Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels

The use of carbon/epoxy composites in aircraft, marine, and automotive structural applications is steadily increasing. Robust composite structures processed using low-cost techniques with the purpose of sustaining high velocity impact loads from various threats are of great interest. An example of a...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures Vol. 61; no. 1; pp. 143 - 150
Main Authors: Ulven, C, Vaidya, U.K, Hosur, M.V
Format: Journal Article Conference Proceeding
Language:English
Published: Oxford Elsevier Ltd 01-07-2003
Elsevier Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of carbon/epoxy composites in aircraft, marine, and automotive structural applications is steadily increasing. Robust composite structures processed using low-cost techniques with the purpose of sustaining high velocity impact loads from various threats are of great interest. An example of a low-cost process is the out-of-autoclave, vacuum assisted resin transfer molding (VARTM) technique. The present study evaluates the perforation and damage evolution created by various projectile geometries in VARTM processed carbon/epoxy laminates. A series of ballistic impact tests have been performed on satin weave carbon/epoxy laminates of 3.2 and 6.5 mm thickness, with projectile geometries representing hemispherical, conical, fragment simulating and flat tip. A gas-gun with a sabot stripper mechanism was employed to impact the samples with 50-caliber projectiles of the different shapes. The perforation mechanism, ballistic limit, and damage evolution of each laminate has been studied. The influence of projectile shape in the VARTM carbon/epoxy laminates under high velocity impact followed the analytical predictions by Wen [Compos. Struct. 49 (2000) 321; Compos. Sci. Technol. 61 (2001) 1163]. The conical shaped projectile resulted in highest ballistic limit, followed by the flat, hemispherical and the fragment simulating.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0263-8223
1879-1085
DOI:10.1016/S0263-8223(03)00037-0