tube Heat Exchanger Design For Enhanced Heat Transfer
  contributor:
    fullname: Frass
– volume: 39
  start-page: 161
  year: 2012
  end-page: 166
  ident: bib0025
  article-title: Improvement of heat transfer with perforated circular holes in finned tubes of air-cooled heat exchanger
  publication-title: Int. Commun. Heat Mass Transfer
  contributor:
    fullname: Cho
– volume: 124
  year: 2021
  ident: bib0018
  article-title: Study on shell side heat transport enhancement of double tube heat exchangers by twisted oval tubes
  publication-title: Int. Commun. Heat Mass Transf.
  contributor:
    fullname: Zhu
– volume: 39
  start-page: 1392
  year: 2018
  end-page: 1404
  ident: bib0007
  article-title: Enhancement of heat transfer for plate fin heat exchangers considering the effects of fin arrangements
  publication-title: Heat Transfer Eng.
  contributor:
    fullname: Karabulut
– year: 2007
  ident: bib0014
  article-title: Fundamentals of Heat and Mass Transfer
  contributor:
    fullname: Lavine
– volume: 166
  year: 2020
  ident: bib0008
  article-title: A experimental study on the air side heat transfer performance of the perforated fin-tube heat exchangers under frosting conditions
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Yan
– volume: 38
  start-page: 1467
  year: 1995
  end-page: 1481
  ident: bib0024
  article-title: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows – II: thermal Field Calculations
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Nagano
– volume: 123
  start-page: 830
  year: 2017
  end-page: 844
  ident: bib0012
  article-title: Experimental and numerical studies on the air-side flow and heat transfer characteristics of a novel heat exchanger
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Cheng
– volume: 180
  year: 2021
  ident: bib0019
  article-title: Numerical simulation of flow and cooling heat transfer of supercritical pressure refrigerants in chevron-type plate heat exchanger
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Umezawa
– volume: 160
  year: 2019
  ident: bib0020
  article-title: Experimental and numerical investigation of heat transfer augmentation in heat sinks using perforation technique
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Tao
– volume: 52
  start-page: 33
  year: 2009
  end-page: 44
  ident: bib0028
  article-title: A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Tao
– volume: 148
  start-page: 363
  year: 2019
  end-page: 370
  ident: bib0002
  article-title: A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Zdanski
– year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0021
– volume: 29
  start-page: 1
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0026
  article-title: Parametric study and multiple correlations on air-side heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2008.01.014
  contributor:
    fullname: Xie
– volume: 166
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0008
  article-title: A experimental study on the air side heat transfer performance of the perforated fin-tube heat exchangers under frosting conditions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114634
  contributor:
    fullname: Liu
– volume: 123
  start-page: 830
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0012
  article-title: Experimental and numerical studies on the air-side flow and heat transfer characteristics of a novel heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.05.027
  contributor:
    fullname: Wang
– volume: 180
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0019
  article-title: Numerical simulation of flow and cooling heat transfer of supercritical pressure refrigerants in chevron-type plate heat exchanger
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121758
  contributor:
    fullname: Kurose
– volume: 39
  start-page: 161
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0025
  article-title: Improvement of heat transfer with perforated circular holes in finned tubes of air-cooled heat exchanger
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2011.11.009
  contributor:
    fullname: Lee
– volume: 124
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0018
  article-title: Study on shell side heat transport enhancement of double tube heat exchangers by twisted oval tubes
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2021.105273
  contributor:
    fullname: Li
– volume: 11
  start-page: 1398
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0005
  article-title: On the heat transfer enhancement of plate fin heat exchanger
  publication-title: Energies
  doi: 10.3390/en11061398
  contributor:
    fullname: Xue
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0027
  contributor:
    fullname: Taler
– volume: 101
  start-page: 576
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0011
  article-title: Heat transfer enhancement and optimization of flat-tube multilouvered fin compact heat exchangers with delta-winglet vortex generator
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.107
  contributor:
    fullname: Dezan
– volume: 126
  start-page: 903
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0009
  article-title: Investigation of material efficient fin patterns for cost-effective operation of fin and tube heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.010
  contributor:
    fullname: Singh
– volume: 160
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0020
  article-title: Experimental and numerical investigation of heat transfer augmentation in heat sinks using perforation technique
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.113974
  contributor:
    fullname: Ibrahim
– volume: 52
  start-page: 33
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0028
  article-title: A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.07.006
  contributor:
    fullname: Fan
– volume: 38
  start-page: 1467
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0024
  article-title: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows – II: thermal Field Calculations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(94)00252-Q
  contributor:
    fullname: Abe
– volume: 228
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0004
  article-title: New analytical-numerical method for modelling of tube cross-flow heat exchangers with complex flow systems
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120633
  contributor:
    fullname: Taler
– year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0015
  contributor:
    fullname: Doebelin
– volume: 203
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0003
  article-title: Thermal calculations of plate-fine and-tube heat exchangers with different heat transfer coefficients on each tube row
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117806
  contributor:
    fullname: Taler
– year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0014
  contributor:
    fullname: Incropera
– volume: 148
  start-page: 363
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0002
  article-title: A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.068
  contributor:
    fullname: González
– year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0023
  contributor:
    fullname: Frass
– volume: 116 m
  start-page: 284
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0017
  article-title: Turbulent Prandtl Number – Where Are We?
