Topologically Protected Valley-Dependent Quantum Photonic Circuits
Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, th...
Saved in:
Published in: | Physical review letters Vol. 126; no. 23; pp. 1 - 230503 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
College Park
American Physical Society
11-06-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, their unidirectional coupling, and even valley-dependent wave division in topological junctions. Here, we design and fabricate nanophotonic topological harpoon-shaped beam splitters (HSBSs) based on 120-deg-bending interfaces and demonstrate the first on-chip valley-dependent quantum information process. Two-photon quantum interference, namely, Hong-Ou-Mandel interference with a high visibility of 0.956±0.006, is realized with our 50/50 HSBS, which is constructed by two topologically distinct domain walls. Cascading this kind of HSBS together, we also demonstrate a simple quantum photonic circuit and generation of a path-entangled state. Our work shows that the photonic valley state can be used in quantum information processing, and it is possible to realize more complex quantum circuits with valley-dependent photonic topological insulators, which provides a novel method for on-chip quantum information processing. |
---|---|
AbstractList | Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, their unidirectional coupling, and even valley-dependent wave division in topological junctions. Here, we design and fabricate nanophotonic topological harpoon-shaped beam splitters (HSBSs) based on 120-deg-bending interfaces and demonstrate the first on-chip valley-dependent quantum information process. Two-photon quantum interference, namely, Hong-Ou-Mandel interference with a high visibility of 0.956±0.006, is realized with our 50/50 HSBS, which is constructed by two topologically distinct domain walls. Cascading this kind of HSBS together, we also demonstrate a simple quantum photonic circuit and generation of a path-entangled state. Our work shows that the photonic valley state can be used in quantum information processing, and it is possible to realize more complex quantum circuits with valley-dependent photonic topological insulators, which provides a novel method for on-chip quantum information processing. |
ArticleNumber | 230503 |
Author | Ren, Xi-Feng Guo, Guang-Can Chen, Yang He, Xin-Tao Dong, Jian-Wen Cheng, Yu-Jie Qiu, Hao-Yang Feng, Lan-Tian Dai, Dao-Xin Zhang, Ming |
Author_xml | – sequence: 1 givenname: Yang surname: Chen fullname: Chen, Yang – sequence: 2 givenname: Xin-Tao surname: He fullname: He, Xin-Tao – sequence: 3 givenname: Yu-Jie surname: Cheng fullname: Cheng, Yu-Jie – sequence: 4 givenname: Hao-Yang surname: Qiu fullname: Qiu, Hao-Yang – sequence: 5 givenname: Lan-Tian surname: Feng fullname: Feng, Lan-Tian – sequence: 6 givenname: Ming surname: Zhang fullname: Zhang, Ming – sequence: 7 givenname: Dao-Xin surname: Dai fullname: Dai, Dao-Xin – sequence: 8 givenname: Guang-Can surname: Guo fullname: Guo, Guang-Can – sequence: 9 givenname: Jian-Wen surname: Dong fullname: Dong, Jian-Wen – sequence: 10 givenname: Xi-Feng surname: Ren fullname: Ren, Xi-Feng |
BookMark | eNpdkE1Lw0AQhhdRsK3-BQl48ZI6-5nNUesnFKxSvYbNdmJT0mzd3Qj596bUg3iaGXjm5eUZk-PWtUjIBYUppcCvF-s-vOH3HGOcUqamjIMEfkRGFLI8zSgVx2QEwGmaA2SnZBzCBgAGVI_I7dLtXOM-a2uapk8W3kW0EVfJx3Bjn97hDtsVtjF57Uwbu22yWLvo2toms9rbro7hjJxUpgl4_jsn5P3hfjl7Sucvj8-zm3lqucpjajTVK43KCFYKECgsSG0UZJKXqLLK5lxWFc1szspSWJRG5YxXRg6b5hr4hFwdcnfefXUYYrGtg8WmMS26LhRMCilzCcPXhFz-Qzeu8-3Qbk-xjGvB1ECpA2W9C8FjVex8vTW-LygUe7XFH7XF4Ks4qOU_ek9xJg |
CitedBy_id | crossref_primary_10_1002_qute_202300354 crossref_primary_10_1364_OPTICA_481684 crossref_primary_10_1016_j_chip_2022_100025 crossref_primary_10_3389_fmats_2021_728991 crossref_primary_10_1515_nanoph_2021_0371 crossref_primary_10_1103_PhysRevB_108_195423 crossref_primary_10_1002_adpr_202300155 crossref_primary_10_1364_JOSAB_453115 crossref_primary_10_1088_1674_1056_ad3811 crossref_primary_10_1016_j_optlastec_2023_110309 crossref_primary_10_1016_j_yofte_2022_103054 crossref_primary_10_1038_s41566_021_00944_2 crossref_primary_10_1515_nanoph_2022_0775 crossref_primary_10_1088_1361_6463_ad4159 crossref_primary_10_1002_adma_202202370 crossref_primary_10_1002_lpor_202301313 crossref_primary_10_1016_j_optlaseng_2024_108243 crossref_primary_10_3390_nano12091493 crossref_primary_10_1038_s41467_022_32909_6 crossref_primary_10_1021_acs_nanolett_3c00474 crossref_primary_10_1088_1402_4896_acd0dd crossref_primary_10_1364_PRJ_500575 crossref_primary_10_3788_LOP232436 crossref_primary_10_1103_PhysRevResearch_4_023049 crossref_primary_10_1364_OE_457593 crossref_primary_10_1103_PhysRevB_108_104106 crossref_primary_10_1103_PhysRevLett_129_173601 crossref_primary_10_1364_JOSAB_457969 crossref_primary_10_3389_fphy_2022_845579 crossref_primary_10_1016_j_optlastec_2024_110799 crossref_primary_10_1038_s41467_024_45175_5 crossref_primary_10_1088_1367_2630_acf519 crossref_primary_10_1364_OL_460722 crossref_primary_10_1364_PRJ_481849 crossref_primary_10_1063_5_0126104 crossref_primary_10_1007_s11431_022_2347_4 crossref_primary_10_1038_s41467_023_37670_y crossref_primary_10_1002_adma_202311611 crossref_primary_10_1002_lpor_202300515 crossref_primary_10_1126_sciadv_abl3903 crossref_primary_10_1088_1361_6463_ac6f2d crossref_primary_10_1364_OE_450558 crossref_primary_10_1364_OL_523793 crossref_primary_10_1088_1674_1056_acddd3 crossref_primary_10_1063_5_0085979 crossref_primary_10_29026_oes_2022_220001 crossref_primary_10_1016_j_commatsci_2023_112498 crossref_primary_10_1364_OL_451486 crossref_primary_10_1016_j_chaos_2023_113797 crossref_primary_10_1364_AO_520654 crossref_primary_10_1088_1361_6463_ad3839 crossref_primary_10_1016_j_rinp_2023_107066 crossref_primary_10_1515_nanoph_2023_0727 crossref_primary_10_1088_1674_1056_accb41 crossref_primary_10_1002_lpor_202100631 crossref_primary_10_1021_acsphotonics_2c00332 crossref_primary_10_1364_PRJ_464808 crossref_primary_10_1038_s42005_024_01695_6 crossref_primary_10_1002_lpor_202300764 crossref_primary_10_1109_LPT_2023_3331978 crossref_primary_10_1103_PhysRevResearch_6_013321 crossref_primary_10_1109_JPHOT_2022_3179730 crossref_primary_10_3389_fphy_2022_902533 crossref_primary_10_3390_mi12121506 crossref_primary_10_1103_PhysRevResearch_6_013203 crossref_primary_10_1109_JPHOT_2022_3170366 crossref_primary_10_1364_PRJ_471905 crossref_primary_10_1103_PhysRevA_105_043514 crossref_primary_10_1103_PhysRevB_109_174110 crossref_primary_10_1364_OME_522200 crossref_primary_10_1364_PRJ_518426 crossref_primary_10_1103_PhysRevApplied_19_034065 crossref_primary_10_1016_j_optlastec_2022_109060 crossref_primary_10_7498_aps_71_20221938 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1063_5_0174435 crossref_primary_10_1103_PhysRevB_108_205421 crossref_primary_10_1364_OE_512196 crossref_primary_10_1038_s41377_023_01251_x crossref_primary_10_1063_5_0170233 crossref_primary_10_1016_j_revip_2022_100076 crossref_primary_10_1103_PhysRevB_109_085429 crossref_primary_10_3389_fmats_2022_845344 crossref_primary_10_1103_PhysRevApplied_18_044080 crossref_primary_10_1080_23746149_2021_1905546 crossref_primary_10_1103_PhysRevApplied_20_034028 |
Cites_doi | 10.1126/science.aau4296 10.1038/nature14364 10.1038/s41467-020-14553-0 10.1038/s41566-018-0236-y 10.1364/OPTICA.5.001229 10.1364/OPTICA.6.000955 10.1126/science.1232572 10.1103/PhysRevLett.121.250505 10.1038/nature08293 10.1038/nphys2063 10.1364/OE.8.000173 10.1038/nature12066 10.1103/PhysRevLett.111.103901 10.1038/nphoton.2013.274 10.1038/nature14331 10.1103/PhysRevLett.59.2044 10.1038/nature01086 10.1038/ncomms6782 10.1103/PhysRevLett.59.1903 10.1126/science.aar4003 10.1103/PhysRevLett.99.236809 10.1038/s41566-021-00810-1 10.1515/9781400846733 10.1038/nphoton.2012.236 10.1126/science.1250140 10.1103/PhysRevLett.122.153904 10.1103/PhysRevB.77.235406 10.1038/s41586-018-0478-3 10.1038/nature15735 10.1126/science.aaq0327 10.1103/PhysRevLett.120.063902 10.1038/nphoton.2014.40 10.1103/PhysRevLett.100.013904 10.1007/978-3-642-32858-9 10.1126/sciadv.aat3187 10.1038/nmat3520 10.1038/s41467-019-08881-z 10.1103/PhysRevB.96.020202 10.1126/science.abe8770 10.1038/nmat4573 10.1016/j.cpc.2009.11.008 10.1063/1.4809956 10.1038/s41565-018-0297-6 10.1103/PhysRevLett.124.023603 10.1126/science.aar4005 10.1126/science.1254966 |
ContentType | Journal Article |
Copyright | Copyright American Physical Society Jun 11, 2021 |
Copyright_xml | – notice: Copyright American Physical Society Jun 11, 2021 |
DBID | AAYXX CITATION 7U5 8FD H8D L7M 7X8 |
DOI | 10.1103/PhysRevLett.126.230503 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
EndPage | 230503 |
ExternalDocumentID | 10_1103_PhysRevLett_126_230503 |
GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABTAH ACBEA ACGFO ACKIV ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE UCJ VOH VQA WH7 XJT XOL XSW YNT YYP ZCG ZPR ZY4 ~02 7U5 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c369t-a818d8e6a42b404e4c058a60753be67fc935ff17c92bb4ce5a6923fa5e5a83803 |
ISSN | 0031-9007 |
IngestDate | Fri Oct 25 00:07:12 EDT 2024 Thu Oct 10 16:09:32 EDT 2024 Thu Sep 26 17:19:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c369t-a818d8e6a42b404e4c058a60753be67fc935ff17c92bb4ce5a6923fa5e5a83803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2379-554X 0000-0001-7431-4844 0000-0003-0454-1050 0000-0001-6559-8101 |
PQID | 2542738426 |
PQPubID | 2048222 |
ParticipantIDs | proquest_miscellaneous_2545595092 proquest_journals_2542738426 crossref_primary_10_1103_PhysRevLett_126_230503 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-11 |
PublicationDateYYYYMMDD | 2021-06-11 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review letters |
PublicationYear | 2021 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevLett.126.230503Cc15R1 PhysRevLett.126.230503Cc38R1 PhysRevLett.126.230503Cc39R1 PhysRevLett.126.230503Cc17R1 PhysRevLett.126.230503Cc36R1 PhysRevLett.126.230503Cc16R1 PhysRevLett.126.230503Cc37R1 PhysRevLett.126.230503Cc19R1 PhysRevLett.126.230503Cc18R1 B. A. Bernevig (PhysRevLett.126.230503Cc14R1) 2013 PhysRevLett.126.230503Cc30R1 PhysRevLett.126.230503Cc11R1 PhysRevLett.126.230503Cc34R1 PhysRevLett.126.230503Cc10R1 PhysRevLett.126.230503Cc35R1 PhysRevLett.126.230503Cc13R1 PhysRevLett.126.230503Cc32R1 PhysRevLett.126.230503Cc12R1 H.-S. Zhong (PhysRevLett.126.230503Cc42R1) 2020; 370 PhysRevLett.126.230503Cc1R1 PhysRevLett.126.230503Cc2R1 PhysRevLett.126.230503Cc5R1 PhysRevLett.126.230503Cc6R1 PhysRevLett.126.230503Cc3R1 PhysRevLett.126.230503Cc4R1 S.-Q. Shen (PhysRevLett.126.230503Cc33R1) 2012 PhysRevLett.126.230503Cc26R1 PhysRevLett.126.230503Cc25R1 PhysRevLett.126.230503Cc28R1 PhysRevLett.126.230503Cc47R1 PhysRevLett.126.230503Cc27R1 PhysRevLett.126.230503Cc29R1 PhysRevLett.126.230503Cc9R1 PhysRevLett.126.230503Cc41R1 PhysRevLett.126.230503Cc7R1 PhysRevLett.126.230503Cc20R1 PhysRevLett.126.230503Cc8R1 PhysRevLett.126.230503Cc40R1 PhysRevLett.126.230503Cc22R1 PhysRevLett.126.230503Cc45R1 PhysRevLett.126.230503Cc21R1 PhysRevLett.126.230503Cc46R1 PhysRevLett.126.230503Cc24R1 PhysRevLett.126.230503Cc43R1 PhysRevLett.126.230503Cc23R1 PhysRevLett.126.230503Cc44R1 |
References_xml | – ident: PhysRevLett.126.230503Cc25R1 doi: 10.1126/science.aau4296 – ident: PhysRevLett.126.230503Cc11R1 doi: 10.1038/nature14364 – ident: PhysRevLett.126.230503Cc20R1 doi: 10.1038/s41467-020-14553-0 – ident: PhysRevLett.126.230503Cc41R1 doi: 10.1038/s41566-018-0236-y – ident: PhysRevLett.126.230503Cc45R1 doi: 10.1364/OPTICA.5.001229 – ident: PhysRevLett.126.230503Cc27R1 doi: 10.1364/OPTICA.6.000955 – ident: PhysRevLett.126.230503Cc43R1 doi: 10.1126/science.1232572 – ident: PhysRevLett.126.230503Cc40R1 doi: 10.1103/PhysRevLett.121.250505 – ident: PhysRevLett.126.230503Cc2R1 doi: 10.1038/nature08293 – ident: PhysRevLett.126.230503Cc5R1 doi: 10.1038/nphys2063 – ident: PhysRevLett.126.230503Cc32R1 doi: 10.1364/OE.8.000173 – ident: PhysRevLett.126.230503Cc3R1 doi: 10.1038/nature12066 – ident: PhysRevLett.126.230503Cc4R1 doi: 10.1103/PhysRevLett.111.103901 – ident: PhysRevLett.126.230503Cc15R1 doi: 10.1038/nphoton.2013.274 – ident: PhysRevLett.126.230503Cc47R1 doi: 10.1038/nature14331 – ident: PhysRevLett.126.230503Cc37R1 doi: 10.1103/PhysRevLett.59.2044 – ident: PhysRevLett.126.230503Cc39R1 doi: 10.1038/nature01086 – ident: PhysRevLett.126.230503Cc18R1 doi: 10.1038/ncomms6782 – ident: PhysRevLett.126.230503Cc38R1 doi: 10.1103/PhysRevLett.59.1903 – ident: PhysRevLett.126.230503Cc6R1 doi: 10.1126/science.aar4003 – ident: PhysRevLett.126.230503Cc13R1 doi: 10.1103/PhysRevLett.99.236809 – ident: PhysRevLett.126.230503Cc30R1 doi: 10.1038/s41566-021-00810-1 – volume-title: Topological Insulators and Topological Superconductors year: 2013 ident: PhysRevLett.126.230503Cc14R1 doi: 10.1515/9781400846733 contributor: fullname: B. A. Bernevig – ident: PhysRevLett.126.230503Cc16R1 doi: 10.1038/nphoton.2012.236 – ident: PhysRevLett.126.230503Cc10R1 doi: 10.1126/science.1250140 – ident: PhysRevLett.126.230503Cc8R1 doi: 10.1103/PhysRevLett.122.153904 – ident: PhysRevLett.126.230503Cc21R1 doi: 10.1103/PhysRevB.77.235406 – ident: PhysRevLett.126.230503Cc24R1 doi: 10.1038/s41586-018-0478-3 – ident: PhysRevLett.126.230503Cc46R1 doi: 10.1038/nature15735 – ident: PhysRevLett.126.230503Cc26R1 doi: 10.1126/science.aaq0327 – ident: PhysRevLett.126.230503Cc22R1 doi: 10.1103/PhysRevLett.120.063902 – ident: PhysRevLett.126.230503Cc44R1 doi: 10.1038/nphoton.2014.40 – ident: PhysRevLett.126.230503Cc1R1 doi: 10.1103/PhysRevLett.100.013904 – volume-title: Topological Insulators year: 2012 ident: PhysRevLett.126.230503Cc33R1 doi: 10.1007/978-3-642-32858-9 contributor: fullname: S.-Q. Shen – ident: PhysRevLett.126.230503Cc28R1 doi: 10.1126/sciadv.aat3187 – ident: PhysRevLett.126.230503Cc17R1 doi: 10.1038/nmat3520 – ident: PhysRevLett.126.230503Cc19R1 doi: 10.1038/s41467-019-08881-z – ident: PhysRevLett.126.230503Cc35R1 doi: 10.1103/PhysRevB.96.020202 – volume: 370 start-page: 1460 issn: 0036-8075 year: 2020 ident: PhysRevLett.126.230503Cc42R1 publication-title: Science doi: 10.1126/science.abe8770 contributor: fullname: H.-S. Zhong – ident: PhysRevLett.126.230503Cc34R1 doi: 10.1038/nmat4573 – ident: PhysRevLett.126.230503Cc36R1 doi: 10.1016/j.cpc.2009.11.008 – ident: PhysRevLett.126.230503Cc9R1 doi: 10.1063/1.4809956 – ident: PhysRevLett.126.230503Cc23R1 doi: 10.1038/s41565-018-0297-6 – ident: PhysRevLett.126.230503Cc29R1 doi: 10.1103/PhysRevLett.124.023603 – ident: PhysRevLett.126.230503Cc7R1 doi: 10.1126/science.aar4005 – ident: PhysRevLett.126.230503Cc12R1 doi: 10.1126/science.1254966 |
SSID | ssj0001268 |
Score | 2.6611428 |
Snippet | Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 1 |
SubjectTerms | Beam splitters Circuit protection Data processing Domain walls Entangled states Information processing Integrated optics Interference Photonics Quantum phenomena Topological insulators Valleys Visibility |
Title | Topologically Protected Valley-Dependent Quantum Photonic Circuits |
URI | https://www.proquest.com/docview/2542738426 https://search.proquest.com/docview/2545595092 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoERIXxFMsLShI3JDbrO28jrDdqqqqpdAUbU-W40xEpJJU3Q0S_57xI9kscCgHLlHkOCNlPmfmc-JvTMg7TLGhLhJF07JgVExZQTOtKwrRFICFUJRg_uieXCSLZXo0F_ONXHHT9l-RxjbE2ihn_wHtwSg24DlijkdEHY93w93temB8f23Uf7YMA7LKr2bTlJ_0yG96uzbLOTHffH9__q1d221wZvWt7mpX2annq-c9jF7icm3VPwMPn3ltx5XyCdB-VTUty7qhuWrHHW1QueroaT0Mps91Z3Ofaulgwn-CYHaplA-R4MJmmGQ0mTo56BBXnRTeDyDGx2GSmzI0o6S7afgzpIemtIR53C_ww2icDtDwwdjCuIb24pM8vjw7k_l8me-Q-wzDj1noeXG6GPIz3p56rTjaPvy75W2asp2lLfXIH5NHfs4QfHBgPyH3oHlKHjhoVs_Ixy3IgwHy4HfIAw950EMe9JA_J5fH83x2Qv3WGFTzOFtThTyrTCFWghUiFCB0GKUqRv7HC4iTSuNjV9U00RkrCqEhUjEy-UpFeJbyNOQvyG7TNvCSBAkTJa8YxKCF0FWVIakuGaiIi1SXmk_IYe8JeeMqoEg7cwy5HPlOou-k892E7PcOk_7NWEkWCaMCQ0I4IW-HyxjLzA8q1UDb2T44wUUKy17doc8eebgZjPtkd33bwWuysyq7NxbwX6tGa2w |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topologically+Protected+Valley-Dependent+Quantum+Photonic+Circuits&rft.jtitle=Physical+review+letters&rft.au=Chen%2C+Yang&rft.au=He%2C+Xin-Tao&rft.au=Cheng%2C+Yu-Jie&rft.au=Qiu%2C+Hao-Yang&rft.date=2021-06-11&rft.eissn=1079-7114&rft.volume=126&rft.issue=23&rft.spage=230503&rft.epage=230503&rft_id=info:doi/10.1103%2FPhysRevLett.126.230503&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |