A Fourier pseudospectral method for the "good" Boussinesq equation with second-order temporal accuracy

In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second‐order time‐stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in ear...

Full description

Saved in:
Bibliographic Details
Published in:Numerical methods for partial differential equations Vol. 31; no. 1; pp. 202 - 224
Main Authors: Cheng, Kelong, Feng, Wenqiang, Gottlieb, Sigal, Wang, Cheng
Format: Journal Article
Language:English
Published: New York Blackwell Publishing Ltd 01-01-2015
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second‐order time‐stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a ℓ ∞ ( 0 , T * ; H 2 ) convergence for the solution and ℓ ∞ ( 0 , T * ; ℓ 2 ) convergence for the time‐derivative of the solution are obtained in this article, instead of the ℓ ∞ ( 0 , T * ; ℓ 2 ) convergence for the solution and the ℓ ∞ ( 0 , T * ; H − 2 ) convergence for the time‐derivative, given in De Frutos, et al., Math Comput 57 (1991), 109–122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction Δ t ≤ C h 2 required by the proof in De Frutos, et al., Math Comput 57 (1991), 109–122.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202–224, 2015
AbstractList In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second‐order time‐stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a convergence for the solution and convergence for the time‐derivative of the solution are obtained in this article, instead of the convergence for the solution and the convergence for the time‐derivative, given in De Frutos, et al., Math Comput 57 (1991), 109–122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction required by the proof in De Frutos, et al., Math Comput 57 (1991), 109–122.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202–224, 2015
In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second-order time-stepping for the numerical solution of the "good" Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a [infin] ( 0 , T * ; H 2 ) convergence for the solution and [infin] ( 0 , T * ; 2 ) convergence for the time-derivative of the solution are obtained in this article, instead of the [infin] ( 0 , T * ; 2 ) convergence for the solution and the [infin] ( 0 , T * ; H - 2 ) convergence for the time-derivative, given in De Frutos, et al., Math Comput 57 (1991), 109-122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction [Delta] t ≤ C h 2 required by the proof in De Frutos, et al., Math Comput 57 (1991), 109-122.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202-224, 2015
In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second‐order time‐stepping for the numerical solution of the “good” Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a ℓ ∞ ( 0 , T * ; H 2 ) convergence for the solution and ℓ ∞ ( 0 , T * ; ℓ 2 ) convergence for the time‐derivative of the solution are obtained in this article, instead of the ℓ ∞ ( 0 , T * ; ℓ 2 ) convergence for the solution and the ℓ ∞ ( 0 , T * ; H − 2 ) convergence for the time‐derivative, given in De Frutos, et al., Math Comput 57 (1991), 109–122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction Δ t ≤ C h 2 required by the proof in De Frutos, et al., Math Comput 57 (1991), 109–122.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202–224, 2015
In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second-order time-stepping for the numerical solution of the "good" Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, a [Formulaomitted] convergence for the solution and [Formulaomitted] convergence for the time-derivative of the solution are obtained in this article, instead of the [Formulaomitted] convergence for the solution and the [Formulaomitted] convergence for the time-derivative, given in De Frutos, et al., Math Comput 57 (1991), 109-122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction [Formulaomitted] required by the proof in De Frutos, et al., Math Comput 57 (1991), 109-122. copyright 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202-224, 2015
Author Feng, Wenqiang
Wang, Cheng
Cheng, Kelong
Gottlieb, Sigal
Author_xml – sequence: 1
  givenname: Kelong
  surname: Cheng
  fullname: Cheng, Kelong
  organization: Department of Mathematics, Southwest University of Science and Technology, Sichuan, 621010, Mianyang, People's Republic of China
– sequence: 2
  givenname: Wenqiang
  surname: Feng
  fullname: Feng, Wenqiang
  organization: Department of Mathematics, University of Tennessee, Tennessee, 37996, Knoxville
– sequence: 3
  givenname: Sigal
  surname: Gottlieb
  fullname: Gottlieb, Sigal
  organization: Department of Mathematics, University of Massachusetts, Massachusetts, 02747, North Dartmouth
– sequence: 4
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  email: cwang1@umassd.edu
  organization: Department of Mathematics, University of Massachusetts, Massachusetts, 02747, North Dartmouth
BookMark eNp10EtLxDAUBeAgCo6Phf8g6EYX1aRp02ap4xN8gPjahUxy41TbppO06Px7o6MuBFeB8J3D5ayh5da1gNAWJfuUkPSgHZr9lJZCLKERJaJM0izly2hEikwkNBdPq2gthBdCKM2pGCF7iE_d4CvwuAswGBc60L1XNW6gnzqDrfO4nwLefnbObOMjN4RQtRBmGGaD6ivX4reqn-IA2rUmcd7Eqh6azn2WKK0Hr_R8A61YVQfY_H7X0f3pyd34PLm8ObsYH14mmvFSJMqWfKKzzBoiWMGtVgRUpielspAxQUwhLBG8oCWw6Eg-MUoIBiR-T7gBto52F72dd7MBQi-bKmioa9VCvFxSnlNWipLlke78oS9xiDZeF1VaECpyzqPaWyjtXQgerOx81Sg_l5TIz8VlXFx-LR7twcK-VTXM_4fy-v7qJ5EsElXo4f03ofyr5AUrcvl4fSZvHx7y7FgwmbIP2SaUtQ
CitedBy_id crossref_primary_10_1007_s11075_024_01763_6
crossref_primary_10_1093_imanum_drac081
crossref_primary_10_12677_AAM_2023_1210422
crossref_primary_10_1186_s13662_018_1784_7
crossref_primary_10_1007_s10915_017_0552_2
crossref_primary_10_1016_j_cpc_2019_04_017
crossref_primary_10_1007_s10915_020_01276_z
crossref_primary_10_1016_j_cam_2022_114959
crossref_primary_10_1002_num_23034
crossref_primary_10_1007_s10915_018_0690_1
crossref_primary_10_1016_j_apnum_2020_07_009
crossref_primary_10_1016_j_apm_2022_10_012
crossref_primary_10_1007_s00211_019_01064_4
crossref_primary_10_1016_j_matcom_2023_01_021
crossref_primary_10_1016_j_apnum_2019_02_009
crossref_primary_10_1016_j_cam_2021_113766
crossref_primary_10_1016_j_jcp_2019_109109
crossref_primary_10_1007_s12190_020_01353_4
crossref_primary_10_1007_s10915_016_0228_3
crossref_primary_10_1016_j_apnum_2022_11_015
crossref_primary_10_1016_j_jcp_2021_110429
crossref_primary_10_1016_j_cpc_2015_12_013
crossref_primary_10_1016_j_apnum_2022_11_016
crossref_primary_10_1016_j_apnum_2022_01_003
crossref_primary_10_1002_num_22353
crossref_primary_10_1016_j_apnum_2023_09_005
crossref_primary_10_1007_s11075_017_0339_4
crossref_primary_10_1016_j_rinp_2022_106175
crossref_primary_10_1016_j_apnum_2021_10_019
crossref_primary_10_1016_j_apnum_2017_04_006
crossref_primary_10_1016_j_apnum_2020_03_022
crossref_primary_10_1016_j_amc_2020_125202
crossref_primary_10_1007_s10915_021_01487_y
crossref_primary_10_1007_s10915_023_02201_w
crossref_primary_10_1186_s13662_015_0676_3
crossref_primary_10_1016_j_camwa_2023_07_011
crossref_primary_10_1007_s40314_023_02474_9
crossref_primary_10_3390_math9172131
crossref_primary_10_1016_j_cam_2022_114699
crossref_primary_10_1007_s40819_022_01344_y
crossref_primary_10_1007_s10444_024_10155_2
crossref_primary_10_1016_j_jcp_2016_12_046
crossref_primary_10_1007_s10915_022_01977_7
crossref_primary_10_1007_s12190_020_01316_9
crossref_primary_10_1016_j_jcp_2021_110328
crossref_primary_10_1016_j_apnum_2022_03_019
crossref_primary_10_3934_era_2021019
crossref_primary_10_1016_j_apnum_2021_07_013
crossref_primary_10_1016_j_cam_2018_05_039
crossref_primary_10_1186_s13662_019_2152_y
Cites_doi 10.1007/BF01385620
10.1007/BF02576532
10.1137/0730032
10.1016/j.apnum.2006.09.003
10.1137/0723001
10.1137/120880677
10.1137/0729088
10.1090/S0025-5718-1993-1185240-3
10.1137/090752675
10.1002/num.20155
10.1007/BF01400311
10.1016/j.physleta.2007.05.050
10.1090/S0025-5718-1995-1297463-5
10.1016/j.apnum.2008.03.042
10.1016/j.jmaa.2008.02.017
10.4310/CMS.2004.v2.n2.a9
10.1017/CBO9780511618352
10.1016/0362-546X(94)00236-B
10.1016/S0362-546X(96)00093-4
10.1016/j.chaos.2007.09.083
10.1016/0045-7825(90)90023-F
10.1016/S0022-247X(03)00254-3
10.1007/BF02012626
10.1007/978-3-540-30728-0
10.1002/fld.1141
10.1090/S0002-9939-09-10142-9
10.1002/fld.1359
10.1016/j.jde.2013.02.006
10.1137/1.9781611970425
10.1137/S0036142999362687
10.1137/S0036142900373737
10.1007/s10915-012-9621-8
10.4208/nmtma.2009.m88037
10.1016/j.cpc.2010.08.035
10.1093/imanum/8.1.71
10.1137/0710074
10.1006/jmaa.1995.1167
10.1063/1.527850
10.1137/0713048
10.1512/iumj.2001.50.2090
10.1137/0726003
10.1051/m2an/1988220304991
10.1137/0905065
10.1137/0719053
10.1090/S0025-5718-1993-1153170-9
10.1016/S0168-9274(00)00027-1
10.1137/0730016
10.1090/S0025-5718-1978-0501995-4
10.1090/S0025-5718-1982-0637287-3
10.1016/S0168-9274(02)00187-3
10.1016/j.cam.2008.05.049
10.1016/S0960-0779(00)00133-8
10.1051/m2an/1982160403751
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.21899
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 224
ExternalDocumentID 3505213861
10_1002_num_21899
NUM21899
ark_67375_WNG_RVV54D93_2
Genre article
GrantInformation_xml – fundername: Air Force Office of Scientific Research (to S. G)
  funderid: FA‐9550‐12‐1‐0224
– fundername: NSF (to C. W)
  funderid: DMS‐1115420
– fundername: NSFC (to C. W.)
  funderid: 11271281
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMNL
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3689-af86bc44fd09376fca0ea4cb8afe4390d79f096718e3bc405bda993e09f0b6de3
IEDL.DBID 33P
ISSN 0749-159X
IngestDate Sat Aug 17 00:18:13 EDT 2024
Thu Oct 10 18:53:50 EDT 2024
Thu Nov 21 21:37:41 EST 2024
Sat Aug 24 00:50:02 EDT 2024
Wed Oct 30 09:51:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3689-af86bc44fd09376fca0ea4cb8afe4390d79f096718e3bc405bda993e09f0b6de3
Notes ArticleID:NUM21899
NSFC (to C. W.) - No. 11271281
NSF (to C. W) - No. DMS-1115420
ark:/67375/WNG-RVV54D93-2
istex:320EE28273C91C18B804A16685C1D7DF6AE11C90
Air Force Office of Scientific Research (to S. G) - No. FA-9550-12-1-0224
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1627019566
PQPubID 1016406
PageCount 23
ParticipantIDs proquest_miscellaneous_1651389835
proquest_journals_1627019566
crossref_primary_10_1002_num_21899
wiley_primary_10_1002_num_21899_NUM21899
istex_primary_ark_67375_WNG_RVV54D93_2
PublicationCentury 2000
PublicationDate 2015-01
January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationTitleAlternate Numer. Methods Partial Differential Eq
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Y. Maday and A. Quarteroni, Error analysis for spectral approximation of the Korteweg-de Vries equation, Math Model Numer Anal 22 (1988), 499-529.
T. Ortega and J. M. Sanz-Serna, Nonlinear stability and convergence of finite difference methods for the "good" Boussinesq equation, Numer Math 58 (1990), 215-229.
B.Y. Guo, H. P. Ma, and E. Tadmor, Spectral vanishing viscosity method for nonlinear conservation laws, SIAM J Numer Anal 39 (2001), 1254-1268.
H. El-Zoheiry, Numerical investigation for the solitary waves interaction of the "good" Boussinesq equation, Appl Numer Math 45 (2003), 161-173.
S. Oh and A. Stefanov, Improved local well-posedness for the periodic "good" Boussinesq equation, JDiffer Equ 254 (2013), 4047-4065.
Q. Du, B. Guo, and J. Shen, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals, SIAM J Numer Anal 39 (2001), 735-762.
Z. Deng and H. Ma, Optimal error estimates of the Fourier spectral method for a class of nonlocal, nonlinear dispersive wave equations, Appl Numer Math 59 (2009), 988-1010.
E. Weinan, Convergence of spectral methods for the Burgers' equation, SIAM J Numer Anal 29 (1992), 1520-1541.
E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J Numer Anal 23 (1986), 1-10.
E. Tadmor, Convergence of spectral methods to nonlinear conservation laws, SIAM J Numer Anal 26 (1989), 30-44.
V. S. Manotanjan, T. Ortega, and J. M. Sanz-Serna, Soliton and antisoliton interactions in the "good" Boussinesq equation, J Math Phys 29 (1988), 1964-1968.
C. Wang and S. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J Numer Anal 49 (2011), 945-969.
J. Boyd, Chebyshev and Fourier spectral methods, 2nd Ed., Dover, New York, NY, 2001.
A. Baskara, J. S. Lowengrub, C. Wang, and S. M. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation, SIAM J Numer Anal 51 (2013), 2851-2873.
F. Linares and M. Scialom, Asymptotic behavior of solutions of a generalized Boussinesq type equation, Nonlinear Anal Theory Methods Appl 25 (1995), 1147-1158.
Z. Deng and H. Ma, Error estimate of the Fourier collocation method for the Benjamin-Ono equation, Numer Math Theory Methods Appl 2 (2009), 341-352.
Y. Maday, S. M. Ould Kaber, and E. Tadmor, Legendre pseudospectral viscosity method for nonlinear conservation laws, SIAM J Numer Anal 30 (1993), 321-342.
B. S. Attili, The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation, Numer Methods Partial Differential Equations 22 (2006), 1337-1347.
J. De Frutos, T. Ortega, and J. M. Sanz-Serna, Pseudospectral method for the "good" Boussinesq equation, Math Comput 57 (1991), 109-122.
S. Gottlieb and C. Wang, Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation, J Sci Comput 53 (2012), 102-128.
T. Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J Numer Anal 10 (2009), 890-899.
C. Canuto, M. Y. Hussani, A. Quarteroni, and T. A. Zang, Spectral methods: evolution to complex geometries and applications to fluid dynamics, Springer-Verlag, Berlin, 2007.
A. Shokri and M. Dehghan, A not-a-knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation, Comput Phys Commun 181 (2010), 1990-2000.
J. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for time-dependent problems, Cambridge University Press, Cambridge, 2007.
E. Tadmor, Burgers' equation with vanishing hyper-viscosity, Commun Math Sci 2 (2004), 317-324.
Y. Maday and A. Quarteroni, Approximation of Burgers' equation by pseudospectral methods, RAIRO Anal Numer 16 (1982), 375-404.
A. K. Pani and H. Saranga, Finite element Galerkin method for the "good" Boussinesq equation, Nonlinear Anal Theory Methods Appl 29 (1997), 937-956.
E. Tadmor, Total variation and error estimates for spectral viscosity approximations, Math Comput 60 (1993), 245-256.
V. S. Manoranjan, A. R. Mitchell, and J. L. Morris, Numerical solutions of the good Boussinesq equation, SIAM Sci Stat Comput 5 (1984), 946-957.
B. Y. Guo and J. Zou, Fourier spectral projection method and nonlinear convergence analysis for Navier-Stokes equations, J Math Anal Appl 282 (2003), 766-791.
J. C. López-Marcos and J. M. Sanz-Serna, Stability and convergence in numerical analysis, III: Linear investigation of nonlinear stability, IMA J Numer Anal 7 (1988), 71-84.
A. G. Bratsos, A predictor-corrector scheme for the improved Boussinesq equation, Chaos Solitons Fractals 40 (2009), 2083-2094.
R. Cienfuegos, E. Barthélemy, and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations, Part I: Model development and analysis, Int J Numer Methods Fluids 51 (2006), 1217-1253.
E. Tadmor, Shock capturing by the spectral viscosity method, Comput Methods Appl Mech Eng 80 (1990), 197-208.
B. Y. Guo, J. Li, and H. P. Ma, Fourier-Chebyshev spectral method for solving three-dimensional vorticity equation, Acta Math Appl Sin 11 (1995), 94-109.
Y. Maday and A. Quarteroni, Spectral and pseudospectral approximation to Navier-Stokes equations, SIAM J Numer Anal 19 (1982), 761-780.
G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J Numer Anal 13 (1976), 564-576.
Y. Maday and A. Quarteroni, Legendre and Chebyshev spectral approximations of Burgers' equation, Numer Math 37 (1981), 321-332.
C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math Comput 38 (1982), 67-86.
M. Tsutsumi and T. Matahashi, On the Cauchy problem for the Boussinesq type equation, Math Japonica 36 (1991), 371-379.
D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods, theory and applications, SIAM, Philadelphia, PA, 1977.
E. Weinan, Convergence of Fourier methods for Navier-Stokes equations, SIAM J Numer Anal 30 (1993), 650-674.
B. Y. Guo and W. Huang, Mixed Jacobi-spherical harmonic spectral method for Navier-Stokes equations, Appl Numer Math 57 (2007), 939-961.
Q. Lin, Y. H. Wu, R. Loxton, and S. Lai, Linear B-spline finite element method for the improved Boussinesq equation, J Comput Appl Math 224 (2009), 658-667.
G. Q. Chen, Q. Du, and E. Tadmor, Super viscosity approximations to multi-dimensional scalar conservation laws, Math Comput 61 (1993), 629-643.
B. Y. Guo, A spectral method for the vorticity equation on the surface, Math Comput 64 (1995), 1067-1069.
A. G. Bratsos, A second order numerical scheme for the improved Boussinesq equation, Phys Lett A 370 (2007), 145-147.
B. Pelloni and V. A. Dougalis, Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations, Appl Numer Math 37 (2001), 95-107.
R. Cienfuegos, E. Barthélemy, and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations, Part II: Boundary conditions and validation, Int J Numer Methods Fluids 53 (2007), 1423-1455.
A. Bressan and A. Quarteroni, An implicit/explicit spectral method for Burgers' equation, CALCOLO 23 (1986), 265-284.
L. Farah and M. Scialom, On the periodic "good" Boussinesq equation, Proc Am Math Soc 138 (2010), 953-964.
A. M. Wazwaz, Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos Solitons Fractals 12 (2001), 1549-1556.
R. Xue, The initial-boundary value problem for the "good" Boussinesq equation on the bounded domain, J Math Anal Appl 343 (2008), 975-995.
F. L. Liu and D. L. Russell, Solutions of the Boussinesq equation on a periodic domain, J Math Anal Appl 192 (1995), 194-219.
B. Y. Guo and J. Shen, On spectral approximations using modified Legendre rational functions: application to the Korteweg-de Vries equation on the half line, Indiana Univ Math J 50 (2001), 181-204, (Special issue: Dedicated to Professors Ciprian Foias and Roger Temam).
A. Majda, J. McDonough, and S. Osher, The Fourier method for non-smooth initial data, Math Comput 32 (1978), 1041-1081.
2001; 50
1982; 16
2009; 40
1990; 58
1982; 19
1991; 57
1993; 61
1978; 32
1993; 60
2004; 2
2010; 181
2008; 343
2012; 53
1977
1995; 64
2009; 10
2007; 370
2001
2006; 22
1995; 25
2013; 51
1993; 30
2003; 282
1981; 37
2001; 12
2009; 59
2003; 45
1982; 38
1991; 36
2006; 51
1995; 11
1997; 29
2007
2007; 53
1989; 26
1990; 80
2007; 57
1995; 192
1976; 13
1988; 29
2010; 138
1986; 23
1984; 5
1988; 7
2013; 254
1992; 29
1988; 22
2001; 37
2001; 39
2009; 2
2011; 49
2009; 224
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_45_1
Boyd J. (e_1_2_7_42_1) 2001
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
Deng Z. (e_1_2_7_39_1) 2009; 2
e_1_2_7_6_1
Majda A. (e_1_2_7_18_1) 1978; 32
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
Frutos J. (e_1_2_7_11_1) 1991; 57
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Tsutsumi M. (e_1_2_7_16_1) 1991; 36
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 23
  start-page: 1
  year: 1986
  end-page: 10
  article-title: The exponential accuracy of Fourier and Chebyshev differencing methods
  publication-title: SIAM J Numer Anal
– volume: 37
  start-page: 95
  year: 2001
  end-page: 107
  article-title: Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations
  publication-title: Appl Numer Math
– volume: 2
  start-page: 317
  year: 2004
  end-page: 324
  article-title: Burgers' equation with vanishing hyper‐viscosity
  publication-title: Commun Math Sci
– volume: 40
  start-page: 2083
  year: 2009
  end-page: 2094
  article-title: A predictor‐corrector scheme for the improved Boussinesq equation
  publication-title: Chaos Solitons Fractals
– year: 2001
– volume: 10
  start-page: 890
  year: 2009
  end-page: 899
  article-title: Galerkin methods for first order hyperbolics: an example
  publication-title: SIAM J Numer Anal
– volume: 5
  start-page: 946
  year: 1984
  end-page: 957
  article-title: Numerical solutions of the good Boussinesq equation
  publication-title: SIAM Sci Stat Comput
– volume: 22
  start-page: 499
  year: 1988
  end-page: 529
  article-title: Error analysis for spectral approximation of the Korteweg‐de Vries equation
  publication-title: Math Model Numer Anal
– volume: 30
  start-page: 650
  year: 1993
  end-page: 674
  article-title: Convergence of Fourier methods for Navier‐Stokes equations
  publication-title: SIAM J Numer Anal
– volume: 282
  start-page: 766
  year: 2003
  end-page: 791
  article-title: Fourier spectral projection method and nonlinear convergence analysis for Navier‐Stokes equations
  publication-title: J Math Anal Appl
– volume: 49
  start-page: 945
  year: 2011
  end-page: 969
  article-title: An energy stable and convergent finite‐difference scheme for the modified phase field crystal equation
  publication-title: SIAM J Numer Anal
– volume: 57
  start-page: 939
  year: 2007
  end-page: 961
  article-title: Mixed Jacobi‐spherical harmonic spectral method for Navier–Stokes equations
  publication-title: Appl Numer Math
– volume: 51
  start-page: 1217
  year: 2006
  end-page: 1253
  article-title: A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations, Part I: Model development and analysis
  publication-title: Int J Numer Methods Fluids
– volume: 53
  start-page: 1423
  year: 2007
  end-page: 1455
  article-title: A fourth‐order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq‐type equations, Part II: Boundary conditions and validation
  publication-title: Int J Numer Methods Fluids
– volume: 19
  start-page: 761
  year: 1982
  end-page: 780
  article-title: Spectral and pseudospectral approximation to Navier‐Stokes equations
  publication-title: SIAM J Numer Anal
– volume: 25
  start-page: 1147
  year: 1995
  end-page: 1158
  article-title: Asymptotic behavior of solutions of a generalized Boussinesq type equation
  publication-title: Nonlinear Anal Theory Methods Appl
– volume: 61
  start-page: 629
  year: 1993
  end-page: 643
  article-title: Super viscosity approximations to multi‐dimensional scalar conservation laws
  publication-title: Math Comput
– volume: 29
  start-page: 1964
  year: 1988
  end-page: 1968
  article-title: Soliton and antisoliton interactions in the “good” Boussinesq equation
  publication-title: J Math Phys
– volume: 11
  start-page: 94
  year: 1995
  end-page: 109
  article-title: Fourier‐Chebyshev spectral method for solving three‐dimensional vorticity equation
  publication-title: Acta Math Appl Sin
– volume: 13
  start-page: 564
  year: 1976
  end-page: 576
  article-title: Error estimates for finite element methods for second order hyperbolic equations
  publication-title: SIAM J Numer Anal
– volume: 45
  start-page: 161
  year: 2003
  end-page: 173
  article-title: Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation
  publication-title: Appl Numer Math
– volume: 59
  start-page: 988
  year: 2009
  end-page: 1010
  article-title: Optimal error estimates of the Fourier spectral method for a class of nonlocal, nonlinear dispersive wave equations
  publication-title: Appl Numer Math
– volume: 39
  start-page: 735
  year: 2001
  end-page: 762
  article-title: Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals
  publication-title: SIAM J Numer Anal
– volume: 254
  start-page: 4047
  year: 2013
  end-page: 4065
  article-title: Improved local well‐posedness for the periodic “good” Boussinesq equation
  publication-title: JDiffer Equ
– volume: 12
  start-page: 1549
  year: 2001
  end-page: 1556
  article-title: Constructions of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method
  publication-title: Chaos Solitons Fractals
– volume: 138
  start-page: 953
  year: 2010
  end-page: 964
  article-title: On the periodic “good” Boussinesq equation
  publication-title: Proc Am Math Soc
– volume: 50
  start-page: 181
  year: 2001
  end-page: 204
  article-title: On spectral approximations using modified Legendre rational functions: application to the Korteweg‐de Vries equation on the half line
  publication-title: Indiana Univ Math J
– volume: 51
  start-page: 2851
  year: 2013
  end-page: 2873
  article-title: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation
  publication-title: SIAM J Numer Anal
– volume: 64
  start-page: 1067
  year: 1995
  end-page: 1069
  article-title: A spectral method for the vorticity equation on the surface
  publication-title: Math Comput
– volume: 30
  start-page: 321
  year: 1993
  end-page: 342
  article-title: Legendre pseudospectral viscosity method for nonlinear conservation laws
  publication-title: SIAM J Numer Anal
– volume: 26
  start-page: 30
  year: 1989
  end-page: 44
  article-title: Convergence of spectral methods to nonlinear conservation laws
  publication-title: SIAM J Numer Anal
– volume: 343
  start-page: 975
  year: 2008
  end-page: 995
  article-title: The initial‐boundary value problem for the “good” Boussinesq equation on the bounded domain
  publication-title: J Math Anal Appl
– volume: 181
  start-page: 1990
  year: 2010
  end-page: 2000
  article-title: A not‐a‐knot meshless method using radial basis functions and predictor‐corrector scheme to the numerical solution of improved Boussinesq equation
  publication-title: Comput Phys Commun
– volume: 192
  start-page: 194
  year: 1995
  end-page: 219
  article-title: Solutions of the Boussinesq equation on a periodic domain
  publication-title: J Math Anal Appl
– year: 2007
– volume: 53
  start-page: 102
  year: 2012
  end-page: 128
  article-title: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3‐D viscous Burgers' equation
  publication-title: J Sci Comput
– volume: 22
  start-page: 1337
  year: 2006
  end-page: 1347
  article-title: The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation
  publication-title: Numer Methods Partial Differential Equations
– volume: 16
  start-page: 375
  year: 1982
  end-page: 404
  article-title: Approximation of Burgers' equation by pseudospectral methods
  publication-title: RAIRO Anal Numer
– year: 1977
– volume: 37
  start-page: 321
  year: 1981
  end-page: 332
  article-title: Legendre and Chebyshev spectral approximations of Burgers' equation
  publication-title: Numer Math
– volume: 29
  start-page: 1520
  year: 1992
  end-page: 1541
  article-title: Convergence of spectral methods for the Burgers' equation
  publication-title: SIAM J Numer Anal
– volume: 2
  start-page: 341
  year: 2009
  end-page: 352
  article-title: Error estimate of the Fourier collocation method for the Benjamin‐Ono equation
  publication-title: Numer Math Theory Methods Appl
– volume: 32
  start-page: 1041
  year: 1978
  end-page: 1081
  article-title: The Fourier method for non‐smooth initial data
  publication-title: Math Comput
– volume: 7
  start-page: 71
  year: 1988
  end-page: 84
  article-title: Stability and convergence in numerical analysis, III: Linear investigation of nonlinear stability
  publication-title: IMA J Numer Anal
– volume: 29
  start-page: 937
  year: 1997
  end-page: 956
  article-title: Finite element Galerkin method for the “good” Boussinesq equation
  publication-title: Nonlinear Anal Theory Methods Appl
– volume: 36
  start-page: 371
  year: 1991
  end-page: 379
  article-title: On the Cauchy problem for the Boussinesq type equation
  publication-title: Math Japonica
– volume: 80
  start-page: 197
  year: 1990
  end-page: 208
  article-title: Shock capturing by the spectral viscosity method
  publication-title: Comput Methods Appl Mech Eng
– volume: 57
  start-page: 109
  year: 1991
  end-page: 122
  article-title: Pseudospectral method for the “good” Boussinesq equation
  publication-title: Math Comput
– volume: 39
  start-page: 1254
  year: 2001
  end-page: 1268
  article-title: Spectral vanishing viscosity method for nonlinear conservation laws
  publication-title: SIAM J Numer Anal
– volume: 60
  start-page: 245
  year: 1993
  end-page: 256
  article-title: Total variation and error estimates for spectral viscosity approximations
  publication-title: Math Comput
– volume: 38
  start-page: 67
  year: 1982
  end-page: 86
  article-title: Approximation results for orthogonal polynomials in Sobolev spaces
  publication-title: Math Comput
– volume: 23
  start-page: 265
  year: 1986
  end-page: 284
  article-title: An implicit/explicit spectral method for Burgers' equation
  publication-title: CALCOLO
– volume: 370
  start-page: 145
  year: 2007
  end-page: 147
  article-title: A second order numerical scheme for the improved Boussinesq equation
  publication-title: Phys Lett A
– volume: 58
  start-page: 215
  year: 1990
  end-page: 229
  article-title: Nonlinear stability and convergence of finite difference methods for the “good” Boussinesq equation
  publication-title: Numer Math
– volume: 224
  start-page: 658
  year: 2009
  end-page: 667
  article-title: Linear B‐spline finite element method for the improved Boussinesq equation
  publication-title: J Comput Appl Math
– ident: e_1_2_7_4_1
  doi: 10.1007/BF01385620
– ident: e_1_2_7_36_1
  doi: 10.1007/BF02576532
– ident: e_1_2_7_30_1
  doi: 10.1137/0730032
– ident: e_1_2_7_32_1
  doi: 10.1016/j.apnum.2006.09.003
– ident: e_1_2_7_54_1
  doi: 10.1137/0723001
– ident: e_1_2_7_47_1
  doi: 10.1137/120880677
– ident: e_1_2_7_29_1
  doi: 10.1137/0729088
– ident: e_1_2_7_22_1
  doi: 10.1090/S0025-5718-1993-1185240-3
– ident: e_1_2_7_55_1
  doi: 10.1137/090752675
– ident: e_1_2_7_5_1
  doi: 10.1002/num.20155
– ident: e_1_2_7_19_1
  doi: 10.1007/BF01400311
– ident: e_1_2_7_7_1
  doi: 10.1016/j.physleta.2007.05.050
– ident: e_1_2_7_31_1
  doi: 10.1090/S0025-5718-1995-1297463-5
– ident: e_1_2_7_40_1
  doi: 10.1016/j.apnum.2008.03.042
– ident: e_1_2_7_57_1
  doi: 10.1016/j.jmaa.2008.02.017
– volume: 36
  start-page: 371
  year: 1991
  ident: e_1_2_7_16_1
  article-title: On the Cauchy problem for the Boussinesq type equation
  publication-title: Math Japonica
  contributor:
    fullname: Tsutsumi M.
– ident: e_1_2_7_28_1
  doi: 10.4310/CMS.2004.v2.n2.a9
– ident: e_1_2_7_44_1
  doi: 10.1017/CBO9780511618352
– ident: e_1_2_7_13_1
  doi: 10.1016/0362-546X(94)00236-B
– ident: e_1_2_7_15_1
  doi: 10.1016/S0362-546X(96)00093-4
– ident: e_1_2_7_6_1
  doi: 10.1016/j.chaos.2007.09.083
– ident: e_1_2_7_26_1
  doi: 10.1016/0045-7825(90)90023-F
– ident: e_1_2_7_50_1
  doi: 10.1016/S0022-247X(03)00254-3
– ident: e_1_2_7_33_1
  doi: 10.1007/BF02012626
– ident: e_1_2_7_43_1
  doi: 10.1007/978-3-540-30728-0
– ident: e_1_2_7_8_1
  doi: 10.1002/fld.1141
– ident: e_1_2_7_10_1
  doi: 10.1090/S0002-9939-09-10142-9
– ident: e_1_2_7_9_1
  doi: 10.1002/fld.1359
– volume-title: Chebyshev and Fourier spectral methods
  year: 2001
  ident: e_1_2_7_42_1
  contributor:
    fullname: Boyd J.
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jde.2013.02.006
– ident: e_1_2_7_17_1
  doi: 10.1137/1.9781611970425
– ident: e_1_2_7_23_1
  doi: 10.1137/S0036142999362687
– ident: e_1_2_7_34_1
  doi: 10.1137/S0036142900373737
– ident: e_1_2_7_12_1
  doi: 10.1007/s10915-012-9621-8
– volume: 2
  start-page: 341
  year: 2009
  ident: e_1_2_7_39_1
  article-title: Error estimate of the Fourier collocation method for the Benjamin‐Ono equation
  publication-title: Numer Math Theory Methods Appl
  doi: 10.4208/nmtma.2009.m88037
  contributor:
    fullname: Deng Z.
– ident: e_1_2_7_53_1
  doi: 10.1016/j.cpc.2010.08.035
– ident: e_1_2_7_41_1
  doi: 10.1093/imanum/8.1.71
– ident: e_1_2_7_48_1
  doi: 10.1137/0710074
– ident: e_1_2_7_52_1
  doi: 10.1006/jmaa.1995.1167
– ident: e_1_2_7_3_1
  doi: 10.1063/1.527850
– ident: e_1_2_7_46_1
  doi: 10.1137/0713048
– ident: e_1_2_7_35_1
  doi: 10.1512/iumj.2001.50.2090
– ident: e_1_2_7_25_1
  doi: 10.1137/0726003
– ident: e_1_2_7_37_1
  doi: 10.1051/m2an/1988220304991
– ident: e_1_2_7_2_1
  doi: 10.1137/0905065
– ident: e_1_2_7_21_1
  doi: 10.1137/0719053
– ident: e_1_2_7_27_1
  doi: 10.1090/S0025-5718-1993-1153170-9
– ident: e_1_2_7_38_1
  doi: 10.1016/S0168-9274(00)00027-1
– volume: 57
  start-page: 109
  year: 1991
  ident: e_1_2_7_11_1
  article-title: Pseudospectral method for the “good” Boussinesq equation
  publication-title: Math Comput
  contributor:
    fullname: Frutos J.
– ident: e_1_2_7_24_1
  doi: 10.1137/0730016
– volume: 32
  start-page: 1041
  year: 1978
  ident: e_1_2_7_18_1
  article-title: The Fourier method for non‐smooth initial data
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1978-0501995-4
  contributor:
    fullname: Majda A.
– ident: e_1_2_7_45_1
  doi: 10.1090/S0025-5718-1982-0637287-3
– ident: e_1_2_7_49_1
  doi: 10.1016/S0168-9274(02)00187-3
– ident: e_1_2_7_51_1
  doi: 10.1016/j.cam.2008.05.049
– ident: e_1_2_7_56_1
  doi: 10.1016/S0960-0779(00)00133-8
– ident: e_1_2_7_20_1
  doi: 10.1051/m2an/1982160403751
SSID ssj0011519
Score 2.3562489
Snippet In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 202
SubjectTerms Accuracy
aliasing error
Boussinesq equations
Constrictions
Convergence
Fourier analysis
fully discrete Fourier pseudospectral method
good Boussinesq equation
Joining
Mathematical models
Stability
stability and convergence
Temporal logic
Title A Fourier pseudospectral method for the "good" Boussinesq equation with second-order temporal accuracy
URI https://api.istex.fr/ark:/67375/WNG-RVV54D93-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.21899
https://www.proquest.com/docview/1627019566
https://search.proquest.com/docview/1651389835
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BubQHCm0RgQW5FUK9hKaJ4yTiVGiXXrqqoH83a_wTDpRNuyFSe-sj9AHg5fZJGNu7UXtAqsQtSsaS5fFkvvF4vgF4x1VWK52ncWY5xjxVIkZSRqwLXqaKIya-wnv_WzE6K3f3HE3Ox3ktTOCH6A_cnGX4_7UzcFTt1h3S0O7nB_JPlSveoyjBl29kh30GgTxZFSg4q5hc9tmcVShJt_qR93zRE7esV_eA5l246v3NcPm_ZvoMns5gJtsJ--I5PLLjFVg66Dla21U432HD0LCOXbS2M40vupzQqNBVmhGcZSTPpje_vzeNmd78YZ-arvUX5S-ZvQwk4cyd5LLWxdUkcuupPNmM8OqcodbdBPX1GhwP944-78ez3guxzkRZxViXQmnOa5MQgBG1xsQi16rE2hKGSUxR1RT9kGezGckluTJIUMcm9FoJY7MXsDBuxvYlMESsKSgRFBopLkyBorImqUXKXY4QTQQbcy3Ii0CxIQOZcuraoki_dBG89_rpJXDyw91JK3J5Ovoiv56c5Hy3ymQawWCuQDkzx1Zui7TwlZEigvX-MxmSy47g2NLikUzukraESCPY9Or892zk6PjAP7x6uOhrWCSwlYfjmwEs_Jp09g08bk331u_cv1fG9OU
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB715wAcSvkTKaU1CCEuoSFxnETiUmiXRXRXCNrSmzX-CQfaTbtpJLj1EXgAeLk-CWN7N2oPSEjcomQsWR5P5vOM5xuAZ1xltdJ5GmeWY8xTJWIkZcS64GWqOGLiK7yHn4vxUbmz62hyXs9rYQI_RB9wc5bh_9fOwF1AeusKa2h38pIcVFUtwjIXtBFdAUf2sc8hkC-rAglnFZPTPprzCiXpVj_0mjdadgv7_RrUvApYvccZ3P6_ua7Cygxpsu2wNe7Agp3chVujnqa1vQfH22wQetax09Z2pvF1l1MaFRpLM0K0jOTZ5cWvr01jLi9-szdN1_q78mfMngWecOaCuax1R2sS-enZPNmM8-qYodbdFPWP-3Aw2N1_O4xn7RdinYmyirEuhdKc1yYhDCNqjYlFrlWJtSUYk5iiqukARM7NZiSX5MogoR2b0GsljM0ewNKkmdiHwBCxpnMJKalQXJgCRWVNUouUuzQhmgieztUgTwPLhgx8yqnrjCL90kXw3Cuol8DpN3ctrcjll_E7-enwMOc7VSbTCNbnGpQzi2zlK5EWvjhSRPCk_0y25BIkOLG0eCSTu7wtgdIIXnh9_n02cnww8g9r_y66CTeG-6M9ufd-_OER3CTslYdozjosnU87-xgWW9Nt-G38B7vi-Q0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RVkJw4B8RKGAQQlxCQ-I4iTgVtksRdFUB_blZ4z8OlM12QyS49RF4AHi5PgljezdqD0hI3KJkLFkeT-Ybj-cbgCdcFU7pMk8LyzHluRIpkjJSXfE6VxwxCxXe2x-ryWE92vI0OS-XtTCRH2I4cPOWEf7X3sBnxm2cIQ3tvz4n_9Q0K7DGCYZ74vyi2B1SCOTKmsjB2aTksw-XtEJZvjEMPeeM1vy6fj-HNM_i1eBwxlf_a6rX4MoCZ7LNuDGuwwU7vQGXdwaS1u4mHG2ycexYx2ad7U0bqi7nNCq2lWaEZxnJs9OTX5_b1pye_Gav2r4LN-WPmT2OLOHMH-WyzgfWJPIzcHmyBePVEUOt-znqH7dgb7z16fV2umi-kOpC1E2KrhZKc-5MRghGOI2ZRa5Vjc4SiMlM1TgKf8i12YLkslIZJKxjM3qthLHFbVidtlN7BxgiOopKBMVGigtToWisyZzIuU8Sokng8VILchY5NmRkU859XxQZli6Bp0E_gwTOv_hLaVUpDyZv5If9_ZKPmkLmCawvFSgX9tjJFyKvQmmkSODR8JksyadHcGpp8Uim9FlbgqQJPAvq_Pts5GRvJzzc_XfRh3BxdzSW799O3t2DSwS8yniUsw6r3-a9vQ8rnekfhE38B8re97M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fourier+pseudospectral+method+for+the+%E2%80%9Cgood%E2%80%9D+Boussinesq+equation+with+second%E2%80%90order+temporal+accuracy&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Cheng%2C+Kelong&rft.au=Feng%2C+Wenqiang&rft.au=Gottlieb%2C+Sigal&rft.au=Wang%2C+Cheng&rft.date=2015-01-01&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=31&rft.issue=1&rft.spage=202&rft.epage=224&rft_id=info:doi/10.1002%2Fnum.21899&rft.externalDBID=10.1002%252Fnum.21899&rft.externalDocID=NUM21899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon