A Fourier pseudospectral method for the "good" Boussinesq equation with second-order temporal accuracy
In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second‐order time‐stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in ear...
Saved in:
Published in: | Numerical methods for partial differential equations Vol. 31; no. 1; pp. 202 - 224 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Blackwell Publishing Ltd
01-01-2015
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second‐order time‐stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a
ℓ
∞
(
0
,
T
*
;
H
2
)
convergence for the solution and
ℓ
∞
(
0
,
T
*
;
ℓ
2
)
convergence for the time‐derivative of the solution are obtained in this article, instead of the
ℓ
∞
(
0
,
T
*
;
ℓ
2
)
convergence for the solution and the
ℓ
∞
(
0
,
T
*
;
H
−
2
)
convergence for the time‐derivative, given in De Frutos, et al., Math Comput 57 (1991), 109–122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction
Δ
t
≤
C
h
2
required by the proof in De Frutos, et al., Math Comput 57 (1991), 109–122.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202–224, 2015 |
---|---|
AbstractList | In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second‐order time‐stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a
convergence for the solution and
convergence for the time‐derivative of the solution are obtained in this article, instead of the
convergence for the solution and the
convergence for the time‐derivative, given in De Frutos, et al., Math Comput 57 (1991), 109–122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction
required by the proof in De Frutos, et al., Math Comput 57 (1991), 109–122.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202–224, 2015 In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second-order time-stepping for the numerical solution of the "good" Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a [infin] ( 0 , T * ; H 2 ) convergence for the solution and [infin] ( 0 , T * ; 2 ) convergence for the time-derivative of the solution are obtained in this article, instead of the [infin] ( 0 , T * ; 2 ) convergence for the solution and the [infin] ( 0 , T * ; H - 2 ) convergence for the time-derivative, given in De Frutos, et al., Math Comput 57 (1991), 109-122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction [Delta] t ≤ C h 2 required by the proof in De Frutos, et al., Math Comput 57 (1991), 109-122.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202-224, 2015 In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second‐order time‐stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a ℓ ∞ ( 0 , T * ; H 2 ) convergence for the solution and ℓ ∞ ( 0 , T * ; ℓ 2 ) convergence for the time‐derivative of the solution are obtained in this article, instead of the ℓ ∞ ( 0 , T * ; ℓ 2 ) convergence for the solution and the ℓ ∞ ( 0 , T * ; H − 2 ) convergence for the time‐derivative, given in De Frutos, et al., Math Comput 57 (1991), 109–122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction Δ t ≤ C h 2 required by the proof in De Frutos, et al., Math Comput 57 (1991), 109–122.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202–224, 2015 In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second-order time-stepping for the numerical solution of the "good" Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a [Formulaomitted] convergence for the solution and [Formulaomitted] convergence for the time-derivative of the solution are obtained in this article, instead of the [Formulaomitted] convergence for the solution and the [Formulaomitted] convergence for the time-derivative, given in De Frutos, et al., Math Comput 57 (1991), 109-122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction [Formulaomitted] required by the proof in De Frutos, et al., Math Comput 57 (1991), 109-122. copyright 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202-224, 2015 |
Author | Feng, Wenqiang Wang, Cheng Cheng, Kelong Gottlieb, Sigal |
Author_xml | – sequence: 1 givenname: Kelong surname: Cheng fullname: Cheng, Kelong organization: Department of Mathematics, Southwest University of Science and Technology, Sichuan, 621010, Mianyang, People's Republic of China – sequence: 2 givenname: Wenqiang surname: Feng fullname: Feng, Wenqiang organization: Department of Mathematics, University of Tennessee, Tennessee, 37996, Knoxville – sequence: 3 givenname: Sigal surname: Gottlieb fullname: Gottlieb, Sigal organization: Department of Mathematics, University of Massachusetts, Massachusetts, 02747, North Dartmouth – sequence: 4 givenname: Cheng surname: Wang fullname: Wang, Cheng email: cwang1@umassd.edu organization: Department of Mathematics, University of Massachusetts, Massachusetts, 02747, North Dartmouth |
BookMark | eNp10EtLxDAUBeAgCo6Phf8g6EYX1aRp02ap4xN8gPjahUxy41TbppO06Px7o6MuBFeB8J3D5ayh5da1gNAWJfuUkPSgHZr9lJZCLKERJaJM0izly2hEikwkNBdPq2gthBdCKM2pGCF7iE_d4CvwuAswGBc60L1XNW6gnzqDrfO4nwLefnbObOMjN4RQtRBmGGaD6ivX4reqn-IA2rUmcd7Eqh6azn2WKK0Hr_R8A61YVQfY_H7X0f3pyd34PLm8ObsYH14mmvFSJMqWfKKzzBoiWMGtVgRUpielspAxQUwhLBG8oCWw6Eg-MUoIBiR-T7gBto52F72dd7MBQi-bKmioa9VCvFxSnlNWipLlke78oS9xiDZeF1VaECpyzqPaWyjtXQgerOx81Sg_l5TIz8VlXFx-LR7twcK-VTXM_4fy-v7qJ5EsElXo4f03ofyr5AUrcvl4fSZvHx7y7FgwmbIP2SaUtQ |
CitedBy_id | crossref_primary_10_1007_s11075_024_01763_6 crossref_primary_10_1093_imanum_drac081 crossref_primary_10_12677_AAM_2023_1210422 crossref_primary_10_1186_s13662_018_1784_7 crossref_primary_10_1007_s10915_017_0552_2 crossref_primary_10_1016_j_cpc_2019_04_017 crossref_primary_10_1007_s10915_020_01276_z crossref_primary_10_1016_j_cam_2022_114959 crossref_primary_10_1002_num_23034 crossref_primary_10_1007_s10915_018_0690_1 crossref_primary_10_1016_j_apnum_2020_07_009 crossref_primary_10_1016_j_apm_2022_10_012 crossref_primary_10_1007_s00211_019_01064_4 crossref_primary_10_1016_j_matcom_2023_01_021 crossref_primary_10_1016_j_apnum_2019_02_009 crossref_primary_10_1016_j_cam_2021_113766 crossref_primary_10_1016_j_jcp_2019_109109 crossref_primary_10_1007_s12190_020_01353_4 crossref_primary_10_1007_s10915_016_0228_3 crossref_primary_10_1016_j_apnum_2022_11_015 crossref_primary_10_1016_j_jcp_2021_110429 crossref_primary_10_1016_j_cpc_2015_12_013 crossref_primary_10_1016_j_apnum_2022_11_016 crossref_primary_10_1016_j_apnum_2022_01_003 crossref_primary_10_1002_num_22353 crossref_primary_10_1016_j_apnum_2023_09_005 crossref_primary_10_1007_s11075_017_0339_4 crossref_primary_10_1016_j_rinp_2022_106175 crossref_primary_10_1016_j_apnum_2021_10_019 crossref_primary_10_1016_j_apnum_2017_04_006 crossref_primary_10_1016_j_apnum_2020_03_022 crossref_primary_10_1016_j_amc_2020_125202 crossref_primary_10_1007_s10915_021_01487_y crossref_primary_10_1007_s10915_023_02201_w crossref_primary_10_1186_s13662_015_0676_3 crossref_primary_10_1016_j_camwa_2023_07_011 crossref_primary_10_1007_s40314_023_02474_9 crossref_primary_10_3390_math9172131 crossref_primary_10_1016_j_cam_2022_114699 crossref_primary_10_1007_s40819_022_01344_y crossref_primary_10_1007_s10444_024_10155_2 crossref_primary_10_1016_j_jcp_2016_12_046 crossref_primary_10_1007_s10915_022_01977_7 crossref_primary_10_1007_s12190_020_01316_9 crossref_primary_10_1016_j_jcp_2021_110328 crossref_primary_10_1016_j_apnum_2022_03_019 crossref_primary_10_3934_era_2021019 crossref_primary_10_1016_j_apnum_2021_07_013 crossref_primary_10_1016_j_cam_2018_05_039 crossref_primary_10_1186_s13662_019_2152_y |
Cites_doi | 10.1007/BF01385620 10.1007/BF02576532 10.1137/0730032 10.1016/j.apnum.2006.09.003 10.1137/0723001 10.1137/120880677 10.1137/0729088 10.1090/S0025-5718-1993-1185240-3 10.1137/090752675 10.1002/num.20155 10.1007/BF01400311 10.1016/j.physleta.2007.05.050 10.1090/S0025-5718-1995-1297463-5 10.1016/j.apnum.2008.03.042 10.1016/j.jmaa.2008.02.017 10.4310/CMS.2004.v2.n2.a9 10.1017/CBO9780511618352 10.1016/0362-546X(94)00236-B 10.1016/S0362-546X(96)00093-4 10.1016/j.chaos.2007.09.083 10.1016/0045-7825(90)90023-F 10.1016/S0022-247X(03)00254-3 10.1007/BF02012626 10.1007/978-3-540-30728-0 10.1002/fld.1141 10.1090/S0002-9939-09-10142-9 10.1002/fld.1359 10.1016/j.jde.2013.02.006 10.1137/1.9781611970425 10.1137/S0036142999362687 10.1137/S0036142900373737 10.1007/s10915-012-9621-8 10.4208/nmtma.2009.m88037 10.1016/j.cpc.2010.08.035 10.1093/imanum/8.1.71 10.1137/0710074 10.1006/jmaa.1995.1167 10.1063/1.527850 10.1137/0713048 10.1512/iumj.2001.50.2090 10.1137/0726003 10.1051/m2an/1988220304991 10.1137/0905065 10.1137/0719053 10.1090/S0025-5718-1993-1153170-9 10.1016/S0168-9274(00)00027-1 10.1137/0730016 10.1090/S0025-5718-1978-0501995-4 10.1090/S0025-5718-1982-0637287-3 10.1016/S0168-9274(02)00187-3 10.1016/j.cam.2008.05.049 10.1016/S0960-0779(00)00133-8 10.1051/m2an/1982160403751 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/num.21899 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1098-2426 |
EndPage | 224 |
ExternalDocumentID | 3505213861 10_1002_num_21899 NUM21899 ark_67375_WNG_RVV54D93_2 |
Genre | article |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research (to S. G) funderid: FA‐9550‐12‐1‐0224 – fundername: NSF (to C. W) funderid: DMS‐1115420 – fundername: NSFC (to C. W.) funderid: 11271281 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAMNL AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3689-af86bc44fd09376fca0ea4cb8afe4390d79f096718e3bc405bda993e09f0b6de3 |
IEDL.DBID | 33P |
ISSN | 0749-159X |
IngestDate | Sat Aug 17 00:18:13 EDT 2024 Thu Oct 10 18:53:50 EDT 2024 Thu Nov 21 21:37:41 EST 2024 Sat Aug 24 00:50:02 EDT 2024 Wed Oct 30 09:51:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3689-af86bc44fd09376fca0ea4cb8afe4390d79f096718e3bc405bda993e09f0b6de3 |
Notes | ArticleID:NUM21899 NSFC (to C. W.) - No. 11271281 NSF (to C. W) - No. DMS-1115420 ark:/67375/WNG-RVV54D93-2 istex:320EE28273C91C18B804A16685C1D7DF6AE11C90 Air Force Office of Scientific Research (to S. G) - No. FA-9550-12-1-0224 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1627019566 |
PQPubID | 1016406 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1651389835 proquest_journals_1627019566 crossref_primary_10_1002_num_21899 wiley_primary_10_1002_num_21899_NUM21899 istex_primary_ark_67375_WNG_RVV54D93_2 |
PublicationCentury | 2000 |
PublicationDate | 2015-01 January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Numerical methods for partial differential equations |
PublicationTitleAlternate | Numer. Methods Partial Differential Eq |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Y. Maday and A. Quarteroni, Error analysis for spectral approximation of the Korteweg-de Vries equation, Math Model Numer Anal 22 (1988), 499-529. T. Ortega and J. M. Sanz-Serna, Nonlinear stability and convergence of finite difference methods for the "good" Boussinesq equation, Numer Math 58 (1990), 215-229. B.Y. Guo, H. P. Ma, and E. Tadmor, Spectral vanishing viscosity method for nonlinear conservation laws, SIAM J Numer Anal 39 (2001), 1254-1268. H. El-Zoheiry, Numerical investigation for the solitary waves interaction of the "good" Boussinesq equation, Appl Numer Math 45 (2003), 161-173. S. Oh and A. Stefanov, Improved local well-posedness for the periodic "good" Boussinesq equation, JDiffer Equ 254 (2013), 4047-4065. Q. Du, B. Guo, and J. Shen, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals, SIAM J Numer Anal 39 (2001), 735-762. Z. Deng and H. Ma, Optimal error estimates of the Fourier spectral method for a class of nonlocal, nonlinear dispersive wave equations, Appl Numer Math 59 (2009), 988-1010. E. Weinan, Convergence of spectral methods for the Burgers' equation, SIAM J Numer Anal 29 (1992), 1520-1541. E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J Numer Anal 23 (1986), 1-10. E. Tadmor, Convergence of spectral methods to nonlinear conservation laws, SIAM J Numer Anal 26 (1989), 30-44. V. S. Manotanjan, T. Ortega, and J. M. Sanz-Serna, Soliton and antisoliton interactions in the "good" Boussinesq equation, J Math Phys 29 (1988), 1964-1968. C. Wang and S. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J Numer Anal 49 (2011), 945-969. J. Boyd, Chebyshev and Fourier spectral methods, 2nd Ed., Dover, New York, NY, 2001. A. Baskara, J. S. Lowengrub, C. Wang, and S. M. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J Numer Anal 51 (2013), 2851-2873. F. Linares and M. Scialom, Asymptotic behavior of solutions of a generalized Boussinesq type equation, Nonlinear Anal Theory Methods Appl 25 (1995), 1147-1158. Z. Deng and H. Ma, Error estimate of the Fourier collocation method for the Benjamin-Ono equation, Numer Math Theory Methods Appl 2 (2009), 341-352. Y. Maday, S. M. Ould Kaber, and E. Tadmor, Legendre pseudospectral viscosity method for nonlinear conservation laws, SIAM J Numer Anal 30 (1993), 321-342. B. S. Attili, The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation, Numer Methods Partial Differential Equations 22 (2006), 1337-1347. J. De Frutos, T. Ortega, and J. M. Sanz-Serna, Pseudospectral method for the "good" Boussinesq equation, Math Comput 57 (1991), 109-122. S. Gottlieb and C. Wang, Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation, J Sci Comput 53 (2012), 102-128. T. Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J Numer Anal 10 (2009), 890-899. C. Canuto, M. Y. Hussani, A. Quarteroni, and T. A. Zang, Spectral methods: evolution to complex geometries and applications to fluid dynamics, Springer-Verlag, Berlin, 2007. A. Shokri and M. Dehghan, A not-a-knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation, Comput Phys Commun 181 (2010), 1990-2000. J. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for time-dependent problems, Cambridge University Press, Cambridge, 2007. E. Tadmor, Burgers' equation with vanishing hyper-viscosity, Commun Math Sci 2 (2004), 317-324. Y. Maday and A. Quarteroni, Approximation of Burgers' equation by pseudospectral methods, RAIRO Anal Numer 16 (1982), 375-404. A. K. Pani and H. Saranga, Finite element Galerkin method for the "good" Boussinesq equation, Nonlinear Anal Theory Methods Appl 29 (1997), 937-956. E. Tadmor, Total variation and error estimates for spectral viscosity approximations, Math Comput 60 (1993), 245-256. V. S. Manoranjan, A. R. Mitchell, and J. L. Morris, Numerical solutions of the good Boussinesq equation, SIAM Sci Stat Comput 5 (1984), 946-957. B. Y. Guo and J. Zou, Fourier spectral projection method and nonlinear convergence analysis for Navier-Stokes equations, J Math Anal Appl 282 (2003), 766-791. J. C. López-Marcos and J. M. Sanz-Serna, Stability and convergence in numerical analysis, III: Linear investigation of nonlinear stability, IMA J Numer Anal 7 (1988), 71-84. A. G. Bratsos, A predictor-corrector scheme for the improved Boussinesq equation, Chaos Solitons Fractals 40 (2009), 2083-2094. R. Cienfuegos, E. Barthélemy, and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations, Part I: Model development and analysis, Int J Numer Methods Fluids 51 (2006), 1217-1253. E. Tadmor, Shock capturing by the spectral viscosity method, Comput Methods Appl Mech Eng 80 (1990), 197-208. B. Y. Guo, J. Li, and H. P. Ma, Fourier-Chebyshev spectral method for solving three-dimensional vorticity equation, Acta Math Appl Sin 11 (1995), 94-109. Y. Maday and A. Quarteroni, Spectral and pseudospectral approximation to Navier-Stokes equations, SIAM J Numer Anal 19 (1982), 761-780. G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J Numer Anal 13 (1976), 564-576. Y. Maday and A. Quarteroni, Legendre and Chebyshev spectral approximations of Burgers' equation, Numer Math 37 (1981), 321-332. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math Comput 38 (1982), 67-86. M. Tsutsumi and T. Matahashi, On the Cauchy problem for the Boussinesq type equation, Math Japonica 36 (1991), 371-379. D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods, theory and applications, SIAM, Philadelphia, PA, 1977. E. Weinan, Convergence of Fourier methods for Navier-Stokes equations, SIAM J Numer Anal 30 (1993), 650-674. B. Y. Guo and W. Huang, Mixed Jacobi-spherical harmonic spectral method for Navier-Stokes equations, Appl Numer Math 57 (2007), 939-961. Q. Lin, Y. H. Wu, R. Loxton, and S. Lai, Linear B-spline finite element method for the improved Boussinesq equation, J Comput Appl Math 224 (2009), 658-667. G. Q. Chen, Q. Du, and E. Tadmor, Super viscosity approximations to multi-dimensional scalar conservation laws, Math Comput 61 (1993), 629-643. B. Y. Guo, A spectral method for the vorticity equation on the surface, Math Comput 64 (1995), 1067-1069. A. G. Bratsos, A second order numerical scheme for the improved Boussinesq equation, Phys Lett A 370 (2007), 145-147. B. Pelloni and V. A. Dougalis, Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations, Appl Numer Math 37 (2001), 95-107. R. Cienfuegos, E. Barthélemy, and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations, Part II: Boundary conditions and validation, Int J Numer Methods Fluids 53 (2007), 1423-1455. A. Bressan and A. Quarteroni, An implicit/explicit spectral method for Burgers' equation, CALCOLO 23 (1986), 265-284. L. Farah and M. Scialom, On the periodic "good" Boussinesq equation, Proc Am Math Soc 138 (2010), 953-964. A. M. Wazwaz, Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos Solitons Fractals 12 (2001), 1549-1556. R. Xue, The initial-boundary value problem for the "good" Boussinesq equation on the bounded domain, J Math Anal Appl 343 (2008), 975-995. F. L. Liu and D. L. Russell, Solutions of the Boussinesq equation on a periodic domain, J Math Anal Appl 192 (1995), 194-219. B. Y. Guo and J. Shen, On spectral approximations using modified Legendre rational functions: application to the Korteweg-de Vries equation on the half line, Indiana Univ Math J 50 (2001), 181-204, (Special issue: Dedicated to Professors Ciprian Foias and Roger Temam). A. Majda, J. McDonough, and S. Osher, The Fourier method for non-smooth initial data, Math Comput 32 (1978), 1041-1081. 2001; 50 1982; 16 2009; 40 1990; 58 1982; 19 1991; 57 1993; 61 1978; 32 1993; 60 2004; 2 2010; 181 2008; 343 2012; 53 1977 1995; 64 2009; 10 2007; 370 2001 2006; 22 1995; 25 2013; 51 1993; 30 2003; 282 1981; 37 2001; 12 2009; 59 2003; 45 1982; 38 1991; 36 2006; 51 1995; 11 1997; 29 2007 2007; 53 1989; 26 1990; 80 2007; 57 1995; 192 1976; 13 1988; 29 2010; 138 1986; 23 1984; 5 1988; 7 2013; 254 1992; 29 1988; 22 2001; 37 2001; 39 2009; 2 2011; 49 2009; 224 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_45_1 Boyd J. (e_1_2_7_42_1) 2001 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 Deng Z. (e_1_2_7_39_1) 2009; 2 e_1_2_7_6_1 Majda A. (e_1_2_7_18_1) 1978; 32 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 Frutos J. (e_1_2_7_11_1) 1991; 57 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Tsutsumi M. (e_1_2_7_16_1) 1991; 36 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 23 start-page: 1 year: 1986 end-page: 10 article-title: The exponential accuracy of Fourier and Chebyshev differencing methods publication-title: SIAM J Numer Anal – volume: 37 start-page: 95 year: 2001 end-page: 107 article-title: Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations publication-title: Appl Numer Math – volume: 2 start-page: 317 year: 2004 end-page: 324 article-title: Burgers' equation with vanishing hyper‐viscosity publication-title: Commun Math Sci – volume: 40 start-page: 2083 year: 2009 end-page: 2094 article-title: A predictor‐corrector scheme for the improved Boussinesq equation publication-title: Chaos Solitons Fractals – year: 2001 – volume: 10 start-page: 890 year: 2009 end-page: 899 article-title: Galerkin methods for first order hyperbolics: an example publication-title: SIAM J Numer Anal – volume: 5 start-page: 946 year: 1984 end-page: 957 article-title: Numerical solutions of the good Boussinesq equation publication-title: SIAM Sci Stat Comput – volume: 22 start-page: 499 year: 1988 end-page: 529 article-title: Error analysis for spectral approximation of the Korteweg‐de Vries equation publication-title: Math Model Numer Anal – volume: 30 start-page: 650 year: 1993 end-page: 674 article-title: Convergence of Fourier methods for Navier‐Stokes equations publication-title: SIAM J Numer Anal – volume: 282 start-page: 766 year: 2003 end-page: 791 article-title: Fourier spectral projection method and nonlinear convergence analysis for Navier‐Stokes equations publication-title: J Math Anal Appl – volume: 49 start-page: 945 year: 2011 end-page: 969 article-title: An energy stable and convergent finite‐difference scheme for the modified phase field crystal equation publication-title: SIAM J Numer Anal – volume: 57 start-page: 939 year: 2007 end-page: 961 article-title: Mixed Jacobi‐spherical harmonic spectral method for Navier–Stokes equations publication-title: Appl Numer Math – volume: 51 start-page: 1217 year: 2006 end-page: 1253 article-title: A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations, Part I: Model development and analysis publication-title: Int J Numer Methods Fluids – volume: 53 start-page: 1423 year: 2007 end-page: 1455 article-title: A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations, Part II: Boundary conditions and validation publication-title: Int J Numer Methods Fluids – volume: 19 start-page: 761 year: 1982 end-page: 780 article-title: Spectral and pseudospectral approximation to Navier‐Stokes equations publication-title: SIAM J Numer Anal – volume: 25 start-page: 1147 year: 1995 end-page: 1158 article-title: Asymptotic behavior of solutions of a generalized Boussinesq type equation publication-title: Nonlinear Anal Theory Methods Appl – volume: 61 start-page: 629 year: 1993 end-page: 643 article-title: Super viscosity approximations to multi‐dimensional scalar conservation laws publication-title: Math Comput – volume: 29 start-page: 1964 year: 1988 end-page: 1968 article-title: Soliton and antisoliton interactions in the “good” Boussinesq equation publication-title: J Math Phys – volume: 11 start-page: 94 year: 1995 end-page: 109 article-title: Fourier‐Chebyshev spectral method for solving three‐dimensional vorticity equation publication-title: Acta Math Appl Sin – volume: 13 start-page: 564 year: 1976 end-page: 576 article-title: Error estimates for finite element methods for second order hyperbolic equations publication-title: SIAM J Numer Anal – volume: 45 start-page: 161 year: 2003 end-page: 173 article-title: Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation publication-title: Appl Numer Math – volume: 59 start-page: 988 year: 2009 end-page: 1010 article-title: Optimal error estimates of the Fourier spectral method for a class of nonlocal, nonlinear dispersive wave equations publication-title: Appl Numer Math – volume: 39 start-page: 735 year: 2001 end-page: 762 article-title: Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals publication-title: SIAM J Numer Anal – volume: 254 start-page: 4047 year: 2013 end-page: 4065 article-title: Improved local well‐posedness for the periodic “good” Boussinesq equation publication-title: JDiffer Equ – volume: 12 start-page: 1549 year: 2001 end-page: 1556 article-title: Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method publication-title: Chaos Solitons Fractals – volume: 138 start-page: 953 year: 2010 end-page: 964 article-title: On the periodic “good” Boussinesq equation publication-title: Proc Am Math Soc – volume: 50 start-page: 181 year: 2001 end-page: 204 article-title: On spectral approximations using modified Legendre rational functions: application to the Korteweg‐de Vries equation on the half line publication-title: Indiana Univ Math J – volume: 51 start-page: 2851 year: 2013 end-page: 2873 article-title: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation publication-title: SIAM J Numer Anal – volume: 64 start-page: 1067 year: 1995 end-page: 1069 article-title: A spectral method for the vorticity equation on the surface publication-title: Math Comput – volume: 30 start-page: 321 year: 1993 end-page: 342 article-title: Legendre pseudospectral viscosity method for nonlinear conservation laws publication-title: SIAM J Numer Anal – volume: 26 start-page: 30 year: 1989 end-page: 44 article-title: Convergence of spectral methods to nonlinear conservation laws publication-title: SIAM J Numer Anal – volume: 343 start-page: 975 year: 2008 end-page: 995 article-title: The initial‐boundary value problem for the “good” Boussinesq equation on the bounded domain publication-title: J Math Anal Appl – volume: 181 start-page: 1990 year: 2010 end-page: 2000 article-title: A not‐a‐knot meshless method using radial basis functions and predictor‐corrector scheme to the numerical solution of improved Boussinesq equation publication-title: Comput Phys Commun – volume: 192 start-page: 194 year: 1995 end-page: 219 article-title: Solutions of the Boussinesq equation on a periodic domain publication-title: J Math Anal Appl – year: 2007 – volume: 53 start-page: 102 year: 2012 end-page: 128 article-title: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3‐D viscous Burgers' equation publication-title: J Sci Comput – volume: 22 start-page: 1337 year: 2006 end-page: 1347 article-title: The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation publication-title: Numer Methods Partial Differential Equations – volume: 16 start-page: 375 year: 1982 end-page: 404 article-title: Approximation of Burgers' equation by pseudospectral methods publication-title: RAIRO Anal Numer – year: 1977 – volume: 37 start-page: 321 year: 1981 end-page: 332 article-title: Legendre and Chebyshev spectral approximations of Burgers' equation publication-title: Numer Math – volume: 29 start-page: 1520 year: 1992 end-page: 1541 article-title: Convergence of spectral methods for the Burgers' equation publication-title: SIAM J Numer Anal – volume: 2 start-page: 341 year: 2009 end-page: 352 article-title: Error estimate of the Fourier collocation method for the Benjamin‐Ono equation publication-title: Numer Math Theory Methods Appl – volume: 32 start-page: 1041 year: 1978 end-page: 1081 article-title: The Fourier method for non‐smooth initial data publication-title: Math Comput – volume: 7 start-page: 71 year: 1988 end-page: 84 article-title: Stability and convergence in numerical analysis, III: Linear investigation of nonlinear stability publication-title: IMA J Numer Anal – volume: 29 start-page: 937 year: 1997 end-page: 956 article-title: Finite element Galerkin method for the “good” Boussinesq equation publication-title: Nonlinear Anal Theory Methods Appl – volume: 36 start-page: 371 year: 1991 end-page: 379 article-title: On the Cauchy problem for the Boussinesq type equation publication-title: Math Japonica – volume: 80 start-page: 197 year: 1990 end-page: 208 article-title: Shock capturing by the spectral viscosity method publication-title: Comput Methods Appl Mech Eng – volume: 57 start-page: 109 year: 1991 end-page: 122 article-title: Pseudospectral method for the “good” Boussinesq equation publication-title: Math Comput – volume: 39 start-page: 1254 year: 2001 end-page: 1268 article-title: Spectral vanishing viscosity method for nonlinear conservation laws publication-title: SIAM J Numer Anal – volume: 60 start-page: 245 year: 1993 end-page: 256 article-title: Total variation and error estimates for spectral viscosity approximations publication-title: Math Comput – volume: 38 start-page: 67 year: 1982 end-page: 86 article-title: Approximation results for orthogonal polynomials in Sobolev spaces publication-title: Math Comput – volume: 23 start-page: 265 year: 1986 end-page: 284 article-title: An implicit/explicit spectral method for Burgers' equation publication-title: CALCOLO – volume: 370 start-page: 145 year: 2007 end-page: 147 article-title: A second order numerical scheme for the improved Boussinesq equation publication-title: Phys Lett A – volume: 58 start-page: 215 year: 1990 end-page: 229 article-title: Nonlinear stability and convergence of finite difference methods for the “good” Boussinesq equation publication-title: Numer Math – volume: 224 start-page: 658 year: 2009 end-page: 667 article-title: Linear B‐spline finite element method for the improved Boussinesq equation publication-title: J Comput Appl Math – ident: e_1_2_7_4_1 doi: 10.1007/BF01385620 – ident: e_1_2_7_36_1 doi: 10.1007/BF02576532 – ident: e_1_2_7_30_1 doi: 10.1137/0730032 – ident: e_1_2_7_32_1 doi: 10.1016/j.apnum.2006.09.003 – ident: e_1_2_7_54_1 doi: 10.1137/0723001 – ident: e_1_2_7_47_1 doi: 10.1137/120880677 – ident: e_1_2_7_29_1 doi: 10.1137/0729088 – ident: e_1_2_7_22_1 doi: 10.1090/S0025-5718-1993-1185240-3 – ident: e_1_2_7_55_1 doi: 10.1137/090752675 – ident: e_1_2_7_5_1 doi: 10.1002/num.20155 – ident: e_1_2_7_19_1 doi: 10.1007/BF01400311 – ident: e_1_2_7_7_1 doi: 10.1016/j.physleta.2007.05.050 – ident: e_1_2_7_31_1 doi: 10.1090/S0025-5718-1995-1297463-5 – ident: e_1_2_7_40_1 doi: 10.1016/j.apnum.2008.03.042 – ident: e_1_2_7_57_1 doi: 10.1016/j.jmaa.2008.02.017 – volume: 36 start-page: 371 year: 1991 ident: e_1_2_7_16_1 article-title: On the Cauchy problem for the Boussinesq type equation publication-title: Math Japonica contributor: fullname: Tsutsumi M. – ident: e_1_2_7_28_1 doi: 10.4310/CMS.2004.v2.n2.a9 – ident: e_1_2_7_44_1 doi: 10.1017/CBO9780511618352 – ident: e_1_2_7_13_1 doi: 10.1016/0362-546X(94)00236-B – ident: e_1_2_7_15_1 doi: 10.1016/S0362-546X(96)00093-4 – ident: e_1_2_7_6_1 doi: 10.1016/j.chaos.2007.09.083 – ident: e_1_2_7_26_1 doi: 10.1016/0045-7825(90)90023-F – ident: e_1_2_7_50_1 doi: 10.1016/S0022-247X(03)00254-3 – ident: e_1_2_7_33_1 doi: 10.1007/BF02012626 – ident: e_1_2_7_43_1 doi: 10.1007/978-3-540-30728-0 – ident: e_1_2_7_8_1 doi: 10.1002/fld.1141 – ident: e_1_2_7_10_1 doi: 10.1090/S0002-9939-09-10142-9 – ident: e_1_2_7_9_1 doi: 10.1002/fld.1359 – volume-title: Chebyshev and Fourier spectral methods year: 2001 ident: e_1_2_7_42_1 contributor: fullname: Boyd J. – ident: e_1_2_7_14_1 doi: 10.1016/j.jde.2013.02.006 – ident: e_1_2_7_17_1 doi: 10.1137/1.9781611970425 – ident: e_1_2_7_23_1 doi: 10.1137/S0036142999362687 – ident: e_1_2_7_34_1 doi: 10.1137/S0036142900373737 – ident: e_1_2_7_12_1 doi: 10.1007/s10915-012-9621-8 – volume: 2 start-page: 341 year: 2009 ident: e_1_2_7_39_1 article-title: Error estimate of the Fourier collocation method for the Benjamin‐Ono equation publication-title: Numer Math Theory Methods Appl doi: 10.4208/nmtma.2009.m88037 contributor: fullname: Deng Z. – ident: e_1_2_7_53_1 doi: 10.1016/j.cpc.2010.08.035 – ident: e_1_2_7_41_1 doi: 10.1093/imanum/8.1.71 – ident: e_1_2_7_48_1 doi: 10.1137/0710074 – ident: e_1_2_7_52_1 doi: 10.1006/jmaa.1995.1167 – ident: e_1_2_7_3_1 doi: 10.1063/1.527850 – ident: e_1_2_7_46_1 doi: 10.1137/0713048 – ident: e_1_2_7_35_1 doi: 10.1512/iumj.2001.50.2090 – ident: e_1_2_7_25_1 doi: 10.1137/0726003 – ident: e_1_2_7_37_1 doi: 10.1051/m2an/1988220304991 – ident: e_1_2_7_2_1 doi: 10.1137/0905065 – ident: e_1_2_7_21_1 doi: 10.1137/0719053 – ident: e_1_2_7_27_1 doi: 10.1090/S0025-5718-1993-1153170-9 – ident: e_1_2_7_38_1 doi: 10.1016/S0168-9274(00)00027-1 – volume: 57 start-page: 109 year: 1991 ident: e_1_2_7_11_1 article-title: Pseudospectral method for the “good” Boussinesq equation publication-title: Math Comput contributor: fullname: Frutos J. – ident: e_1_2_7_24_1 doi: 10.1137/0730016 – volume: 32 start-page: 1041 year: 1978 ident: e_1_2_7_18_1 article-title: The Fourier method for non‐smooth initial data publication-title: Math Comput doi: 10.1090/S0025-5718-1978-0501995-4 contributor: fullname: Majda A. – ident: e_1_2_7_45_1 doi: 10.1090/S0025-5718-1982-0637287-3 – ident: e_1_2_7_49_1 doi: 10.1016/S0168-9274(02)00187-3 – ident: e_1_2_7_51_1 doi: 10.1016/j.cam.2008.05.049 – ident: e_1_2_7_56_1 doi: 10.1016/S0960-0779(00)00133-8 – ident: e_1_2_7_20_1 doi: 10.1051/m2an/1982160403751 |
SSID | ssj0011519 |
Score | 2.3562489 |
Snippet | In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 202 |
SubjectTerms | Accuracy aliasing error Boussinesq equations Constrictions Convergence Fourier analysis fully discrete Fourier pseudospectral method good Boussinesq equation Joining Mathematical models Stability stability and convergence Temporal logic |
Title | A Fourier pseudospectral method for the "good" Boussinesq equation with second-order temporal accuracy |
URI | https://api.istex.fr/ark:/67375/WNG-RVV54D93-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.21899 https://www.proquest.com/docview/1627019566 https://search.proquest.com/docview/1651389835 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BubQHCm0RgQW5FUK9hKaJ4yTiVGiXXrqqoH83a_wTDpRNuyFSe-sj9AHg5fZJGNu7UXtAqsQtSsaS5fFkvvF4vgF4x1VWK52ncWY5xjxVIkZSRqwLXqaKIya-wnv_WzE6K3f3HE3Ox3ktTOCH6A_cnGX4_7UzcFTt1h3S0O7nB_JPlSveoyjBl29kh30GgTxZFSg4q5hc9tmcVShJt_qR93zRE7esV_eA5l246v3NcPm_ZvoMns5gJtsJ--I5PLLjFVg66Dla21U432HD0LCOXbS2M40vupzQqNBVmhGcZSTPpje_vzeNmd78YZ-arvUX5S-ZvQwk4cyd5LLWxdUkcuupPNmM8OqcodbdBPX1GhwP944-78ez3guxzkRZxViXQmnOa5MQgBG1xsQi16rE2hKGSUxR1RT9kGezGckluTJIUMcm9FoJY7MXsDBuxvYlMESsKSgRFBopLkyBorImqUXKXY4QTQQbcy3Ii0CxIQOZcuraoki_dBG89_rpJXDyw91JK3J5Ovoiv56c5Hy3ymQawWCuQDkzx1Zui7TwlZEigvX-MxmSy47g2NLikUzukraESCPY9Or892zk6PjAP7x6uOhrWCSwlYfjmwEs_Jp09g08bk331u_cv1fG9OU |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB715wAcSvkTKaU1CCEuoSFxnETiUmiXRXRXCNrSmzX-CQfaTbtpJLj1EXgAeLk-CWN7N2oPSEjcomQsWR5P5vOM5xuAZ1xltdJ5GmeWY8xTJWIkZcS64GWqOGLiK7yHn4vxUbmz62hyXs9rYQI_RB9wc5bh_9fOwF1AeusKa2h38pIcVFUtwjIXtBFdAUf2sc8hkC-rAglnFZPTPprzCiXpVj_0mjdadgv7_RrUvApYvccZ3P6_ua7Cygxpsu2wNe7Agp3chVujnqa1vQfH22wQetax09Z2pvF1l1MaFRpLM0K0jOTZ5cWvr01jLi9-szdN1_q78mfMngWecOaCuax1R2sS-enZPNmM8-qYodbdFPWP-3Aw2N1_O4xn7RdinYmyirEuhdKc1yYhDCNqjYlFrlWJtSUYk5iiqukARM7NZiSX5MogoR2b0GsljM0ewNKkmdiHwBCxpnMJKalQXJgCRWVNUouUuzQhmgieztUgTwPLhgx8yqnrjCL90kXw3Cuol8DpN3ctrcjll_E7-enwMOc7VSbTCNbnGpQzi2zlK5EWvjhSRPCk_0y25BIkOLG0eCSTu7wtgdIIXnh9_n02cnww8g9r_y66CTeG-6M9ufd-_OER3CTslYdozjosnU87-xgWW9Nt-G38B7vi-Q0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RVkJw4B8RKGAQQlxCQ-I4iTgVtksRdFUB_blZ4z8OlM12QyS49RF4AHi5PgljezdqD0hI3KJkLFkeT-Ybj-cbgCdcFU7pMk8LyzHluRIpkjJSXfE6VxwxCxXe2x-ryWE92vI0OS-XtTCRH2I4cPOWEf7X3sBnxm2cIQ3tvz4n_9Q0K7DGCYZ74vyi2B1SCOTKmsjB2aTksw-XtEJZvjEMPeeM1vy6fj-HNM_i1eBwxlf_a6rX4MoCZ7LNuDGuwwU7vQGXdwaS1u4mHG2ycexYx2ad7U0bqi7nNCq2lWaEZxnJs9OTX5_b1pye_Gav2r4LN-WPmT2OLOHMH-WyzgfWJPIzcHmyBePVEUOt-znqH7dgb7z16fV2umi-kOpC1E2KrhZKc-5MRghGOI2ZRa5Vjc4SiMlM1TgKf8i12YLkslIZJKxjM3qthLHFbVidtlN7BxgiOopKBMVGigtToWisyZzIuU8Sokng8VILchY5NmRkU859XxQZli6Bp0E_gwTOv_hLaVUpDyZv5If9_ZKPmkLmCawvFSgX9tjJFyKvQmmkSODR8JksyadHcGpp8Uim9FlbgqQJPAvq_Pts5GRvJzzc_XfRh3BxdzSW799O3t2DSwS8yniUsw6r3-a9vQ8rnekfhE38B8re97M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fourier+pseudospectral+method+for+the+%E2%80%9Cgood%E2%80%9D+Boussinesq+equation+with+second%E2%80%90order+temporal+accuracy&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Cheng%2C+Kelong&rft.au=Feng%2C+Wenqiang&rft.au=Gottlieb%2C+Sigal&rft.au=Wang%2C+Cheng&rft.date=2015-01-01&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=31&rft.issue=1&rft.spage=202&rft.epage=224&rft_id=info:doi/10.1002%2Fnum.21899&rft.externalDBID=10.1002%252Fnum.21899&rft.externalDocID=NUM21899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon |