Topologically Protected Valley-Dependent Quantum Photonic Circuits

Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, th...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 126; no. 23; pp. 1 - 230503
Main Authors: Chen, Yang, He, Xin-Tao, Cheng, Yu-Jie, Qiu, Hao-Yang, Feng, Lan-Tian, Zhang, Ming, Dai, Dao-Xin, Guo, Guang-Can, Dong, Jian-Wen, Ren, Xi-Feng
Format: Journal Article
Language:English
Published: College Park American Physical Society 11-06-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, their unidirectional coupling, and even valley-dependent wave division in topological junctions. Here, we design and fabricate nanophotonic topological harpoon-shaped beam splitters (HSBSs) based on 120-deg-bending interfaces and demonstrate the first on-chip valley-dependent quantum information process. Two-photon quantum interference, namely, Hong-Ou-Mandel interference with a high visibility of 0.956±0.006, is realized with our 50/50 HSBS, which is constructed by two topologically distinct domain walls. Cascading this kind of HSBS together, we also demonstrate a simple quantum photonic circuit and generation of a path-entangled state. Our work shows that the photonic valley state can be used in quantum information processing, and it is possible to realize more complex quantum circuits with valley-dependent photonic topological insulators, which provides a novel method for on-chip quantum information processing.
AbstractList Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, their unidirectional coupling, and even valley-dependent wave division in topological junctions. Here, we design and fabricate nanophotonic topological harpoon-shaped beam splitters (HSBSs) based on 120-deg-bending interfaces and demonstrate the first on-chip valley-dependent quantum information process. Two-photon quantum interference, namely, Hong-Ou-Mandel interference with a high visibility of 0.956±0.006, is realized with our 50/50 HSBS, which is constructed by two topologically distinct domain walls. Cascading this kind of HSBS together, we also demonstrate a simple quantum photonic circuit and generation of a path-entangled state. Our work shows that the photonic valley state can be used in quantum information processing, and it is possible to realize more complex quantum circuits with valley-dependent photonic topological insulators, which provides a novel method for on-chip quantum information processing.
ArticleNumber 230503
Author Ren, Xi-Feng
Guo, Guang-Can
Chen, Yang
He, Xin-Tao
Dong, Jian-Wen
Cheng, Yu-Jie
Qiu, Hao-Yang
Feng, Lan-Tian
Dai, Dao-Xin
Zhang, Ming
Author_xml – sequence: 1
  givenname: Yang
  surname: Chen
  fullname: Chen, Yang
– sequence: 2
  givenname: Xin-Tao
  surname: He
  fullname: He, Xin-Tao
– sequence: 3
  givenname: Yu-Jie
  surname: Cheng
  fullname: Cheng, Yu-Jie
– sequence: 4
  givenname: Hao-Yang
  surname: Qiu
  fullname: Qiu, Hao-Yang
– sequence: 5
  givenname: Lan-Tian
  surname: Feng
  fullname: Feng, Lan-Tian
– sequence: 6
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
– sequence: 7
  givenname: Dao-Xin
  surname: Dai
  fullname: Dai, Dao-Xin
– sequence: 8
  givenname: Guang-Can
  surname: Guo
  fullname: Guo, Guang-Can
– sequence: 9
  givenname: Jian-Wen
  surname: Dong
  fullname: Dong, Jian-Wen
– sequence: 10
  givenname: Xi-Feng
  surname: Ren
  fullname: Ren, Xi-Feng
BookMark eNpdkE1Lw0AQhhdRsK3-BQl48ZI6-5nNUesnFKxSvYbNdmJT0mzd3Qj596bUg3iaGXjm5eUZk-PWtUjIBYUppcCvF-s-vOH3HGOcUqamjIMEfkRGFLI8zSgVx2QEwGmaA2SnZBzCBgAGVI_I7dLtXOM-a2uapk8W3kW0EVfJx3Bjn97hDtsVtjF57Uwbu22yWLvo2toms9rbro7hjJxUpgl4_jsn5P3hfjl7Sucvj8-zm3lqucpjajTVK43KCFYKECgsSG0UZJKXqLLK5lxWFc1szspSWJRG5YxXRg6b5hr4hFwdcnfefXUYYrGtg8WmMS26LhRMCilzCcPXhFz-Qzeu8-3Qbk-xjGvB1ECpA2W9C8FjVex8vTW-LygUe7XFH7XF4Ks4qOU_ek9xJg
CitedBy_id crossref_primary_10_1002_qute_202300354
crossref_primary_10_1364_OPTICA_481684
crossref_primary_10_1016_j_chip_2022_100025
crossref_primary_10_3389_fmats_2021_728991
crossref_primary_10_1515_nanoph_2021_0371
crossref_primary_10_1103_PhysRevB_108_195423
crossref_primary_10_1002_adpr_202300155
crossref_primary_10_1364_JOSAB_453115
crossref_primary_10_1088_1674_1056_ad3811
crossref_primary_10_1016_j_optlastec_2023_110309
crossref_primary_10_1016_j_yofte_2022_103054
crossref_primary_10_1038_s41566_021_00944_2
crossref_primary_10_1515_nanoph_2022_0775
crossref_primary_10_1088_1361_6463_ad4159
crossref_primary_10_1002_adma_202202370
crossref_primary_10_1002_lpor_202301313
crossref_primary_10_1016_j_optlaseng_2024_108243
crossref_primary_10_3390_nano12091493
crossref_primary_10_1038_s41467_022_32909_6
crossref_primary_10_1021_acs_nanolett_3c00474
crossref_primary_10_1088_1402_4896_acd0dd
crossref_primary_10_1364_PRJ_500575
crossref_primary_10_3788_LOP232436
crossref_primary_10_1103_PhysRevResearch_4_023049
crossref_primary_10_1364_OE_457593
crossref_primary_10_1103_PhysRevB_108_104106
crossref_primary_10_1103_PhysRevLett_129_173601
crossref_primary_10_1364_JOSAB_457969
crossref_primary_10_3389_fphy_2022_845579
crossref_primary_10_1016_j_optlastec_2024_110799
crossref_primary_10_1038_s41467_024_45175_5
crossref_primary_10_1088_1367_2630_acf519
crossref_primary_10_1364_OL_460722
crossref_primary_10_1364_PRJ_481849
crossref_primary_10_1063_5_0126104
crossref_primary_10_1007_s11431_022_2347_4
crossref_primary_10_1038_s41467_023_37670_y
crossref_primary_10_1002_adma_202311611
crossref_primary_10_1002_lpor_202300515
crossref_primary_10_1126_sciadv_abl3903
crossref_primary_10_1088_1361_6463_ac6f2d
crossref_primary_10_1364_OE_450558
crossref_primary_10_1364_OL_523793
crossref_primary_10_1088_1674_1056_acddd3
crossref_primary_10_1063_5_0085979
crossref_primary_10_29026_oes_2022_220001
crossref_primary_10_1016_j_commatsci_2023_112498
crossref_primary_10_1364_OL_451486
crossref_primary_10_1016_j_chaos_2023_113797
crossref_primary_10_1364_AO_520654
crossref_primary_10_1088_1361_6463_ad3839
crossref_primary_10_1016_j_rinp_2023_107066
crossref_primary_10_1515_nanoph_2023_0727
crossref_primary_10_1088_1674_1056_accb41
crossref_primary_10_1002_lpor_202100631
crossref_primary_10_1021_acsphotonics_2c00332
crossref_primary_10_1364_PRJ_464808
crossref_primary_10_1038_s42005_024_01695_6
crossref_primary_10_1002_lpor_202300764
crossref_primary_10_1109_LPT_2023_3331978
crossref_primary_10_1103_PhysRevResearch_6_013321
crossref_primary_10_1109_JPHOT_2022_3179730
crossref_primary_10_3389_fphy_2022_902533
crossref_primary_10_3390_mi12121506
crossref_primary_10_1103_PhysRevResearch_6_013203
crossref_primary_10_1109_JPHOT_2022_3170366
crossref_primary_10_1364_PRJ_471905
crossref_primary_10_1103_PhysRevA_105_043514
crossref_primary_10_1103_PhysRevB_109_174110
