Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion

•Mineral profiles measured by ICP OES were used to identify fraud in rice flour.•LDA models were fitted to assess the authenticity of the different flour types analyzed.•Models based on elemental features achieved correct predictions ranging from 72 to 88%.•PCA based data fusion approach allowed to...

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry Vol. 339; p. 128125
Main Authors: Pérez-Rodríguez, Michael, Dirchwolf, Pamela Maia, Rodríguez-Negrín, Zenaida, Pellerano, Roberto Gerardo
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-03-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Mineral profiles measured by ICP OES were used to identify fraud in rice flour.•LDA models were fitted to assess the authenticity of the different flour types analyzed.•Models based on elemental features achieved correct predictions ranging from 72 to 88%.•PCA based data fusion approach allowed to detect rice flour adulteration with 100% success rate.•The proposed method is reliable to distinguish among adulterated and unadulterated flour samples. The present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica) plus thirty adulterated flour samples were analyzed by ICP OES. After obtaining the quantitative elemental fingerprint of the samples, PCA and LDA were applied. Binary and multiclass associations were considered to assess rice flour authenticity through fraud identification. Models based on element predictors showed accuracies ranging from 72 to 88% to distinguish adulterated and unadulterated samples. The fusion of the mineral features with the principal components (PCs) obtained from PCA provided classification rates of 100% in training samples, and 91–100% in test samples. The proposed method proved to be a useful tool for quality control in the rice industry since a perfect success rate was achieved for rice flour fraud detection.
AbstractList •Mineral profiles measured by ICP OES were used to identify fraud in rice flour.•LDA models were fitted to assess the authenticity of the different flour types analyzed.•Models based on elemental features achieved correct predictions ranging from 72 to 88%.•PCA based data fusion approach allowed to detect rice flour adulteration with 100% success rate.•The proposed method is reliable to distinguish among adulterated and unadulterated flour samples. The present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica) plus thirty adulterated flour samples were analyzed by ICP OES. After obtaining the quantitative elemental fingerprint of the samples, PCA and LDA were applied. Binary and multiclass associations were considered to assess rice flour authenticity through fraud identification. Models based on element predictors showed accuracies ranging from 72 to 88% to distinguish adulterated and unadulterated samples. The fusion of the mineral features with the principal components (PCs) obtained from PCA provided classification rates of 100% in training samples, and 91–100% in test samples. The proposed method proved to be a useful tool for quality control in the rice industry since a perfect success rate was achieved for rice flour fraud detection.
The present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica) plus thirty adulterated flour samples were analyzed by ICP OES. After obtaining the quantitative elemental fingerprint of the samples, PCA and LDA were applied. Binary and multiclass associations were considered to assess rice flour authenticity through fraud identification. Models based on element predictors showed accuracies ranging from 72 to 88% to distinguish adulterated and unadulterated samples. The fusion of the mineral features with the principal components (PCs) obtained from PCA provided classification rates of 100% in training samples, and 91-100% in test samples. The proposed method proved to be a useful tool for quality control in the rice industry since a perfect success rate was achieved for rice flour fraud detection.
ArticleNumber 128125
Author Dirchwolf, Pamela Maia
Rodríguez-Negrín, Zenaida
Pérez-Rodríguez, Michael
Pellerano, Roberto Gerardo
Author_xml – sequence: 1
  givenname: Michael
  surname: Pérez-Rodríguez
  fullname: Pérez-Rodríguez, Michael
  email: michaelpr1984@gmail.com
  organization: Centre of Chemical Bioactive (CBQ), Central University of Las Villas – UCLV, Highway to Camajuaní Km 5½, 54830 Santa Clara, VC, Cuba
– sequence: 2
  givenname: Pamela Maia
  surname: Dirchwolf
  fullname: Dirchwolf, Pamela Maia
  organization: Faculty of Agricultural Sciences, UNNE, Sgto. Cabral 2131, 3400 Corrientes, Argentina
– sequence: 3
  givenname: Zenaida
  surname: Rodríguez-Negrín
  fullname: Rodríguez-Negrín, Zenaida
  organization: Centre of Chemical Bioactive (CBQ), Central University of Las Villas – UCLV, Highway to Camajuaní Km 5½, 54830 Santa Clara, VC, Cuba
– sequence: 4
  givenname: Roberto Gerardo
  surname: Pellerano
  fullname: Pellerano, Roberto Gerardo
  organization: Institute of Basic and Applied Chemistry of the Northeast of Argentina (IQUIBA-NEA), National Scientific and Technical Research Council (CONICET), Faculty of Exact and Natural Science and Surveying, National University of the Northeast – UNNE, Av. Libertad 5470, 3400 Corrientes, Argentina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33152892$$D View this record in MEDLINE/PubMed
BookMark eNqFkFtLwzAcR4NM3EW_wsgX6MylTds3x_AGA1_0OaTpP5rZJiXphH17M6q--hQI5yQ_zhLNnHeA0JqSDSVU3B42xvtWf0C_YYSlS1ZRVlygBa1KnpWkZDO0IJxUWUVzMUfLGA-EJJJWV2jOOS1YVbMF-tzGCDFa94576yCoDg_BG9tBxMYHHKwGbDp_DNgEdWxxCyPo0XqHm1NCrdN2SJL2_ZAWuhErp7pTtBE3KkLi1aiwOcZkXKNLo7oINz_nCr093L_unrL9y-PzbrvPNBfVmPGCKg665RQaUVIDVBDa5HkNNSd1IRqla9EKVtKC5jmrQava5EIVRaVrUIKvkJje1cHHGMDItLNX4SQpked68iB_68lzPTnVS-J6Eodj00P7p_3mSsDdBECa_2UhyKgtOA2tDamKbL39749vIo-HoA
CitedBy_id crossref_primary_10_1016_j_jfca_2022_104883
crossref_primary_10_1016_j_foodchem_2021_131381
crossref_primary_10_3390_app13042309
crossref_primary_10_3390_foods10102349
crossref_primary_10_1039_D2JA90005J
crossref_primary_10_1016_j_jfca_2022_104677
crossref_primary_10_1016_j_foodchem_2024_139817
crossref_primary_10_3390_rs13020240
crossref_primary_10_1080_00032719_2023_2280694
crossref_primary_10_1016_j_tifs_2023_02_010
crossref_primary_10_1080_10408398_2022_2055527
crossref_primary_10_1016_j_tifs_2021_08_012
crossref_primary_10_1007_s11042_023_16541_0
crossref_primary_10_1016_j_foodcont_2021_108329
crossref_primary_10_1111_ijfs_15024
crossref_primary_10_1016_j_fochx_2023_100613
crossref_primary_10_1111_ijfs_15115
crossref_primary_10_1007_s12011_022_03499_7
crossref_primary_10_1016_j_jfca_2023_105330
crossref_primary_10_1038_s41598_023_34797_2
Cites_doi 10.4067/S0718-58392015000400001
10.1016/j.foodres.2003.08.001
10.5307/JBE.2013.38.2.103
10.1016/j.jtemb.2005.02.008
10.1016/j.chemolab.2015.06.004
10.1094/CCHEM-08-13-0150-R
10.1021/jf020073x
10.1016/j.jcs.2016.08.017
10.1016/j.microc.2016.05.015
10.1016/j.foodchem.2018.07.162
10.1007/s12161-013-9575-y
10.1016/j.saa.2019.03.085
10.1016/j.foodcont.2018.12.011
10.1016/j.measurement.2017.05.035
10.1016/j.jcs.2010.02.012
10.1080/10408398.2014.967834
10.1016/j.inpa.2018.09.001
10.3390/foods7100159
10.1016/j.aca.2015.04.042
10.1007/s00217-019-03419-5
10.5307/JBE.2014.39.4.357
10.1016/j.jcs.2015.08.001
10.1016/j.compag.2015.11.009
10.5458/jag.jag.JAG-2015_021
10.1007/s002170100400
10.1590/S1516-89132004000100009
10.1111/1750-3841.14279
10.1021/jf204296p
10.1039/C3AY41907J
10.1002/jsfa.8364
10.1016/j.foodchem.2013.06.060
10.1039/C7JA00103G
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1016/j.foodchem.2020.128125
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 10_1016_j_foodchem_2020_128125
33152892
S0308814620319877
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
AAHBH
AAXKI
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
29H
53G
AALCJ
AAQXK
AAYJJ
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AGHFR
AGRDE
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
VH1
WUQ
Y6R
ID FETCH-LOGICAL-c368t-351a3ecd31eb671fe1601b449e930956bac96d6271514429eca9f46a558c9ea63
ISSN 0308-8146
IngestDate Thu Sep 26 17:38:39 EDT 2024
Sat Sep 28 08:27:13 EDT 2024
Fri Feb 23 02:46:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LDA
PCA based data fusion
Rice flour
Mineral profiles
Adulteration
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-351a3ecd31eb671fe1601b449e930956bac96d6271514429eca9f46a558c9ea63
PMID 33152892
ParticipantIDs crossref_primary_10_1016_j_foodchem_2020_128125
pubmed_primary_33152892
elsevier_sciencedirect_doi_10_1016_j_foodchem_2020_128125
PublicationCentury 2000
PublicationDate 2021-03-01
2021-Mar-01
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Novaes, Bezerra, da Silva, dos Santos, da RomãoS, Neto (b0135) 2016; 128
Hastie, Tibshirani, Friedman (b0075) 2008
López, Pereira, Junqueir (b0105) 2004; 47
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Accessed from
Hong, Lee, Jeong, Park, Kim, Kwon, Chun (b0080) 2017; 97
Kelly, Baxter, Chapman, Rhodes, Dennis, Brereton (b0090) 2002; 214
Itani, Tamaki, Arai, Horino (b0085) 2002; 50
Borràs, Ferré, Boqué, Mestres, Aceña, Busto (b0035) 2015; 891
Moncayo, Manzoor, Caceres (b0120) 2015; 146
Ambrose, Cho (b0005) 2014; 39
Promchan, Günther, Siripinyanond, Shiowatana (b0140) 2016; 71
Thiranusornkij, Thamnarathip, Chandrachai, Kuakpetoon, Adisakwattana (b0165) 2018; 7
Cheajesadagul, Arnaudguilhem, Shiowatana, Siripinyanond, Szpunar (b0045) 2013; 141
Xu, Yan, Cai, Yu (b0185) 2013; 6
Maione, Batista, Campiglia, Barbosa, Barbosa (b0110) 2016; 121
Nakamura, Ohtsubo (b0130) 2010; 52
Timsorn, Lorjaroenphon, Wongchoosuk (b0175) 2017; 108
Chuang, Lur, Hwu, Chang (b0050) 2011; 52
AOAC. (2016). Appendix F: Guidelines for standard method performance requirements. AOAC Official Methods of Analysis, p. 1–18.
Vemireddy, Satyavathi, Siddiq, Nagaraju (b0180) 2015; 52
Ariyama, Shinozaki, Kawasaki (b0020) 2012; 60
Bansal, Singh, Mangal, Mangal, Kumar (b0025) 2017; 57
Chung, Kim, Lee, Kim (b0055) 2015; 65
Gujral, Rosell (b0070) 2004; 37
Murakami, Kuramochi, Koda, Nishio, Nishioka (b0125) 2016; 63
Liu, Zhang, Zhang, Chen, Shao, Zhou, Rogers (b0100) 2019; 99
Sampaio, Castanho, Almeida, Oliveira, Brites (b0150) 2020; 246
Teye, Amuah, McGrath, Elliott (b0160) 2019; 217
.
Kim (b0095) 2013; 38
Sasaki, Kohyama, Miyashita, Okunishi (b0155) 2014; 91
Anami, Malvade, Palaiah (b0010) 2019; 6
Donati, Amais, Williams (b0060) 2017; 32
Bro, Smilde (b0040) 2014; 6
Runge, Heringer, Ribeiro, Biazati (b0145) 2019; 271
Becerra, Paredes, Gutiérrez, Rojo (b0030) 2015; 75
Meng, Wei, Yang (b0115) 2005; 18
Tibola, Alves, Dossa, In (b0170) 2018; 83
Hastie (10.1016/j.foodchem.2020.128125_b0075) 2008
Promchan (10.1016/j.foodchem.2020.128125_b0140) 2016; 71
Nakamura (10.1016/j.foodchem.2020.128125_b0130) 2010; 52
Thiranusornkij (10.1016/j.foodchem.2020.128125_b0165) 2018; 7
Kim (10.1016/j.foodchem.2020.128125_b0095) 2013; 38
Sasaki (10.1016/j.foodchem.2020.128125_b0155) 2014; 91
Timsorn (10.1016/j.foodchem.2020.128125_b0175) 2017; 108
Tibola (10.1016/j.foodchem.2020.128125_b0170) 2018; 83
10.1016/j.foodchem.2020.128125_b9000
Teye (10.1016/j.foodchem.2020.128125_b0160) 2019; 217
Chuang (10.1016/j.foodchem.2020.128125_b0050) 2011; 52
Chung (10.1016/j.foodchem.2020.128125_b0055) 2015; 65
Kelly (10.1016/j.foodchem.2020.128125_b0090) 2002; 214
Bro (10.1016/j.foodchem.2020.128125_b0040) 2014; 6
10.1016/j.foodchem.2020.128125_b0015
Runge (10.1016/j.foodchem.2020.128125_b0145) 2019; 271
Xu (10.1016/j.foodchem.2020.128125_b0185) 2013; 6
Borràs (10.1016/j.foodchem.2020.128125_b0035) 2015; 891
Donati (10.1016/j.foodchem.2020.128125_b0060) 2017; 32
Hong (10.1016/j.foodchem.2020.128125_b0080) 2017; 97
Sampaio (10.1016/j.foodchem.2020.128125_b0150) 2020; 246
Moncayo (10.1016/j.foodchem.2020.128125_b0120) 2015; 146
Itani (10.1016/j.foodchem.2020.128125_b0085) 2002; 50
Vemireddy (10.1016/j.foodchem.2020.128125_b0180) 2015; 52
Ambrose (10.1016/j.foodchem.2020.128125_b0005) 2014; 39
Maione (10.1016/j.foodchem.2020.128125_b0110) 2016; 121
Ariyama (10.1016/j.foodchem.2020.128125_b0020) 2012; 60
Gujral (10.1016/j.foodchem.2020.128125_b0070) 2004; 37
Becerra (10.1016/j.foodchem.2020.128125_b0030) 2015; 75
Meng (10.1016/j.foodchem.2020.128125_b0115) 2005; 18
Novaes (10.1016/j.foodchem.2020.128125_b0135) 2016; 128
Liu (10.1016/j.foodchem.2020.128125_b0100) 2019; 99
Murakami (10.1016/j.foodchem.2020.128125_b0125) 2016; 63
Bansal (10.1016/j.foodchem.2020.128125_b0025) 2017; 57
Cheajesadagul (10.1016/j.foodchem.2020.128125_b0045) 2013; 141
López (10.1016/j.foodchem.2020.128125_b0105) 2004; 47
Anami (10.1016/j.foodchem.2020.128125_b0010) 2019; 6
References_xml – volume: 108
  start-page: 67
  year: 2017
  end-page: 76
  ident: b0175
  article-title: Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system
  publication-title: Measurement
  contributor:
    fullname: Wongchoosuk
– volume: 52
  start-page: 3187
  year: 2015
  end-page: 3202
  ident: b0180
  article-title: Review of methods for the detection and quantification of adulteration of rice: Basmati as a case study
  publication-title: Journal of Food Science and Technology
  contributor:
    fullname: Nagaraju
– volume: 891
  start-page: 1
  year: 2015
  end-page: 14
  ident: b0035
  article-title: Data fusion methodologies for food and beverage authentication and quality assessment – A review
  publication-title: Analytica Chimica Acta
  contributor:
    fullname: Busto
– volume: 39
  start-page: 357
  year: 2014
  end-page: 365
  ident: b0005
  article-title: A review of technologies for detection and measurement of adulterants in cereals and cereal products
  publication-title: Journal of Biosystems Engineering
  contributor:
    fullname: Cho
– volume: 60
  start-page: 1628
  year: 2012
  end-page: 1634
  ident: b0020
  article-title: Determination of the geographic origin of rice by chemometrics with strontium and lead isotope ratios and multielement concentrations
  publication-title: Journal of Agricultural and Food Chemistry
  contributor:
    fullname: Kawasaki
– volume: 128
  start-page: 331
  year: 2016
  end-page: 346
  ident: b0135
  article-title: Review article A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry
  publication-title: Microchemical Journal
  contributor:
    fullname: Neto
– volume: 99
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0100
  article-title: Assuring food safety and traceability of polished rice from different production regions in China and Southeast Asia using chemometric models
  publication-title: Food Control
  contributor:
    fullname: Rogers
– volume: 6
  start-page: 47
  year: 2019
  end-page: 60
  ident: b0010
  article-title: Automated recognition and classification of adulteration levels from bulk paddy grain samples
  publication-title: Information Processing in Agriculture
  contributor:
    fullname: Palaiah
– volume: 246
  start-page: 527
  year: 2020
  end-page: 537
  ident: b0150
  article-title: Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods
  publication-title: European Food Research and Technology
  contributor:
    fullname: Brites
– year: 2008
  ident: b0075
  article-title: The elements of statistical learning: Data mining, inference, and prediction
  contributor:
    fullname: Friedman
– volume: 50
  start-page: 5326
  year: 2002
  end-page: 5332
  ident: b0085
  article-title: Distribution of amylose, nitrogen, and minerals in rice kernels with various characters
  publication-title: Journal of Agricultural and Food Chemistry
  contributor:
    fullname: Horino
– volume: 32
  start-page: 1283
  year: 2017
  end-page: 1296
  ident: b0060
  article-title: Recent advances in inductively coupled plasma optical emission spectrometry
  publication-title: Journal of Analytical Atomic Spectrometry
  contributor:
    fullname: Williams
– volume: 57
  start-page: 1174
  year: 2017
  end-page: 1189
  ident: b0025
  article-title: Food adulteration: Sources, health risks, and detection methods
  publication-title: Critical Reviews in Food Science and Nutrition
  contributor:
    fullname: Kumar
– volume: 37
  start-page: 75
  year: 2004
  end-page: 81
  ident: b0070
  article-title: Improvement of the breadmaking quality of rice flour by glucose oxidase
  publication-title: Food Research International
  contributor:
    fullname: Rosell
– volume: 6
  start-page: 1568
  year: 2013
  end-page: 1575
  ident: b0185
  article-title: Untargeted detection of illegal adulterations in chinese glutinous rice flour (GRF) by NIR spectroscopy and chemometrics: Specificity of detection improved by reducing unnecessary variations
  publication-title: Food Analytical Methods
  contributor:
    fullname: Yu
– volume: 271
  start-page: 419
  year: 2019
  end-page: 424
  ident: b0145
  article-title: Multi-element rice grains analysis by ICP OES and classification by processing types
  publication-title: Food Chemistry
  contributor:
    fullname: Biazati
– volume: 91
  start-page: 146
  year: 2014
  end-page: 151
  ident: b0155
  article-title: Effects of rice flour blends on bread texture and staling
  publication-title: Cereal Chemistry
  contributor:
    fullname: Okunishi
– volume: 214
  start-page: 72
  year: 2002
  end-page: 78
  ident: b0090
  article-title: The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice
  publication-title: European Food Research and Technology
  contributor:
    fullname: Brereton
– volume: 7
  start-page: 159
  year: 2018
  ident: b0165
  article-title: Physicochemical properties of Hom Nil (Oryza sativa) rice flour as gluten free ingredient in bread
  publication-title: Foods
  contributor:
    fullname: Adisakwattana
– volume: 65
  start-page: 252
  year: 2015
  end-page: 259
  ident: b0055
  article-title: Discrimination of geographical origin of rice (Oryza sativa L.) by multielement analysis using inductively coupled plasma atomic emission spectroscopy and multivariate analysis
  publication-title: Journal of Cereal Science
  contributor:
    fullname: Kim
– volume: 52
  start-page: 16
  year: 2010
  end-page: 21
  ident: b0130
  article-title: PCR method for the detection and identification of cultivars of rice flours used in yeast leavened breads containing both wheat and rice flours
  publication-title: Journal of Cereal Science
  contributor:
    fullname: Ohtsubo
– volume: 217
  start-page: 147
  year: 2019
  end-page: 154
  ident: b0160
  article-title: Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics
  publication-title: Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
  contributor:
    fullname: Elliott
– volume: 83
  start-page: 2028
  year: 2018
  end-page: 2038
  ident: b0170
  article-title: Economically motivated food fraud and adulteration in Brazil: Incidents and alternatives to minimize occurrence
  publication-title: Journal of Food Science
  contributor:
    fullname: In
– volume: 6
  start-page: 2812
  year: 2014
  end-page: 2831
  ident: b0040
  article-title: Principal component analysis
  publication-title: Analytical Methods
  contributor:
    fullname: Smilde
– volume: 75
  start-page: 267
  year: 2015
  end-page: 274
  ident: b0030
  article-title: Genetic diversity, identification, and certification of Chilean rice varieties using molecular markers
  publication-title: Chilean Journal of Agricultural Research
  contributor:
    fullname: Rojo
– volume: 141
  start-page: 3504
  year: 2013
  end-page: 3509
  ident: b0045
  article-title: Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry
  publication-title: Food Chemistry
  contributor:
    fullname: Szpunar
– volume: 38
  start-page: 103
  year: 2013
  end-page: 112
  ident: b0095
  article-title: Review on rice flour manufacturing and utilization rice flour utilization for food
  publication-title: Journal of Biosystems Engineering
  contributor:
    fullname: Kim
– volume: 52
  start-page: 393
  year: 2011
  end-page: 405
  ident: b0050
  article-title: Authentication of domestic Taiwan rice varieties based on fingerprinting analysis of microsatellite DNA markers
  publication-title: Botanical Studies
  contributor:
    fullname: Chang
– volume: 121
  start-page: 101
  year: 2016
  end-page: 107
  ident: b0110
  article-title: Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Barbosa
– volume: 146
  start-page: 354
  year: 2015
  end-page: 364
  ident: b0120
  article-title: Chemometrics and Intelligent Laboratory Systems Evaluation of supervised chemometric methods for sample classification by Laser Induced Breakdown Spectroscopy
  publication-title: Chemometrics and Intelligent Laboratory Systems
  contributor:
    fullname: Caceres
– volume: 18
  start-page: 333
  year: 2005
  end-page: 338
  ident: b0115
  article-title: Iron content and bioavailability in rice
  publication-title: Journal of Trace Elements in Medicine and Biology
  contributor:
    fullname: Yang
– volume: 63
  start-page: 19
  year: 2016
  end-page: 22
  ident: b0125
  article-title: Relationship between rice flour particle sizes and expansion ratio of pure rice bread
  publication-title: Journal of Applied Glycoscience
  contributor:
    fullname: Nishioka
– volume: 97
  start-page: 3877
  year: 2017
  end-page: 3896
  ident: b0080
  article-title: Modern analytical methods for the detection of food fraud and adulteration by food category
  publication-title: Journal of the Science of Food and Agriculture
  contributor:
    fullname: Chun
– volume: 47
  start-page: 63
  year: 2004
  end-page: 70
  ident: b0105
  article-title: Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread
  publication-title: Brazilian Archives of Biology and Technology
  contributor:
    fullname: Junqueir
– volume: 71
  start-page: 198
  year: 2016
  end-page: 203
  ident: b0140
  article-title: Elemental imaging and classifying rice grains by using laser ablation inductively coupled plasma mass spectrometry and linear discriminant analysis
  publication-title: Journal of Cereal Science
  contributor:
    fullname: Shiowatana
– volume: 75
  start-page: 267
  year: 2015
  ident: 10.1016/j.foodchem.2020.128125_b0030
  article-title: Genetic diversity, identification, and certification of Chilean rice varieties using molecular markers
  publication-title: Chilean Journal of Agricultural Research
  doi: 10.4067/S0718-58392015000400001
  contributor:
    fullname: Becerra
– volume: 37
  start-page: 75
  year: 2004
  ident: 10.1016/j.foodchem.2020.128125_b0070
  article-title: Improvement of the breadmaking quality of rice flour by glucose oxidase
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2003.08.001
  contributor:
    fullname: Gujral
– volume: 38
  start-page: 103
  year: 2013
  ident: 10.1016/j.foodchem.2020.128125_b0095
  article-title: Review on rice flour manufacturing and utilization rice flour utilization for food
  publication-title: Journal of Biosystems Engineering
  doi: 10.5307/JBE.2013.38.2.103
  contributor:
    fullname: Kim
– volume: 18
  start-page: 333
  issue: 4
  year: 2005
  ident: 10.1016/j.foodchem.2020.128125_b0115
  article-title: Iron content and bioavailability in rice
  publication-title: Journal of Trace Elements in Medicine and Biology
  doi: 10.1016/j.jtemb.2005.02.008
  contributor:
    fullname: Meng
– volume: 146
  start-page: 354
  year: 2015
  ident: 10.1016/j.foodchem.2020.128125_b0120
  article-title: Chemometrics and Intelligent Laboratory Systems Evaluation of supervised chemometric methods for sample classification by Laser Induced Breakdown Spectroscopy
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2015.06.004
  contributor:
    fullname: Moncayo
– ident: 10.1016/j.foodchem.2020.128125_b0015
– volume: 91
  start-page: 146
  year: 2014
  ident: 10.1016/j.foodchem.2020.128125_b0155
  article-title: Effects of rice flour blends on bread texture and staling
  publication-title: Cereal Chemistry
  doi: 10.1094/CCHEM-08-13-0150-R
  contributor:
    fullname: Sasaki
– volume: 52
  start-page: 3187
  year: 2015
  ident: 10.1016/j.foodchem.2020.128125_b0180
  article-title: Review of methods for the detection and quantification of adulteration of rice: Basmati as a case study
  publication-title: Journal of Food Science and Technology
  contributor:
    fullname: Vemireddy
– volume: 50
  start-page: 5326
  year: 2002
  ident: 10.1016/j.foodchem.2020.128125_b0085
  article-title: Distribution of amylose, nitrogen, and minerals in rice kernels with various characters
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf020073x
  contributor:
    fullname: Itani
– volume: 71
  start-page: 198
  year: 2016
  ident: 10.1016/j.foodchem.2020.128125_b0140
  article-title: Elemental imaging and classifying rice grains by using laser ablation inductively coupled plasma mass spectrometry and linear discriminant analysis
  publication-title: Journal of Cereal Science
  doi: 10.1016/j.jcs.2016.08.017
  contributor:
    fullname: Promchan
– volume: 128
  start-page: 331
  year: 2016
  ident: 10.1016/j.foodchem.2020.128125_b0135
  article-title: Review article A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry
  publication-title: Microchemical Journal
  doi: 10.1016/j.microc.2016.05.015
  contributor:
    fullname: Novaes
– volume: 271
  start-page: 419
  year: 2019
  ident: 10.1016/j.foodchem.2020.128125_b0145
  article-title: Multi-element rice grains analysis by ICP OES and classification by processing types
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.07.162
  contributor:
    fullname: Runge
– volume: 6
  start-page: 1568
  year: 2013
  ident: 10.1016/j.foodchem.2020.128125_b0185
  article-title: Untargeted detection of illegal adulterations in chinese glutinous rice flour (GRF) by NIR spectroscopy and chemometrics: Specificity of detection improved by reducing unnecessary variations
  publication-title: Food Analytical Methods
  doi: 10.1007/s12161-013-9575-y
  contributor:
    fullname: Xu
– volume: 217
  start-page: 147
  year: 2019
  ident: 10.1016/j.foodchem.2020.128125_b0160
  article-title: Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics
  publication-title: Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2019.03.085
  contributor:
    fullname: Teye
– volume: 99
  start-page: 1
  year: 2019
  ident: 10.1016/j.foodchem.2020.128125_b0100
  article-title: Assuring food safety and traceability of polished rice from different production regions in China and Southeast Asia using chemometric models
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.12.011
  contributor:
    fullname: Liu
– volume: 108
  start-page: 67
  year: 2017
  ident: 10.1016/j.foodchem.2020.128125_b0175
  article-title: Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.05.035
  contributor:
    fullname: Timsorn
– volume: 52
  start-page: 16
  year: 2010
  ident: 10.1016/j.foodchem.2020.128125_b0130
  article-title: PCR method for the detection and identification of cultivars of rice flours used in yeast leavened breads containing both wheat and rice flours
  publication-title: Journal of Cereal Science
  doi: 10.1016/j.jcs.2010.02.012
  contributor:
    fullname: Nakamura
– volume: 57
  start-page: 1174
  year: 2017
  ident: 10.1016/j.foodchem.2020.128125_b0025
  article-title: Food adulteration: Sources, health risks, and detection methods
  publication-title: Critical Reviews in Food Science and Nutrition
  doi: 10.1080/10408398.2014.967834
  contributor:
    fullname: Bansal
– ident: 10.1016/j.foodchem.2020.128125_b9000
– volume: 6
  start-page: 47
  year: 2019
  ident: 10.1016/j.foodchem.2020.128125_b0010
  article-title: Automated recognition and classification of adulteration levels from bulk paddy grain samples
  publication-title: Information Processing in Agriculture
  doi: 10.1016/j.inpa.2018.09.001
  contributor:
    fullname: Anami
– volume: 7
  start-page: 159
  year: 2018
  ident: 10.1016/j.foodchem.2020.128125_b0165
  article-title: Physicochemical properties of Hom Nil (Oryza sativa) rice flour as gluten free ingredient in bread
  publication-title: Foods
  doi: 10.3390/foods7100159
  contributor:
    fullname: Thiranusornkij
– volume: 891
  start-page: 1
  year: 2015
  ident: 10.1016/j.foodchem.2020.128125_b0035
  article-title: Data fusion methodologies for food and beverage authentication and quality assessment – A review
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2015.04.042
  contributor:
    fullname: Borràs
– volume: 246
  start-page: 527
  year: 2020
  ident: 10.1016/j.foodchem.2020.128125_b0150
  article-title: Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods
  publication-title: European Food Research and Technology
  doi: 10.1007/s00217-019-03419-5
  contributor:
    fullname: Sampaio
– volume: 39
  start-page: 357
  year: 2014
  ident: 10.1016/j.foodchem.2020.128125_b0005
  article-title: A review of technologies for detection and measurement of adulterants in cereals and cereal products
  publication-title: Journal of Biosystems Engineering
  doi: 10.5307/JBE.2014.39.4.357
  contributor:
    fullname: Ambrose
– volume: 65
  start-page: 252
  year: 2015
  ident: 10.1016/j.foodchem.2020.128125_b0055
  article-title: Discrimination of geographical origin of rice (Oryza sativa L.) by multielement analysis using inductively coupled plasma atomic emission spectroscopy and multivariate analysis
  publication-title: Journal of Cereal Science
  doi: 10.1016/j.jcs.2015.08.001
  contributor:
    fullname: Chung
– volume: 121
  start-page: 101
  year: 2016
  ident: 10.1016/j.foodchem.2020.128125_b0110
  article-title: Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2015.11.009
  contributor:
    fullname: Maione
– volume: 52
  start-page: 393
  year: 2011
  ident: 10.1016/j.foodchem.2020.128125_b0050
  article-title: Authentication of domestic Taiwan rice varieties based on fingerprinting analysis of microsatellite DNA markers
  publication-title: Botanical Studies
  contributor:
    fullname: Chuang
– volume: 63
  start-page: 19
  year: 2016
  ident: 10.1016/j.foodchem.2020.128125_b0125
  article-title: Relationship between rice flour particle sizes and expansion ratio of pure rice bread
  publication-title: Journal of Applied Glycoscience
  doi: 10.5458/jag.jag.JAG-2015_021
  contributor:
    fullname: Murakami
– volume: 214
  start-page: 72
  year: 2002
  ident: 10.1016/j.foodchem.2020.128125_b0090
  article-title: The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice
  publication-title: European Food Research and Technology
  doi: 10.1007/s002170100400
  contributor:
    fullname: Kelly
– volume: 47
  start-page: 63
  year: 2004
  ident: 10.1016/j.foodchem.2020.128125_b0105
  article-title: Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread
  publication-title: Brazilian Archives of Biology and Technology
  doi: 10.1590/S1516-89132004000100009
  contributor:
    fullname: López
– volume: 83
  start-page: 2028
  year: 2018
  ident: 10.1016/j.foodchem.2020.128125_b0170
  article-title: Economically motivated food fraud and adulteration in Brazil: Incidents and alternatives to minimize occurrence
  publication-title: Journal of Food Science
  doi: 10.1111/1750-3841.14279
  contributor:
    fullname: Tibola
– volume: 60
  start-page: 1628
  year: 2012
  ident: 10.1016/j.foodchem.2020.128125_b0020
  article-title: Determination of the geographic origin of rice by chemometrics with strontium and lead isotope ratios and multielement concentrations
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf204296p
  contributor:
    fullname: Ariyama
– volume: 6
  start-page: 2812
  year: 2014
  ident: 10.1016/j.foodchem.2020.128125_b0040
  article-title: Principal component analysis
  publication-title: Analytical Methods
  doi: 10.1039/C3AY41907J
  contributor:
    fullname: Bro
– year: 2008
  ident: 10.1016/j.foodchem.2020.128125_b0075
  contributor:
    fullname: Hastie
– volume: 97
  start-page: 3877
  year: 2017
  ident: 10.1016/j.foodchem.2020.128125_b0080
  article-title: Modern analytical methods for the detection of food fraud and adulteration by food category
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.8364
  contributor:
    fullname: Hong
– volume: 141
  start-page: 3504
  year: 2013
  ident: 10.1016/j.foodchem.2020.128125_b0045
  article-title: Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.06.060
  contributor:
    fullname: Cheajesadagul
– volume: 32
  start-page: 1283
  year: 2017
  ident: 10.1016/j.foodchem.2020.128125_b0060
  article-title: Recent advances in inductively coupled plasma optical emission spectrometry
  publication-title: Journal of Analytical Atomic Spectrometry
  doi: 10.1039/C7JA00103G
  contributor:
    fullname: Donati
SSID ssj0002018
Score 2.5247679
Snippet •Mineral profiles measured by ICP OES were used to identify fraud in rice flour.•LDA models were fitted to assess the authenticity of the different flour types...
The present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica)...
SourceID crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 128125
SubjectTerms Adulteration
Flour - analysis
Food Analysis - methods
Food Analysis - statistics & numerical data
Food Contamination - analysis
Food Contamination - statistics & numerical data
LDA
Mineral profiles
Minerals - analysis
Oryza - chemistry
PCA based data fusion
Principal Component Analysis
Rice flour
Title Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion
URI https://dx.doi.org/10.1016/j.foodchem.2020.128125
https://www.ncbi.nlm.nih.gov/pubmed/33152892
Volume 339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa67QFeEIxbuckPiJcoIxc3th-ntTB4qBAb0sRL5MT21K1tqjYRgl_PcRw7mUAaCPEStVFiV_m-HH89PheEXosyzpKCZyFj8JITreOQl5KHNNGsmJh6MW0B09MzOr9g0xmZjUautWR_7r8iDecAa5M5-xdo-0HhBHwGzOEIqMPxj3C3u7jGAbBatBWlg64td1t4ITA1hAK9hJECvRWNDKSqlW0XDkJ0Y13vbc2Q1aZa2wD0rmyJWfDgelGLQDc7h6dv8VnJoHTd47zBtfvwW_Uj_FxJuys_vWys13oYsW-k9AKA-FYttRW2K7UUJgLELxs3Bwjn6rL72trNr2otFr134ZPZj4BluOqjx6vgvUm2ltXQ0ZEMIr2s981l4PThTm3WV8R6N6ayRpzRNKQRvWHlU1sz6ZcVwzovro40PCbzlI5galNzA4TPpF8jfeTimZnQzJeY9C9G6R46SMDGgYk9OP4wu_joZQAoK2a3sOwPHKSn_362W5TRQPac30f3uv8r-NgS7QEaqfUhunPigD5E4-lC1fgN7grMLvHc9XeA61za--4huvbExB0xsSMmBmJiQ0zcEhO3xMSemLj4jj0xsScmdsTELTGxISa2xHyEvrybnZ-chl2nj7BMM1abdBKRqlKmsSoyGmsVZ1FcEMIVT02lzEKUPJNZQkGfElBQqhRck0xMJqzkSmTpY7S_hrmfIswKmsKdmsDiRaQmPFMkkVGswSKJSBZj9NY95XxjC7rkLtLxKne45AaX3OIyRtyBkXey1MrNHDh0671PLHp-rjQFxcx48uwfRn2O7vYvyAu0X28b9RLt7WTzqmPhT8qqvHY
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+mineral+profiles+for+rice+flour+fraud+detection+by+principal+component+analysis+based+data+fusion&rft.jtitle=Food+chemistry&rft.au=P%C3%A9rez-Rodr%C3%ADguez%2C+Michael&rft.au=Dirchwolf%2C+Pamela+Maia&rft.au=Rodr%C3%ADguez-Negr%C3%ADn%2C+Zenaida&rft.au=Pellerano%2C+Roberto+Gerardo&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0308-8146&rft.eissn=1873-7072&rft.volume=339&rft_id=info:doi/10.1016%2Fj.foodchem.2020.128125&rft.externalDocID=S0308814620319877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon