Design, fabrication and analysis of germanium: silicon solar cell in a multi-junction concentrator system

A Ge:Si solar cell under a silicon solar cell can lead to as much as a 5.5% absolute efficiency gain for a multi-junction solar module at 30× concentration. This work demonstrated short circuit current densities that were 93% of the model prediction and open circuit voltages that were 92% of the mod...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells Vol. 108; pp. 146 - 155
Main Authors: Wang, Yi, Gerger, Andrew, Lochtefeld, Anthony, Wang, Lu, Kerestes, Chris, Opila, Robert, Barnett, Allen
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-01-2013
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A Ge:Si solar cell under a silicon solar cell can lead to as much as a 5.5% absolute efficiency gain for a multi-junction solar module at 30× concentration. This work demonstrated short circuit current densities that were 93% of the model prediction and open circuit voltages that were 92% of the model predictions for 88% Ge content, Ge:Si solar cells below Si at 30 suns. Silicon solar cells can absorb few photons in the wavelength range above 1150nm due to the effect of the absorption coefficient. One possible method to enhance the absorption of long wavelength photons is to apply a Ge solar cell below Si. However, this method is industrially impractical due to the high cost of Ge substrates. In this work, a low cost Ge:Si solar cell grown on silicon with strong long wavelength light sensitivity will be demonstrated. This work starts with an all epitaxial growth design, analyzes the performance limits, examines the trade-offs between solar cell performance, Ge composition and material quality and concludes with the pathways to higher efficiency. The high quality Ge:Si layers with Ge content above 85% were achieved on Si substrates using reduced pressure chemical vapor deposition (RPCVD) technology. Three high Ge content Ge:Si solar cells were designed, fabricated and analyzed. The encouraging results experimentally prove that low cost Ge:Si solar cells grown on Si can have high performance below Si. This has been achieved as a direct result of low dislocation density step graded Ge:Si buffers developed in this research. In this paper, the pathway to achieve low cost and high efficiency Ge:Si low band gap solar cells grown on silicon is described. ► We designed three generation Ge:Si solar cells and predicated their performance below Si. ► We achieved Ge:Si solar cells on low cost Si substrates by RPCVD technology. ► We theoretically and experimentally proved that low cost Ge:Si on Si solar cells can have high efficiency below Si solar cell.
AbstractList A Ge:Si solar cell under a silicon solar cell can lead to as much as a 5.5% absolute efficiency gain for a multi-junction solar module at 30× concentration. This work demonstrated short circuit current densities that were 93% of the model prediction and open circuit voltages that were 92% of the model predictions for 88% Ge content, Ge:Si solar cells below Si at 30 suns. Silicon solar cells can absorb few photons in the wavelength range above 1150nm due to the effect of the absorption coefficient. One possible method to enhance the absorption of long wavelength photons is to apply a Ge solar cell below Si. However, this method is industrially impractical due to the high cost of Ge substrates. In this work, a low cost Ge:Si solar cell grown on silicon with strong long wavelength light sensitivity will be demonstrated. This work starts with an all epitaxial growth design, analyzes the performance limits, examines the trade-offs between solar cell performance, Ge composition and material quality and concludes with the pathways to higher efficiency. The high quality Ge:Si layers with Ge content above 85% were achieved on Si substrates using reduced pressure chemical vapor deposition (RPCVD) technology. Three high Ge content Ge:Si solar cells were designed, fabricated and analyzed. The encouraging results experimentally prove that low cost Ge:Si solar cells grown on Si can have high performance below Si. This has been achieved as a direct result of low dislocation density step graded Ge:Si buffers developed in this research. In this paper, the pathway to achieve low cost and high efficiency Ge:Si low band gap solar cells grown on silicon is described. ► We designed three generation Ge:Si solar cells and predicated their performance below Si. ► We achieved Ge:Si solar cells on low cost Si substrates by RPCVD technology. ► We theoretically and experimentally proved that low cost Ge:Si on Si solar cells can have high efficiency below Si solar cell.
A Ge: Si solar cell under a silicon solar cell can lead to as much as a 5.5% absolute efficiency gain for a multi-junction solar module at 30X concentration. This work demonstrated short circuit current densities that were 93% of the model prediction and open circuit voltages that were 92% of the model predictions for 88% Ge content, Ge: Si solar cells below Si at 30 suns. Silicon solar cells can absorb few photons in the wavelength range above 1150 nm due to the effect of the absorption coefficient. One possible method to enhance the absorption of long wavelength photons is to apply a Ge solar cell below Si. However, this method is industrially impractical due to the high cost of Ge substrates. In this work, a low cost Ge: Si solar cell grown on silicon with strong long wavelength light sensitivity will be demonstrated. This work starts with an all epitaxial growth design, analyzes the performance limits, examines the trade-offs between solar cell performance, Ge composition and material quality and concludes with the pathways to higher efficiency. The high quality Ge: Si layers with Ge content above 85% were achieved on Si substrates using reduced pressure chemical vapor deposition (RPCVD) technology. Three high Ge content Ge: Si solar cells were designed, fabricated and analyzed. The encouraging results experimentally prove that low cost Ge: Si solar cells grown on Si can have high performance below Si. This has been achieved as a direct result of low dislocation density step graded Ge: Si buffers developed in this research. In this paper, the pathway to achieve low cost and high efficiency Ge: Si low band gap solar cells grown on silicon is described.
Author Wang, Yi
Barnett, Allen
Opila, Robert
Lochtefeld, Anthony
Wang, Lu
Kerestes, Chris
Gerger, Andrew
Author_xml – sequence: 1
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  email: yiwang.udel@gmail.com
  organization: Department of Electrical Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 2
  givenname: Andrew
  surname: Gerger
  fullname: Gerger, Andrew
  organization: AmberWave, Inc., 13 Garabedian Drive, Salem, NH 03079, USA
– sequence: 3
  givenname: Anthony
  surname: Lochtefeld
  fullname: Lochtefeld, Anthony
  organization: AmberWave, Inc., 13 Garabedian Drive, Salem, NH 03079, USA
– sequence: 4
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: Department of Electrical Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 5
  givenname: Chris
  surname: Kerestes
  fullname: Kerestes, Chris
  organization: Department of Electrical Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 6
  givenname: Robert
  surname: Opila
  fullname: Opila, Robert
  organization: Department of Electrical Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 7
  givenname: Allen
  surname: Barnett
  fullname: Barnett, Allen
  organization: Department of Electrical Engineering, University of Delaware, Newark, DE 19716, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26748200$$DView record in Pascal Francis
BookMark eNp9kE1r3DAQhkVJoZuk_6AHXQo91K4k2_rooVDSr0Cgl-QsZuVx0GJLqcYu7L-vtht6LIMYGD3vvNJ7yS5STsjYGylaKaT-cGgpzwusrRJStcK2dfiC7aQ1ruk6Zy_YTjhlGqF6-4pdEh2EEEp3_Y7FL0jxMb3nE-xLDLDGnDiksR6YjxSJ54k_YlkgxW35yCnOMVSkGkLhAeeZxyrgyzavsTlsKfzdUJGAaS2w5sLpSCsu1-zlBDPh6-d-xR6-fb2_-dHc_fx-e_P5rgmddmuDSnYSEcBZp_rgLCgBez0YkAYHsR-GsDfGaoBRSSMdCqOnWrrei16P3RV7d977VPKvDWn1S6TTQyFh3shL3SvVu8HpivZnNJRMVHDyTyUuUI5eCn9K1h_8OVl_StYL6-uwyt4-OwAFmKcCKUT6p1Xa9FYJUblPZw7rd39HLJ5CxBrMGAuG1Y85_t_oD3Bdk6E
CitedBy_id crossref_primary_10_3762_bjnano_7_142
crossref_primary_10_1109_JPHOTOV_2015_2459918
crossref_primary_10_1002_pssr_201600231
crossref_primary_10_1016_j_mssp_2015_05_058
crossref_primary_10_1063_1_4972034
crossref_primary_10_1016_j_solmat_2015_03_031
crossref_primary_10_1016_j_solmat_2014_11_027
crossref_primary_10_4028_www_scientific_net_AMR_856_188
crossref_primary_10_1016_j_apsusc_2016_05_086
crossref_primary_10_1016_j_solmat_2015_11_037
crossref_primary_10_1063_1_4962511
crossref_primary_10_1016_j_solmat_2014_03_029
crossref_primary_10_1051_e3sconf_202340105006
crossref_primary_10_1016_j_jcrysgro_2015_03_054
crossref_primary_10_1016_j_solmat_2016_08_037
crossref_primary_10_1016_j_jaerosci_2018_11_013
crossref_primary_10_1021_acsaem_3c02283
crossref_primary_10_1016_j_solmat_2015_06_033
Cites_doi 10.1016/S0927-0248(00)00098-2
10.1109/WCPEC.2006.279688
10.1103/PhysRev.109.695
10.1109/16.792004
10.1063/1.1713126
10.1016/0038-1101(81)90062-9
10.1116/1.1314395
10.1016/0927-0248(95)80004-2
10.1002/pip.586
10.1016/0379-6787(87)90130-X
10.1109/TED.2004.828280
10.1109/PVSC.2010.5614408
10.1002/sia.740060602
10.1016/j.solener.2007.07.010
10.1109/PVSC.2010.5616826
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SP
7SU
7TB
7U5
8FD
C1K
FR3
L7M
DOI 10.1016/j.solmat.2012.08.016
DatabaseName Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3398
EndPage 155
ExternalDocumentID 10_1016_j_solmat_2012_08_016
26748200
S0927024812004217
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
08R
6XO
AALMO
AAPBV
ABFLS
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SP
7SU
7TB
7U5
8FD
C1K
FR3
L7M
ID FETCH-LOGICAL-c369t-e2131eeaa98924c98a20ab657a17e50b55cb7786aad21719e076f6f66a17046d3
ISSN 0927-0248
IngestDate Fri Oct 25 09:27:31 EDT 2024
Thu Sep 26 16:05:25 EDT 2024
Thu Nov 24 18:35:42 EST 2022
Fri Feb 23 02:33:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Design
Germanium silicon
Chemical vapor deposition
Multi-junction solar cell
Performance evaluation
Costs
Ge-Si alloys
Power system economics
Dislocation density
Trade
Photovoltaic array
Power markets
Silicon
Gallium phosphide solar cells
Cost lowering
Silicon solar cells
High performance
Short circuit currents
Absorption coefficient
Buffer system
Forecasting
Open circuit voltage
Solar cell
Multijunction solar cells
Sensitivity
High efficiency
Germanium
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-e2131eeaa98924c98a20ab657a17e50b55cb7786aad21719e076f6f66a17046d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1642249596
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1642249596
crossref_primary_10_1016_j_solmat_2012_08_016
pascalfrancis_primary_26748200
elsevier_sciencedirect_doi_10_1016_j_solmat_2012_08_016
PublicationCentury 2000
PublicationDate January 2013
2013
2013-1-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Solar energy materials and solar cells
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Braunstein, Moore (bib4) 1958; 109
Bothe, Sinton, Schmidt (bib10) 2005; 13
Baruch, De Vos, Landsberg, Parrott (bib14) 1995; 36
Said, Poortmans, Caymax, Nijs (bib2) 1999; 46
Yang, Ma (bib5) 2008; 82
26th IEEE PVSC, Anaheim, USA, 1997.
Wang Xiaoting , Allen, Barnett, et.al, One Lateral Spectrum Splitting Concentrator Photovoltaic architecture: Measurements of current assemblies and analysis of pathways to 40% efficient modules, in: 35th IEEE PVSC, Honolulu, USA, 2010.
Glunz, Rein, Warta, Knobloch, Wettling (bib9) 2001; 65
SiGe materials, processing, and devices, in: Proceedings of First International Symposium, Hawaii, USA, 2004.
R. Westboff, J. Cavlin, et. al., A novel, high quality graded buffer growth process using GeCl
Van Craen, Frisson, Adams (bib8) 1984; 6
A. Gutjahr, I. Silier, N. Rollbuhler, M. Konuma, et. al., SiGe layer structures for solar cell application grown by liquid phase epitaxy
Hilali, Rohatgi, Asher (bib11) 2004; 51
Emery, Osterwald (bib17) 1987; 21
A. Ebong, V. Upadhyaya, et. al., Rapid thermal processing of high efficiency N type silicon solar cells with Al back junction, in: IEEE 4th WCPEC, Waikoloa, USA, 2006.
Martinu, Poitras (bib13) 2000; 18
Green (bib16) 1981; 24
Dismukes, Ekstrom, Steigmeier, Kudman (bib7) 1964; 35
Christopher Kerestes, Yi Wang, et.al, Transparent silicon solar cells: Design, fabrication and analysis, in:35th IEEE PVSC, Honolulu, USA, 2010.
Baruch (10.1016/j.solmat.2012.08.016_bib14) 1995; 36
Green (10.1016/j.solmat.2012.08.016_bib16) 1981; 24
Yang (10.1016/j.solmat.2012.08.016_bib5) 2008; 82
10.1016/j.solmat.2012.08.016_bib15
Van Craen (10.1016/j.solmat.2012.08.016_bib8) 1984; 6
Dismukes (10.1016/j.solmat.2012.08.016_bib7) 1964; 35
Braunstein (10.1016/j.solmat.2012.08.016_bib4) 1958; 109
Bothe (10.1016/j.solmat.2012.08.016_bib10) 2005; 13
10.1016/j.solmat.2012.08.016_bib6
10.1016/j.solmat.2012.08.016_bib12
10.1016/j.solmat.2012.08.016_bib1
Emery (10.1016/j.solmat.2012.08.016_bib17) 1987; 21
10.1016/j.solmat.2012.08.016_bib3
Martinu (10.1016/j.solmat.2012.08.016_bib13) 2000; 18
Said (10.1016/j.solmat.2012.08.016_bib2) 1999; 46
Glunz (10.1016/j.solmat.2012.08.016_bib9) 2001; 65
Hilali (10.1016/j.solmat.2012.08.016_bib11) 2004; 51
References_xml – volume: 21
  start-page: 313
  year: 1987
  end-page: 327
  ident: bib17
  article-title: Measurement of photovoltaic device current as a function of voltage, temperature, intensity and spectrum
  publication-title: Solar Cells
  contributor:
    fullname: Osterwald
– volume: 13
  start-page: 287
  year: 2005
  end-page: 296
  ident: bib10
  article-title: Fundamental boron–oxygen-related carrier lifetime limit in mono- and multicrystalline silicon
  publication-title: Progress in Photovoltaics: Research and Applications
  contributor:
    fullname: Schmidt
– volume: 82
  start-page: 106
  year: 2008
  end-page: 110
  ident: bib5
  article-title: Internal quantum efficiency for solar cells
  publication-title: Solar Energy
  contributor:
    fullname: Ma
– volume: 65
  start-page: 219
  year: 2001
  end-page: 229
  ident: bib9
  article-title: Degradation of carrier lifetime in Cz silicon solar cells
  publication-title: Solar Energy Materials and Solar Cells
  contributor:
    fullname: Wettling
– volume: 109
  start-page: 695
  year: 1958
  end-page: 703
  ident: bib4
  article-title: Intrinsic optical absorption in germanium–silicon alloys
  publication-title: Physical Review
  contributor:
    fullname: Moore
– volume: 35
  start-page: 2899
  year: 1964
  end-page: 2907
  ident: bib7
  article-title: Thermoelectric properties of nanostructured Si
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Kudman
– volume: 46
  start-page: 2103
  year: 1999
  end-page: 2110
  ident: bib2
  article-title: Design, fabrication, and analysis of crystalline Si–SiGe heterostructure thin-film solar cells
  publication-title: IEEE Transactions on Electron Devices
  contributor:
    fullname: Nijs
– volume: 6
  start-page: 257
  year: 1984
  end-page: 260
  ident: bib8
  article-title: SIMS study of the penetration of metallic secondary impurities in screen-printed silicon solar cells
  publication-title: Surface and Interface Analysis
  contributor:
    fullname: Adams
– volume: 51
  start-page: 948
  year: 2004
  end-page: 955
  ident: bib11
  article-title: Development of screen printed silicon solar cells with high fill factor on 100
  publication-title: IEEE Transactions on Electron Devices
  contributor:
    fullname: Asher
– volume: 18
  start-page: 2619
  year: 2000
  end-page: 2646
  ident: bib13
  article-title: Plasma deposition of optical films and coatings: a review
  publication-title: Journal of Vacuum Science and Technology A
  contributor:
    fullname: Poitras
– volume: 36
  start-page: 201
  year: 1995
  end-page: 222
  ident: bib14
  article-title: On some thermodynamic aspects of photovoltaic solar energy conversion
  publication-title: Solar Energy Materials and Solar Cells
  contributor:
    fullname: Parrott
– volume: 24
  start-page: 788
  year: 1981
  end-page: 789
  ident: bib16
  article-title: Solar cell fill factors: general graph and empirical expressions
  publication-title: Solid-State Electronics
  contributor:
    fullname: Green
– volume: 65
  start-page: 219
  year: 2001
  ident: 10.1016/j.solmat.2012.08.016_bib9
  article-title: Degradation of carrier lifetime in Cz silicon solar cells
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/S0927-0248(00)00098-2
  contributor:
    fullname: Glunz
– ident: 10.1016/j.solmat.2012.08.016_bib15
  doi: 10.1109/WCPEC.2006.279688
– volume: 109
  start-page: 695
  year: 1958
  ident: 10.1016/j.solmat.2012.08.016_bib4
  article-title: Intrinsic optical absorption in germanium–silicon alloys
  publication-title: Physical Review
  doi: 10.1103/PhysRev.109.695
  contributor:
    fullname: Braunstein
– volume: 46
  start-page: 2103
  year: 1999
  ident: 10.1016/j.solmat.2012.08.016_bib2
  article-title: Design, fabrication, and analysis of crystalline Si–SiGe heterostructure thin-film solar cells
  publication-title: IEEE Transactions on Electron Devices
  doi: 10.1109/16.792004
  contributor:
    fullname: Said
– volume: 35
  start-page: 2899
  year: 1964
  ident: 10.1016/j.solmat.2012.08.016_bib7
  article-title: Thermoelectric properties of nanostructured Si1−xGex and potential for further improvement
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.1713126
  contributor:
    fullname: Dismukes
– volume: 24
  start-page: 788
  year: 1981
  ident: 10.1016/j.solmat.2012.08.016_bib16
  article-title: Solar cell fill factors: general graph and empirical expressions
  publication-title: Solid-State Electronics
  doi: 10.1016/0038-1101(81)90062-9
  contributor:
    fullname: Green
– ident: 10.1016/j.solmat.2012.08.016_bib6
– volume: 18
  start-page: 2619
  year: 2000
  ident: 10.1016/j.solmat.2012.08.016_bib13
  article-title: Plasma deposition of optical films and coatings: a review
  publication-title: Journal of Vacuum Science and Technology A
  doi: 10.1116/1.1314395
  contributor:
    fullname: Martinu
– ident: 10.1016/j.solmat.2012.08.016_bib1
– volume: 36
  start-page: 201
  year: 1995
  ident: 10.1016/j.solmat.2012.08.016_bib14
  article-title: On some thermodynamic aspects of photovoltaic solar energy conversion
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/0927-0248(95)80004-2
  contributor:
    fullname: Baruch
– volume: 13
  start-page: 287
  year: 2005
  ident: 10.1016/j.solmat.2012.08.016_bib10
  article-title: Fundamental boron–oxygen-related carrier lifetime limit in mono- and multicrystalline silicon
  publication-title: Progress in Photovoltaics: Research and Applications
  doi: 10.1002/pip.586
  contributor:
    fullname: Bothe
– volume: 21
  start-page: 313
  year: 1987
  ident: 10.1016/j.solmat.2012.08.016_bib17
  article-title: Measurement of photovoltaic device current as a function of voltage, temperature, intensity and spectrum
  publication-title: Solar Cells
  doi: 10.1016/0379-6787(87)90130-X
  contributor:
    fullname: Emery
– volume: 51
  start-page: 948
  year: 2004
  ident: 10.1016/j.solmat.2012.08.016_bib11
  article-title: Development of screen printed silicon solar cells with high fill factor on 100O/sq emitters
  publication-title: IEEE Transactions on Electron Devices
  doi: 10.1109/TED.2004.828280
  contributor:
    fullname: Hilali
– ident: 10.1016/j.solmat.2012.08.016_bib3
  doi: 10.1109/PVSC.2010.5614408
– volume: 6
  start-page: 257
  year: 1984
  ident: 10.1016/j.solmat.2012.08.016_bib8
  article-title: SIMS study of the penetration of metallic secondary impurities in screen-printed silicon solar cells
  publication-title: Surface and Interface Analysis
  doi: 10.1002/sia.740060602
  contributor:
    fullname: Van Craen
– volume: 82
  start-page: 106
  year: 2008
  ident: 10.1016/j.solmat.2012.08.016_bib5
  article-title: Internal quantum efficiency for solar cells
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2007.07.010
  contributor:
    fullname: Yang
– ident: 10.1016/j.solmat.2012.08.016_bib12
  doi: 10.1109/PVSC.2010.5616826
SSID ssj0002634
Score 2.2393377
Snippet A Ge:Si solar cell under a silicon solar cell can lead to as much as a 5.5% absolute efficiency gain for a multi-junction solar module at 30× concentration....
A Ge: Si solar cell under a silicon solar cell can lead to as much as a 5.5% absolute efficiency gain for a multi-junction solar module at 30X concentration....
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 146
SubjectTerms Applied sciences
Chemical vapor deposition
Design
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy
Exact sciences and technology
Germanium
Germanium silicon
Low cost
Mathematical models
Multi-junction solar cell
Natural energy
Operation. Load control. Reliability
Photoelectric conversion
Photovoltaic cells
Photovoltaic conversion
Power networks and lines
Silicon
Silicon substrates
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Wavelengths
Title Design, fabrication and analysis of germanium: silicon solar cell in a multi-junction concentrator system
URI https://dx.doi.org/10.1016/j.solmat.2012.08.016
https://search.proquest.com/docview/1642249596
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe67gWE-BggysdkJN6KUew0TsxbtWZ0CA2JdWI8RXbjolYonZb1_-f82YyCBg-oUlQ5zUX2_eq7--l8h9CbkeaJ5FoTpakkI0VTInUuCDjHqgYDK4Ul3KZn-elFMSlHZa8XOsdsx_6rpmEMdG1Ozv6DtqNQGIDvoHO4gtbh-ld6n9iUDLNyC6muPCPnS7Ju6498Nxtys9xYmr5d_gA8NMPWhLlDQ-UbFkS6ZEOyAstnZczNCUfDBUOY7itAd13bM_u0dmcJwQ92kx06Yj4Ijh78t5Ph1_FpbOz1ofziczI6GZYmT-jz0XRWHpefJp1KB_Hm-VaGJy7ciVPHo3mj3yUjWU5MdTVnldxWXABk0tT1qI57dVJ0dtvAXjrDTV293x2b4OiJ1TuYK0zeZPMxW7WV_qYE9y-mMSYsMtOTBWC2h_YZ7Gisj_bHJ-XFx2j0GbcJDHEi4ZSmTSXcffOfvKB7l7KF_-bCNVXZ8Q-s0zN7iO77aAWPHcweoZ5uDtADH7lgbxfaA3S3U9byMVo6DL7FHQRiwAEOCMTrBY4IfI89_rCFCTYwwUt4AN_EH-7iDzv8PUHnx-XsaEp8Sw8yT7m4JprRlGotpSgg8J-LQrJEKp7lkuY6S1SWzZWpaChlDbEyFTrJ-QI-HO4nI16nT1G_WTf6GcIJ_FykIitqkCQFU0WW1UVdpFyBuCwZIBKWuLp0lVuqkNK4qpxKKqOSyvRhpXyA8qCHynufzqusAEi3PHl4Q23xdQE1A_Q66LGC3duso2z0etNWFMJ_0_1d8Oe3CXmB7jDbisXQfy9R__pqo1-hvbbeHHow_gQrEroY
link.rule.ids 315,782,786,4028,27932,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+fabrication+and+analysis+of+germanium%3A+silicon+solar+cell+in+a+multi-junction+concentrator+system&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=YI+WANG&rft.au=GERGER%2C+Andrew&rft.au=LOCHTEFELD%2C+Anthony&rft.au=LU+WANG&rft.date=2013&rft.pub=Elsevier&rft.issn=0927-0248&rft.eissn=1879-3398&rft.volume=108&rft.spage=146&rft.epage=155&rft_id=info:doi/10.1016%2Fj.solmat.2012.08.016&rft.externalDBID=n%2Fa&rft.externalDocID=26748200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon