Relationship of bread quality to kernel, flour, and dough properties

This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best-fit...

Full description

Saved in:
Bibliographic Details
Published in:Cereal chemistry Vol. 85; no. 1; pp. 82 - 91
Main Authors: Dowell, F.E, Maghirang, E.B, Pierce, R.O, Lookhart, G.L, Bean, S.R, Xie, F, Caley, M.S, Wilson, J.D, Seabourn, B.W, Ram, M.S
Format: Journal Article
Language:English
Published: St. Paul, MN The American Association of Cereal Chemists, Inc 2008
American Association of Cereal Chemists
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best-fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78-0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values [almost equal to]0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples.
AbstractList This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best-fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78-0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values [almost equal to]0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples.
ABSTRACT This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best‐fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78–0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values ≈0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples.
This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best‐fit models for loaf volume, bake mix time, and water absorption had R 2 values of 0.78–0.93 with five to eight variables. Crumb grain score was not well estimated, and had R 2 values ≈0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples.
Author Seabourn, B.W
Dowell, F.E
Wilson, J.D
Ram, M.S
Bean, S.R
Pierce, R.O
Lookhart, G.L
Maghirang, E.B
Caley, M.S
Xie, F
Author_xml – sequence: 1
  fullname: Dowell, F.E
– sequence: 2
  fullname: Maghirang, E.B
– sequence: 3
  fullname: Pierce, R.O
– sequence: 4
  fullname: Lookhart, G.L
– sequence: 5
  fullname: Bean, S.R
– sequence: 6
  fullname: Xie, F
– sequence: 7
  fullname: Caley, M.S
– sequence: 8
  fullname: Wilson, J.D
– sequence: 9
  fullname: Seabourn, B.W
– sequence: 10
  fullname: Ram, M.S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19976573$$DView record in Pascal Francis
BookMark eNqFkM1LAzEQxYMoWKtnjwbBW9dONvuRHKV-VFAEP84hm53YreumJrtI_3tjW_DoZYaB937zeEdkv3MdEnLK4JKBzKaz2fzmMRF5whIAke6REZMZT3jBxT4ZAYBMgOfpITkKYRlPzko-ItfP2Oq-cV1YNCvqLK086pp-Dbpt-jXtHf1A32E7obZ1g59Q3dW0dsP7gq68W6HvGwzH5MDqNuDJbo_J2-3N62yePDzd3c-uHhLDC5EmGUtNllkoaqyYLEymtSlNHocsCigZF1hpbTPJJGJZGYvcMIZQVzyTYAUfk_MtN77-GjD0ahkzdfGlSjkAExLKKJpuRca7EDxatfLNp_ZrxUD9NqU2TSmRK6Z-m4qOix1WB6Nb63VnmvBnk7Is8pJHXb7VfTctrv_Dbu4d_2zrs9op_e4j--0lBRYjC5FDzvkPSq-DQw
CODEN CECHAF
CitedBy_id crossref_primary_10_3724_SP_J_1006_2009_01738
crossref_primary_10_1016_j_jcs_2015_10_010
crossref_primary_10_1038_s41598_017_03393_6
crossref_primary_10_1556_CRC_2012_0003
crossref_primary_10_1016_j_jcs_2017_08_002
crossref_primary_10_1080_09064710_2017_1293725
crossref_primary_10_21923_jesd_1199542
crossref_primary_10_1007_s13197_019_04136_3
crossref_primary_10_2135_cropsci2014_08_0562
crossref_primary_10_1111_jtxs_12796
crossref_primary_10_1016_j_gaost_2021_09_002
crossref_primary_10_1002_jsfa_9323
crossref_primary_10_1016_j_cj_2014_04_001
crossref_primary_10_1016_j_lwt_2019_108607
crossref_primary_10_1016_j_lwt_2021_112967
crossref_primary_10_3920_QAS2019_1658
crossref_primary_10_1002_cche_10376
crossref_primary_10_3389_fpls_2022_1030763
crossref_primary_10_1111_j_1365_2621_2011_02600_x
crossref_primary_10_2135_cropsci2015_08_0470
crossref_primary_10_1002_cche_10606
crossref_primary_10_1002_jsfa_4727
crossref_primary_10_1016_j_lwt_2012_09_011
crossref_primary_10_9724_kfcs_2015_31_1_018
crossref_primary_10_1016_j_jfoodeng_2018_12_001
crossref_primary_10_1556_CRC_2013_0062
crossref_primary_10_18016_ksutarimdoga_vi_845127
crossref_primary_10_1016_j_jcs_2010_06_009
crossref_primary_10_1016_j_jcs_2018_07_015
crossref_primary_10_1016_j_fcr_2011_04_001
crossref_primary_10_1016_j_indcrop_2017_02_021
crossref_primary_10_3934_agrfood_2023003
crossref_primary_10_1016_j_jcs_2018_06_012
crossref_primary_10_1111_ijfs_15018
crossref_primary_10_2478_v10222_011_0006_8
crossref_primary_10_3746_jkfn_2012_41_11_1571
crossref_primary_10_3920_QAS2014_0451
crossref_primary_10_1016_j_jfoodeng_2017_01_001
crossref_primary_10_1016_j_lwt_2015_05_029
crossref_primary_10_1038_s41598_021_84959_3
crossref_primary_10_1155_2021_6670316
crossref_primary_10_1016_j_jcs_2012_07_003
crossref_primary_10_3390_foods1010003
crossref_primary_10_3390_d15010109
crossref_primary_10_1016_j_jfoodeng_2016_03_006
crossref_primary_10_1016_j_fcr_2022_108665
crossref_primary_10_3389_fpls_2024_1344972
crossref_primary_10_1556_CRC_40_2012_2_1
crossref_primary_10_1016_j_scitotenv_2023_166147
crossref_primary_10_1155_2023_1405758
ContentType Journal Article
Copyright AACC International
2008 INIST-CNRS
Copyright American Association of Cereal Chemists Jan/Feb 2008
Copyright_xml – notice: AACC International
– notice: 2008 INIST-CNRS
– notice: Copyright American Association of Cereal Chemists Jan/Feb 2008
DBID FBQ
IQODW
AAYXX
CITATION
3V.
4T-
7X2
7XB
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
L6V
M0K
M2O
M7S
MBDVC
PATMY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0X
DOI 10.1094/CCHEM-85-1-0082
DatabaseName AGRIS
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Docstoc
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Agricultural Science Database
ProQuest_Research Library
Engineering Database
Research Library (Corporate)
Environmental Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Agricultural Science Database
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
SIRS Editorial
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Engineering Collection
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Docstoc
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Diet & Clinical Nutrition
EISSN 1943-3638
EndPage 91
ExternalDocumentID 1414618781
10_1094_CCHEM_85_1_0082
19976573
CCHE0082
US201300885053
Genre article
General Information
GroupedDBID -~X
0R~
1OC
29B
33P
3V.
5GY
6J9
7X2
7XC
8FE
8FG
8FH
8G5
8R4
8R5
AAHHS
AAIKC
AAJUZ
AAMNW
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABCVL
ABJCF
ABJNI
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADNWM
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFFNX
AFFPM
AFKRA
AFRAH
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AZQEC
BENPR
BFHJK
BGLVJ
BHPHI
BPHCQ
CCPQU
CS3
DCZOG
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FBQ
FRP
GNUQQ
GUQSH
HCIFZ
H~9
I4R
L6V
L7B
LATKE
LEEKS
LUTES
LYRES
M0K
M2O
M7S
MEWTI
O9-
OK1
P2P
P2W
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
ROL
RWL
S0X
SJN
SUPJJ
TAE
TWZ
U5U
UHB
VH1
WH7
WOHZO
WXSBR
XOL
ZZTAW
~KM
AAHBH
AHBTC
AITYG
HGLYW
IQODW
AAMNL
AAYXX
CITATION
4T-
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c3682-412c44f06deb196c4aac7c5ac796607138ebaaf4919ee7bcfe3c11e0db3490f83
IEDL.DBID 33P
ISSN 0009-0352
IngestDate Tue Nov 19 05:50:56 EST 2024
Thu Nov 21 23:58:05 EST 2024
Sun Oct 22 16:06:22 EDT 2023
Sat Aug 24 00:59:15 EDT 2024
Wed Dec 27 19:25:39 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bakery product
Dough
Flour
Cereal product
Quality
Bread
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3682-412c44f06deb196c4aac7c5ac796607138ebaaf4919ee7bcfe3c11e0db3490f83
Notes http://hdl.handle.net/10113/16364
http://dx.doi.org/10.1094/CCHEM-85-1-0082
PQID 230018907
PQPubID 41685
PageCount 10
ParticipantIDs proquest_journals_230018907
crossref_primary_10_1094_CCHEM_85_1_0082
pascalfrancis_primary_19976573
wiley_primary_10_1094_CCHEM_85_1_0082_CCHE0082
fao_agris_US201300885053
PublicationCentury 2000
PublicationDate 2008
January/February 2008
2008-01-00
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationPlace St. Paul, MN
PublicationPlace_xml – name: St. Paul, MN
– name: St. Paul
PublicationTitle Cereal chemistry
PublicationYear 2008
Publisher The American Association of Cereal Chemists, Inc
American Association of Cereal Chemists
Publisher_xml – name: The American Association of Cereal Chemists, Inc
– name: American Association of Cereal Chemists
SSID ssj0003173
Score 2.1467874
Snippet This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality...
ABSTRACT This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality...
SourceID proquest
crossref
pascalfrancis
wiley
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 82
SubjectTerms absorption
baking
Biological and medical sciences
bread dough
breadmaking quality
breads
calibration
Cereal and baking product industries
diameter
Food industries
food quality
Fundamental and applied biological sciences. Psychology
hard red spring wheat
hard red winter wheat
loaves
mathematical models
protein content
simulation models
test weight
texture
volume
water
water content
wheat flour
Title Relationship of bread quality to kernel, flour, and dough properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1094%2FCCHEM-85-1-0082
https://www.proquest.com/docview/230018907
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB7Ui3rwUZWuL3IQ8eDippt9HdVaikIRquAtZJOsFkpbuu3Bf-_MPmrrRQQvSxY2u9lMZvJNJvMF4MIYYlELfdeksXCFEIGrOJVCY7kNuW4pSk7u9qPeW9x-IJqc2zoXpuSHWCy4kWYU9poUXKV5RYAkiDyWOAPcOEAfiOYxtMLoKxRJHP7zwhb7dYyZQgCINWpyn0Tc_Ki_Mi-tZ2pMuyRVjh2VlSdcrEDQZSBbzESd3X_4hz3YqWAouy3HzT6s2VEDnPbAztglq7hCh6xXU_U3YLPOYM4bsL1EYngA7cV-uo_BhI0zdoc41LCSnOOTzcbsyU6xodesM8TPXjM1Moxw-wd7pkjAlChdD-G18_By33Wrsxlc7YcIygVvaSEyD0WaohJroZSOdIAXovtEzze2qVKZSHhibZTqzPqac-uZ1BeJl8X-EWyMxiPbBJYZBEleZELCZtrjSoVppFpBrHnkqcA6cFVLRk5KCg5Zhs6FLDpQxoHkkjrQgSZKTqp3NJDytd-isCyaUUR5vgPnK-L8flWCiCyI8IGTWr6y0uNcooPm8Rhb50ApyN9aUNxT4fivFU5gq9yLQss7p7Axm87tGaznZn5ejGm89h97X5l58fQ
link.rule.ids 315,782,786,1408,4028,27932,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5RGICBRwERnh4QYiAiTpzXCJSqCKiQAInNcmyHVkItasvAv-cuj0JZEBJL5EiJc_H5zp99vs8AR8YQi1oUuCZLhCuECF3FqRQZy23Eta8oObnzEHefk9YV0eRMc2FKfojpghtZRuGvycBpQbpiQBLEHkukAW4S4iSIBrIGLIgIuyOlcQT3U28c1FFmCgIg2qjpfVJx9qOCmZGpkash7ZNUY2yqvDzjYgaEfoeyxVjUXv2Pv1iDlQqJsvOy66zDnB00wWn17YQds4ou9JV1a7b-JizWSczjJix_4zHcgNZ0S12v_8aGObtAKGpYyc_xwSZDdmNHKOkpa7_iZ0-ZGhhG0L3H7ikYMCJW1014al89Xnbc6ngGVwcR4nLBfS1E7qFWM7RjLZTSsQ7xQoyfOPlNbKZULlKeWhtnOreB5tx6JgtE6uVJsAXzg-HAbgPLDeIkLzYRwTPtcaWiLFZ-mGgeeyq0DpzUqpFvJQuHLKPnQhYNKJNQckkN6MA2qk6qF_SR8unBp8gselIEeoEDBzP6_KoqRVAWxvjAbq1gWZnyWOIczeMJSudAqcnfJCjuqbDz1xcOYbHzeHcrb6-7N7uwVG5NodWePZifjN7tPjTG5v2g6OCfRUP1EA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LTxsxEIdHBKTSHkoJVNlSwAeEOLBiHXtfR9oQgaiiSBSJm-X1gyChJMrj0P--M_tICReE1MvKK-16vR4_fvbYnwFOrCWKWiJCW2QylFLGoeYUSqzjLuGmq2lz8vVdOnjIeleEybls9sJUfIjVhBvVjLK9pgo-tb4GIEmCxxIzIMxiHANRP9aCLYlinPD5QgxXjbFonMzkA0Cx0dB9cnnxKoK1jqnl9YSWSeo55pSvjrhY06AvlWzZFfV3_sNPfIHPtQ5ll1XB2YUNN25D0HtyC3bKaljoMxs0rP42bDdbmOdt-PSCYrgHvdWCutHTlE08-4FC1LKKzvGHLSbs1s0woees_4yfPWd6bBkJ9xEbkitgRkzXfbjvX_3-eR3WhzOERiSoyiXvGil9hDYtsBYbqbVJTYwX4n3i0DdzhdZe5jx3Li2Md8Jw7iJbCJlHPhNfYXM8GbsOMG9RJUWpTUicmYhrnRSp7saZ4WmkYxfAWWMZNa0YHKrynUtVZqDKYsUVZWAAHbSc0o_YQqr7uy75ZbEdRZknAjhaM-e_qHKUZHGKDxw09lV1RZ4rHKFFPMPUBVAZ8q0UlPcU-PbeF47hw7DXV79uBrcH8LFal0JTPd9hczFbukNoze3yqCzefwE_UPO2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+of+bread+quality+to+kernel%2C+flour%2C+and+dough+properties&rft.jtitle=Cereal+chemistry&rft.au=Dowell%2C+F.E&rft.au=Maghirang%2C+E.B&rft.au=Pierce%2C+R.O&rft.au=Lookhart%2C+G.L&rft.date=2008&rft.issn=0009-0352&rft.eissn=1943-3638&rft.volume=85&rft.issue=1&rft.spage=82&rft.epage=91&rft_id=info:doi/10.1094%2FCCHEM-85-1-0082&rft.externalDocID=US201300885053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-0352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-0352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-0352&client=summon