crossref_primary_10_1364_OME_522200
crossref_primary_10_1364_PRJ_518426
crossref_primary_10_1103_PhysRevApplied_19_034065
crossref_primary_10_1016_j_optlastec_2022_109060
crossref_primary_10_7498_aps_71_20221938
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1063_5_0174435
crossref_primary_10_1103_PhysRevB_108_205421
crossref_primary_10_1364_OE_512196
crossref_primary_10_1038_s41377_023_01251_x
crossref_primary_10_1063_5_0170233
crossref_primary_10_1016_j_revip_2022_100076
crossref_primary_10_1103_PhysRevB_109_085429
crossref_primary_10_3389_fmats_2022_845344
crossref_primary_10_1103_PhysRevApplied_18_044080
crossref_primary_10_1080_23746149_2021_1905546
crossref_primary_10_1103_PhysRevApplied_20_034028
Cites_doi 10.1126/science.aau4296
10.1038/nature14364
10.1038/s41467-020-14553-0
10.1038/s41566-018-0236-y
10.1364/OPTICA.5.001229
10.1364/OPTICA.6.000955
10.1126/science.1232572
10.1103/PhysRevLett.121.250505
10.1038/nature08293
10.1038/nphys2063
10.1364/OE.8.000173
10.1038/nature12066
10.1103/PhysRevLett.111.103901
10.1038/nphoton.2013.274
10.1038/nature14331
10.1103/PhysRevLett.59.2044
10.1038/nature01086
10.1038/ncomms6782
10.1103/PhysRevLett.59.1903
10.1126/science.aar4003
10.1103/PhysRevLett.99.236809
10.1038/s41566-021-00810-1
10.1515/9781400846733
10.1038/nphoton.2012.236
10.1126/science.1250140
10.1103/PhysRevLett.122.153904
10.1103/PhysRevB.77.235406
10.1038/s41586-018-0478-3
10.1038/nature15735
10.1126/science.aaq0327
10.1103/PhysRevLett.120.063902
10.1038/nphoton.2014.40
10.1103/PhysRevLett.100.013904
10.1007/978-3-642-32858-9
10.1126/sciadv.aat3187
10.1038/nmat3520
10.1038/s41467-019-08881-z
10.1103/PhysRevB.96.020202
10.1126/science.abe8770
10.1038/nmat4573
10.1016/j.cpc.2009.11.008
10.1063/1.4809956
10.1038/s41565-018-0297-6
10.1103/PhysRevLett.124.023603
10.1126/science.aar4005
10.1126/science.1254966
ContentType Journal Article
Copyright Copyright American Physical Society Jun 11, 2021
Copyright_xml – notice: Copyright American Physical Society Jun 11, 2021
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
7X8
DOI 10.1103/PhysRevLett.126.230503
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
EndPage 230503
ExternalDocumentID 10_1103_PhysRevLett_126_230503
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABTAH
ACBEA
ACGFO
ACKIV
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
UCJ
VOH
VQA
WH7
XJT
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
7U5
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c369t-a818d8e6a42b404e4c058a60753be67fc935ff17c92bb4ce5a6923fa5e5a83803
ISSN 0031-9007
IngestDate Fri Oct 25 00:07:12 EDT 2024
Thu Oct 10 16:09:32 EDT 2024
Thu Sep 26 17:19:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c369t-a818d8e6a42b404e4c058a60753be67fc935ff17c92bb4ce5a6923fa5e5a83803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2379-554X
0000-0001-7431-4844
0000-0003-0454-1050
0000-0001-6559-8101
PQID 2542738426
PQPubID 2048222
ParticipantIDs proquest_miscellaneous_2545595092
proquest_journals_2542738426
crossref_primary_10_1103_PhysRevLett_126_230503
PublicationCentury 2000
PublicationDate 2021-06-11
PublicationDateYYYYMMDD 2021-06-11
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-11
  day: 11
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review letters
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevLett.126.230503Cc15R1
PhysRevLett.126.230503Cc38R1
PhysRevLett.126.230503Cc39R1
PhysRevLett.126.230503Cc17R1
PhysRevLett.126.230503Cc36R1
PhysRevLett.126.230503Cc16R1
PhysRevLett.126.230503Cc37R1
PhysRevLett.126.230503Cc19R1
PhysRevLett.126.230503Cc18R1
B. A. Bernevig (PhysRevLett.126.230503Cc14R1) 2013
PhysRevLett.126.230503Cc30R1
PhysRevLett.126.230503Cc11R1
PhysRevLett.126.230503Cc34R1
PhysRevLett.126.230503Cc10R1
PhysRevLett.126.230503Cc35R1
PhysRevLett.126.230503Cc13R1
PhysRevLett.126.230503Cc32R1
PhysRevLett.126.230503Cc12R1
H.-S. Zhong (PhysRevLett.126.230503Cc42R1) 2020; 370
PhysRevLett.126.230503Cc1R1
PhysRevLett.126.230503Cc2R1
PhysRevLett.126.230503Cc5R1
PhysRevLett.126.230503Cc6R1
PhysRevLett.126.230503Cc3R1
PhysRevLett.126.230503Cc4R1
S.-Q. Shen (PhysRevLett.126.230503Cc33R1) 2012
PhysRevLett.126.230503Cc26R1
PhysRevLett.126.230503Cc25R1
PhysRevLett.126.230503Cc28R1
PhysRevLett.126.230503Cc47R1
PhysRevLett.126.230503Cc27R1
PhysRevLett.126.230503Cc29R1
PhysRevLett.126.230503Cc9R1
PhysRevLett.126.230503Cc41R1
PhysRevLett.126.230503Cc7R1
PhysRevLett.126.230503Cc20R1
PhysRevLett.126.230503Cc8R1
PhysRevLett.126.230503Cc40R1
PhysRevLett.126.230503Cc22R1
PhysRevLett.126.230503Cc45R1
PhysRevLett.126.230503Cc21R1
PhysRevLett.126.230503Cc46R1
PhysRevLett.126.230503Cc24R1
PhysRevLett.126.230503Cc43R1
PhysRevLett.126.230503Cc23R1
PhysRevLett.126.230503Cc44R1
References_xml – ident: PhysRevLett.126.230503Cc25R1
  doi: 10.1126/science.aau4296
– ident: PhysRevLett.126.230503Cc11R1
  doi: 10.1038/nature14364
– ident: PhysRevLett.126.230503Cc20R1
  doi: 10.1038/s41467-020-14553-0
– ident: PhysRevLett.126.230503Cc41R1
  doi: 10.1038/s41566-018-0236-y
– ident: PhysRevLett.126.230503Cc45R1
  doi: 10.1364/OPTICA.5.001229
– ident: PhysRevLett.126.230503Cc27R1
  doi: 10.1364/OPTICA.6.000955
– ident: PhysRevLett.126.230503Cc43R1
  doi: 10.1126/science.1232572
– ident: PhysRevLett.126.230503Cc40R1
  doi: 10.1103/PhysRevLett.121.250505
– ident: PhysRevLett.126.230503Cc2R1
  doi: 10.1038/nature08293
– ident: PhysRevLett.126.230503Cc5R1
  doi: 10.1038/nphys2063
– ident: PhysRevLett.126.230503Cc32R1
  doi: 10.1364/OE.8.000173
– ident: PhysRevLett.126.230503Cc3R1
  doi: 10.1038/nature12066
– ident: PhysRevLett.126.230503Cc4R1
  doi: 10.1103/PhysRevLett.111.103901
– ident: PhysRevLett.126.230503Cc15R1
  doi: 10.1038/nphoton.2013.274
– ident: PhysRevLett.126.230503Cc47R1
  doi: 10.1038/nature14331
– ident: PhysRevLett.126.230503Cc37R1
  doi: 10.1103/PhysRevLett.59.2044
– ident: PhysRevLett.126.230503Cc39R1
  doi: 10.1038/nature01086
– ident: PhysRevLett.126.230503Cc18R1
  doi: 10.1038/ncomms6782
– ident: PhysRevLett.126.230503Cc38R1
  doi: 10.1103/PhysRevLett.59.1903
– ident: PhysRevLett.126.230503Cc6R1
  doi: 10.1126/science.aar4003
– ident: PhysRevLett.126.230503Cc13R1
  doi: 10.1103/PhysRevLett.99.236809
– ident: PhysRevLett.126.230503Cc30R1
  doi: 10.1038/s41566-021-00810-1
– volume-title: Topological Insulators and Topological Superconductors
  year: 2013
  ident: PhysRevLett.126.230503Cc14R1
  doi: 10.1515/9781400846733
  contributor:
    fullname: B. A. Bernevig
– ident: PhysRevLett.126.230503Cc16R1
  doi: 10.1038/nphoton.2012.236
– ident: PhysRevLett.126.230503Cc10R1
  doi: 10.1126/science.1250140
– ident: PhysRevLett.126.230503Cc8R1
  doi: 10.1103/PhysRevLett.122.153904
– ident: PhysRevLett.126.230503Cc21R1
  doi: 10.1103/PhysRevB.77.235406
– ident: PhysRevLett.126.230503Cc24R1
  doi: 10.1038/s41586-018-0478-3
– ident: PhysRevLett.126.230503Cc46R1
  doi: 10.1038/nature15735
– ident: PhysRevLett.126.230503Cc26R1
  doi: 10.1126/science.aaq0327
– ident: PhysRevLett.126.230503Cc22R1
  doi: 10.1103/PhysRevLett.120.063902
– ident: PhysRevLett.126.230503Cc44R1
  doi: 10.1038/nphoton.2014.40
– ident: PhysRevLett.126.230503Cc1R1
  doi: 10.1103/PhysRevLett.100.013904
– volume-title: Topological Insulators
  year: 2012
  ident: PhysRevLett.126.230503Cc33R1
  doi: 10.1007/978-3-642-32858-9
  contributor:
    fullname: S.-Q. Shen
– ident: PhysRevLett.126.230503Cc28R1
  doi: 10.1126/sciadv.aat3187
– ident: PhysRevLett.126.230503Cc17R1
  doi: 10.1038/nmat3520
– ident: PhysRevLett.126.230503Cc19R1
  doi: 10.1038/s41467-019-08881-z
– ident: PhysRevLett.126.230503Cc35R1
  doi: 10.1103/PhysRevB.96.020202
– volume: 370
  start-page: 1460
  issn: 0036-8075
  year: 2020
  ident: PhysRevLett.126.230503Cc42R1
  publication-title: Science
  doi: 10.1126/science.abe8770
  contributor:
    fullname: H.-S. Zhong
– ident: PhysRevLett.126.230503Cc34R1
  doi: 10.1038/nmat4573
– ident: PhysRevLett.126.230503Cc36R1
  doi: 10.1016/j.cpc.2009.11.008
– ident: PhysRevLett.126.230503Cc9R1
  doi: 10.1063/1.4809956
– ident: PhysRevLett.126.230503Cc23R1
  doi: 10.1038/s41565-018-0297-6
– ident: PhysRevLett.126.230503Cc29R1
  doi: 10.1103/PhysRevLett.124.023603
– ident: PhysRevLett.126.230503Cc7R1
  doi: 10.1126/science.aar4005
– ident: PhysRevLett.126.230503Cc12R1
  doi: 10.1126/science.1254966
SSID ssj0001268
Score 2.6611428
Snippet Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 1
SubjectTerms Beam splitters
Circuit protection
Data processing
Domain walls
Entangled states
Information processing
Integrated optics
Interference
Photonics
Quantum phenomena
Topological insulators
Valleys
Visibility
Title Topologically Protected Valley-Dependent Quantum Photonic Circuits
URI https://www.proquest.com/docview/2542738426
https://search.proquest.com/docview/2545595092
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoERIXxFMsLShI3JDbrO28jrDdqqqqpdAUbU-W40xEpJJU3Q0S_57xI9kscCgHLlHkOCNlPmfmc-JvTMg7TLGhLhJF07JgVExZQTOtKwrRFICFUJRg_uieXCSLZXo0F_ONXHHT9l-RxjbE2ihn_wHtwSg24DlijkdEHY93w93temB8f23Uf7YMA7LKr2bTlJ_0yG96uzbLOTHffH9__q1d221wZvWt7mpX2annq-c9jF7icm3VPwMPn3ltx5XyCdB-VTUty7qhuWrHHW1QueroaT0Mps91Z3Ofaulgwn-CYHaplA-R4MJmmGQ0mTo56BBXnRTeDyDGx2GSmzI0o6S7afgzpIemtIR53C_ww2icDtDwwdjCuIb24pM8vjw7k_l8me-Q-wzDj1noeXG6GPIz3p56rTjaPvy75W2asp2lLfXIH5NHfs4QfHBgPyH3oHlKHjhoVs_Ixy3IgwHy4HfIAw950EMe9JA_J5fH83x2Qv3WGFTzOFtThTyrTCFWghUiFCB0GKUqRv7HC4iTSuNjV9U00RkrCqEhUjEy-UpFeJbyNOQvyG7TNvCSBAkTJa8YxKCF0FWVIakuGaiIi1SXmk_IYe8JeeMqoEg7cwy5HPlOou-k892E7PcOk_7NWEkWCaMCQ0I4IW-HyxjLzA8q1UDb2T44wUUKy17doc8eebgZjPtkd33bwWuysyq7NxbwX6tGa2w
link.rule.ids 315,782,786,27935,27936
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topologically+Protected+Valley-Dependent+Quantum+Photonic+Circuits&rft.jtitle=Physical+review+letters&rft.au=Chen%2C+Yang&rft.au=He%2C+Xin-Tao&rft.au=Cheng%2C+Yu-Jie&rft.au=Qiu%2C+Hao-Yang&rft.date=2021-06-11&rft.eissn=1079-7114&rft.volume=126&rft.issue=23&rft.spage=230503&rft.epage=230503&rft_id=info:doi/10.1103%2FPhysRevLett.126.230503&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon