Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides

In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, w...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules Vol. 183; pp. 1514 - 1539
Main Authors: Carvalho, Layde T., Vieira, Thiago A., Zhao, Yanjun, Celli, Annamaria, Medeiros, Simone F., Lacerda, Talita M.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 31-07-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.05.025