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2911398
  contributor:
    fullname: Kays
– volume: 39
  start-page: 1392
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0007
  article-title: Enhancement of heat transfer for plate fin heat exchangers considering the effects of fin arrangements
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457632.2017.1366238
  contributor:
    fullname: Buyruk
– volume: 36
  start-page: 13
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0022
  article-title: Luftseitiger Wärmeübergang und Druckverlust in Lamellenrohr-Wärmeübertragern
  publication-title: Ki Luft- und Kaeltetechnik
  contributor:
    fullname: Kaminski
– volume: 134
  start-page: 388
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0001
  article-title: Analysis of thermal hydraulic performance of the elliptical tube in the finned-tube heat exchanger by new method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.01.001
  contributor:
    fullname: Wang
– volume: 32
  start-page: 1598
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0016
  article-title: Two-equation eddy-viscosity turbulence models for engineering applications
  publication-title: AIAA J.
  doi: 10.2514/3.12149
  contributor:
    fullname: Menter
– volume: 144
  start-page: 158
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0006
  article-title: Large eddy simulation of transitional flows in an elliptical finned-tube heat exchanger
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.05.002
  contributor:
    fullname: Toubiana
– volume: 82
  start-page: 373
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0010
  article-title: Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: response surface methodology and direct optimization
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.10.072
  contributor:
    fullname: Salviano
– volume: 106
  start-page: 573
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2022.122561_bib0013
  article-title: Thermo-hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.09.028
  contributor:
    fullname: Gholami
SSID ssj0017046
Score 2.490494
Snippet •The present work performs a hybrid numerical-experimental analysis to obtain the thermal and hydraulic performances of the perforated plate-finned heat...
Design of fin profiles is a critical step in searching for more efficient heat exchangers. The present work performs a hybrid numerical-experimental analysis...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 122561
SubjectTerms Boundary conditions
Conjugate convection/diffusion problem
Diamonds
Empirical analysis
Fluid dynamics
Fluid flow
Heat exchanger devices
Heat exchangers
Heat transfer
Mathematical models
Numerical simulation
Perforated finned surfaces
Perforation
Performance evaluation
Thermodynamic efficiency
Three dimensional flow
Tube heat exchangers
Tubes
Wind tunnel experimental analysis
Wind tunnels
Title Investigation of the effects of fin perforations on the thermal-hydraulic performance of Plate-Finned heat exchangers
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.122561
https://www.proquest.com/docview/2642939975
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6TiBeEFcxGMgPPCChRE6cxPFjVVoN0HhgF_YW2Ymjreq6aW0m9u93jp1bO0BMgpeotXJzzpfjzyffOSbkvShyVjIbdythgqKi0kvBCXpFHhppUs1Tm8e9dyC-naSfJtFkMGhWaura_quloQ1sjZmz97B2e1JogN9gc9iC1WH7V3bvFc5wVHBDtVFa2Thq2hsRnBM6IhE8V3Pv9Ka4UhWWvr7s5RSgUm4OtNSb4lpdBfLL1Ufzs04bXvYp7nqMsVeZwh6DcfpzIOy4NgUw5k4b_F1V2sHnh__VbwM_Z_NrS2-P_GnbeKxs1Hu_bRjNr5232_eP_bHfj2TAJBiLoMZdeK1Jsen0TNZlwzAqea19Nc5Lp0J6wE3kuhsXvxwSXHRi5p_NsJvYw6aDPt6EH4BHc_XgNwpvHzDrvXBKbD-YJltkO4SGeEi2R58nJ1_ar1WCuYSw5lYfkg-djvDP1_0dHdogBpbtHD4hj-tpCh05fD0lA7N4Rh5YuXC-fE6qNZTRi5ICfGiNMvwLKKN9lFHYC3e5gzLaQxke2EcZxS7RDmUvyNF0cjje8-oFPLycC7byRME5FzLWScKUCJksVSpKncSRYbwIFWcqVWEQmIRpkQNZVCzXQWR0qkUYlZy_JMPFxcK8IrRIWKAiJXGAjniea8W4zksdlnB2lpgdIpvnmF26Oi1ZI2CcZXdtkKENMmeDHTJuHnxW807HJzPA0D3OstvYLKvfrWUG0w3g01KK-PU_ucgb8qh7c3bJcHVVmbdka1lU72pQ3gLfr8Ay
link.rule.ids 315,782,786,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+effects+of+fin+perforations+on+the+thermal-hydraulic+performance+of+Plate-Finned+heat+exchangers&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Rauber%2C+W.K.&rft.au=Silva%2C+U.F.&rft.au=Vaz%2C+M.&rft.au=Alves%2C+M.V.C.&rft.date=2022-05-15&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=187&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2022.122561&rft.externalDocID=S0017931022000436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon