Relationship of bread quality to kernel, flour, and dough properties
This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best-fit...
Saved in:
Published in: | Cereal chemistry Vol. 85; no. 1; pp. 82 - 91 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
St. Paul, MN
The American Association of Cereal Chemists, Inc
2008
American Association of Cereal Chemists |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best-fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78-0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values [almost equal to]0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples. |
---|---|
AbstractList | This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best-fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78-0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values [almost equal to]0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples. ABSTRACT This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best‐fit models for loaf volume, bake mix time, and water absorption had R2 values of 0.78–0.93 with five to eight variables. Crumb grain score was not well estimated, and had R2 values ≈0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples. This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality characteristics. The estimated bread quality attributes included loaf volume, bake mix time, bake water absorption, and crumb grain score. The best‐fit models for loaf volume, bake mix time, and water absorption had R 2 values of 0.78–0.93 with five to eight variables. Crumb grain score was not well estimated, and had R 2 values ≈0.60. For loaf volume models, grain or flour protein content was the most important parameter included. Bake water absorption was best estimated when using mixograph water absorption, and flour or grain protein content. Bake water absorption models could generally be improved by including farinograph, mixograph, or alveograph measurements. Bake mix time was estimated best when using mixograph mix time, and models could be improved by including glutenin data. When the data set was divided into calibration and prediction sets, the loaf volume and bake mix time models still looked promising for screening samples. When including only variables that could be rapidly measured (protein content, test weight, single kernel moisture content, single kernel diameter, single kernel hardness, bulk moisture content, and dark hard and vitreous kernels), only loaf volume could be predicted with accuracies adequate for screening samples. |
Author | Seabourn, B.W Dowell, F.E Wilson, J.D Ram, M.S Bean, S.R Pierce, R.O Lookhart, G.L Maghirang, E.B Caley, M.S Xie, F |
Author_xml | – sequence: 1 fullname: Dowell, F.E – sequence: 2 fullname: Maghirang, E.B – sequence: 3 fullname: Pierce, R.O – sequence: 4 fullname: Lookhart, G.L – sequence: 5 fullname: Bean, S.R – sequence: 6 fullname: Xie, F – sequence: 7 fullname: Caley, M.S – sequence: 8 fullname: Wilson, J.D – sequence: 9 fullname: Seabourn, B.W – sequence: 10 fullname: Ram, M.S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19976573$$DView record in Pascal Francis |
BookMark | eNqFkM1LAzEQxYMoWKtnjwbBW9dONvuRHKV-VFAEP84hm53YreumJrtI_3tjW_DoZYaB937zeEdkv3MdEnLK4JKBzKaz2fzmMRF5whIAke6REZMZT3jBxT4ZAYBMgOfpITkKYRlPzko-ItfP2Oq-cV1YNCvqLK086pp-Dbpt-jXtHf1A32E7obZ1g59Q3dW0dsP7gq68W6HvGwzH5MDqNuDJbo_J2-3N62yePDzd3c-uHhLDC5EmGUtNllkoaqyYLEymtSlNHocsCigZF1hpbTPJJGJZGYvcMIZQVzyTYAUfk_MtN77-GjD0ahkzdfGlSjkAExLKKJpuRca7EDxatfLNp_ZrxUD9NqU2TSmRK6Z-m4qOix1WB6Nb63VnmvBnk7Is8pJHXb7VfTctrv_Dbu4d_2zrs9op_e4j--0lBRYjC5FDzvkPSq-DQw |
CODEN | CECHAF |
CitedBy_id | crossref_primary_10_3724_SP_J_1006_2009_01738 crossref_primary_10_1016_j_jcs_2015_10_010 crossref_primary_10_1038_s41598_017_03393_6 crossref_primary_10_1556_CRC_2012_0003 crossref_primary_10_1016_j_jcs_2017_08_002 crossref_primary_10_1080_09064710_2017_1293725 crossref_primary_10_21923_jesd_1199542 crossref_primary_10_1007_s13197_019_04136_3 crossref_primary_10_2135_cropsci2014_08_0562 crossref_primary_10_1111_jtxs_12796 crossref_primary_10_1016_j_gaost_2021_09_002 crossref_primary_10_1002_jsfa_9323 crossref_primary_10_1016_j_cj_2014_04_001 crossref_primary_10_1016_j_lwt_2019_108607 crossref_primary_10_1016_j_lwt_2021_112967 crossref_primary_10_3920_QAS2019_1658 crossref_primary_10_1002_cche_10376 crossref_primary_10_3389_fpls_2022_1030763 crossref_primary_10_1111_j_1365_2621_2011_02600_x crossref_primary_10_2135_cropsci2015_08_0470 crossref_primary_10_1002_cche_10606 crossref_primary_10_1002_jsfa_4727 crossref_primary_10_1016_j_lwt_2012_09_011 crossref_primary_10_9724_kfcs_2015_31_1_018 crossref_primary_10_1016_j_jfoodeng_2018_12_001 crossref_primary_10_1556_CRC_2013_0062 crossref_primary_10_18016_ksutarimdoga_vi_845127 crossref_primary_10_1016_j_jcs_2010_06_009 crossref_primary_10_1016_j_jcs_2018_07_015 crossref_primary_10_1016_j_fcr_2011_04_001 crossref_primary_10_1016_j_indcrop_2017_02_021 crossref_primary_10_3934_agrfood_2023003 crossref_primary_10_1016_j_jcs_2018_06_012 crossref_primary_10_1111_ijfs_15018 crossref_primary_10_2478_v10222_011_0006_8 crossref_primary_10_3746_jkfn_2012_41_11_1571 crossref_primary_10_3920_QAS2014_0451 crossref_primary_10_1016_j_jfoodeng_2017_01_001 crossref_primary_10_1016_j_lwt_2015_05_029 crossref_primary_10_1038_s41598_021_84959_3 crossref_primary_10_1155_2021_6670316 crossref_primary_10_1016_j_jcs_2012_07_003 crossref_primary_10_3390_foods1010003 crossref_primary_10_3390_d15010109 crossref_primary_10_1016_j_jfoodeng_2016_03_006 crossref_primary_10_1016_j_fcr_2022_108665 crossref_primary_10_3389_fpls_2024_1344972 crossref_primary_10_1556_CRC_40_2012_2_1 crossref_primary_10_1016_j_scitotenv_2023_166147 crossref_primary_10_1155_2023_1405758 |
ContentType | Journal Article |
Copyright | AACC International 2008 INIST-CNRS Copyright American Association of Cereal Chemists Jan/Feb 2008 |
Copyright_xml | – notice: AACC International – notice: 2008 INIST-CNRS – notice: Copyright American Association of Cereal Chemists Jan/Feb 2008 |
DBID | FBQ IQODW AAYXX CITATION 3V. 4T- 7X2 7XB 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ L6V M0K M2O M7S MBDVC PATMY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0X |
DOI | 10.1094/CCHEM-85-1-0082 |
DatabaseName | AGRIS Pascal-Francis CrossRef ProQuest Central (Corporate) Docstoc Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Agricultural Science Database ProQuest_Research Library Engineering Database Research Library (Corporate) Environmental Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep ProQuest Central Student Technology Collection ProQuest Central Essentials SIRS Editorial ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Engineering Collection Engineering Database ProQuest Central Basic ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Docstoc Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Diet & Clinical Nutrition |
EISSN | 1943-3638 |
EndPage | 91 |
ExternalDocumentID | 1414618781 10_1094_CCHEM_85_1_0082 19976573 CCHE0082 US201300885053 |
Genre | article General Information |
GroupedDBID | -~X 0R~ 1OC 29B 33P 3V. 5GY 6J9 7X2 7XC 8FE 8FG 8FH 8G5 8R4 8R5 AAHHS AAIKC AAJUZ AAMNW AANLZ AASGY AAXRX AAZKR ABCUV ABCVL ABJCF ABJNI ABUWG ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADNWM ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUQT AEUYR AFFNX AFFPM AFKRA AFRAH AI. AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AZQEC BENPR BFHJK BGLVJ BHPHI BPHCQ CCPQU CS3 DCZOG DRFUL DRSTM DU5 DWQXO EBS EJD FBQ FRP GNUQQ GUQSH HCIFZ H~9 I4R L6V L7B LATKE LEEKS LUTES LYRES M0K M2O M7S MEWTI O9- OK1 P2P P2W PATMY PQQKQ PROAC PTHSS PYCSY Q2X ROL RWL S0X SJN SUPJJ TAE TWZ U5U UHB VH1 WH7 WOHZO WXSBR XOL ZZTAW ~KM AAHBH AHBTC AITYG HGLYW IQODW AAMNL AAYXX CITATION 4T- 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c3682-412c44f06deb196c4aac7c5ac796607138ebaaf4919ee7bcfe3c11e0db3490f83 |
IEDL.DBID | 33P |
ISSN | 0009-0352 |
IngestDate | Tue Nov 19 05:50:56 EST 2024 Thu Nov 21 23:58:05 EST 2024 Sun Oct 22 16:06:22 EDT 2023 Sat Aug 24 00:59:15 EDT 2024 Wed Dec 27 19:25:39 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bakery product Dough Flour Cereal product Quality Bread |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3682-412c44f06deb196c4aac7c5ac796607138ebaaf4919ee7bcfe3c11e0db3490f83 |
Notes | http://hdl.handle.net/10113/16364 http://dx.doi.org/10.1094/CCHEM-85-1-0082 |
PQID | 230018907 |
PQPubID | 41685 |
PageCount | 10 |
ParticipantIDs | proquest_journals_230018907 crossref_primary_10_1094_CCHEM_85_1_0082 pascalfrancis_primary_19976573 wiley_primary_10_1094_CCHEM_85_1_0082_CCHE0082 fao_agris_US201300885053 |
PublicationCentury | 2000 |
PublicationDate | 2008 January/February 2008 2008-01-00 20080101 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008 |
PublicationDecade | 2000 |
PublicationPlace | St. Paul, MN |
PublicationPlace_xml | – name: St. Paul, MN – name: St. Paul |
PublicationTitle | Cereal chemistry |
PublicationYear | 2008 |
Publisher | The American Association of Cereal Chemists, Inc American Association of Cereal Chemists |
Publisher_xml | – name: The American Association of Cereal Chemists, Inc – name: American Association of Cereal Chemists |
SSID | ssj0003173 |
Score | 2.1467874 |
Snippet | This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality... ABSTRACT This study measured the relationship between bread quality and 49 hard red spring (HRS) or 48 hard red winter (HRW) grain, flour, and dough quality... |
SourceID | proquest crossref pascalfrancis wiley fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 82 |
SubjectTerms | absorption baking Biological and medical sciences bread dough breadmaking quality breads calibration Cereal and baking product industries diameter Food industries food quality Fundamental and applied biological sciences. Psychology hard red spring wheat hard red winter wheat loaves mathematical models protein content simulation models test weight texture volume water water content wheat flour |
Title | Relationship of bread quality to kernel, flour, and dough properties |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1094%2FCCHEM-85-1-0082 https://www.proquest.com/docview/230018907 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB7Ui3rwUZWuL3IQ8eDippt9HdVaikIRquAtZJOsFkpbuu3Bf-_MPmrrRQQvSxY2u9lMZvJNJvMF4MIYYlELfdeksXCFEIGrOJVCY7kNuW4pSk7u9qPeW9x-IJqc2zoXpuSHWCy4kWYU9poUXKV5RYAkiDyWOAPcOEAfiOYxtMLoKxRJHP7zwhb7dYyZQgCINWpyn0Tc_Ki_Mi-tZ2pMuyRVjh2VlSdcrEDQZSBbzESd3X_4hz3YqWAouy3HzT6s2VEDnPbAztglq7hCh6xXU_U3YLPOYM4bsL1EYngA7cV-uo_BhI0zdoc41LCSnOOTzcbsyU6xodesM8TPXjM1Moxw-wd7pkjAlChdD-G18_By33Wrsxlc7YcIygVvaSEyD0WaohJroZSOdIAXovtEzze2qVKZSHhibZTqzPqac-uZ1BeJl8X-EWyMxiPbBJYZBEleZELCZtrjSoVppFpBrHnkqcA6cFVLRk5KCg5Zhs6FLDpQxoHkkjrQgSZKTqp3NJDytd-isCyaUUR5vgPnK-L8flWCiCyI8IGTWr6y0uNcooPm8Rhb50ApyN9aUNxT4fivFU5gq9yLQss7p7Axm87tGaznZn5ejGm89h97X5l58fQ |
link.rule.ids | 315,782,786,1408,4028,27932,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5RGICBRwERnh4QYiAiTpzXCJSqCKiQAInNcmyHVkItasvAv-cuj0JZEBJL5EiJc_H5zp99vs8AR8YQi1oUuCZLhCuECF3FqRQZy23Eta8oObnzEHefk9YV0eRMc2FKfojpghtZRuGvycBpQbpiQBLEHkukAW4S4iSIBrIGLIgIuyOlcQT3U28c1FFmCgIg2qjpfVJx9qOCmZGpkash7ZNUY2yqvDzjYgaEfoeyxVjUXv2Pv1iDlQqJsvOy66zDnB00wWn17YQds4ou9JV1a7b-JizWSczjJix_4zHcgNZ0S12v_8aGObtAKGpYyc_xwSZDdmNHKOkpa7_iZ0-ZGhhG0L3H7ikYMCJW1014al89Xnbc6ngGVwcR4nLBfS1E7qFWM7RjLZTSsQ7xQoyfOPlNbKZULlKeWhtnOreB5tx6JgtE6uVJsAXzg-HAbgPLDeIkLzYRwTPtcaWiLFZ-mGgeeyq0DpzUqpFvJQuHLKPnQhYNKJNQckkN6MA2qk6qF_SR8unBp8gselIEeoEDBzP6_KoqRVAWxvjAbq1gWZnyWOIczeMJSudAqcnfJCjuqbDz1xcOYbHzeHcrb6-7N7uwVG5NodWePZifjN7tPjTG5v2g6OCfRUP1EA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3LTxsxEIdHBKTSHkoJVNlSwAeEOLBiHXtfR9oQgaiiSBSJm-X1gyChJMrj0P--M_tICReE1MvKK-16vR4_fvbYnwFOrCWKWiJCW2QylFLGoeYUSqzjLuGmq2lz8vVdOnjIeleEybls9sJUfIjVhBvVjLK9pgo-tb4GIEmCxxIzIMxiHANRP9aCLYlinPD5QgxXjbFonMzkA0Cx0dB9cnnxKoK1jqnl9YSWSeo55pSvjrhY06AvlWzZFfV3_sNPfIHPtQ5ll1XB2YUNN25D0HtyC3bKaljoMxs0rP42bDdbmOdt-PSCYrgHvdWCutHTlE08-4FC1LKKzvGHLSbs1s0woees_4yfPWd6bBkJ9xEbkitgRkzXfbjvX_3-eR3WhzOERiSoyiXvGil9hDYtsBYbqbVJTYwX4n3i0DdzhdZe5jx3Li2Md8Jw7iJbCJlHPhNfYXM8GbsOMG9RJUWpTUicmYhrnRSp7saZ4WmkYxfAWWMZNa0YHKrynUtVZqDKYsUVZWAAHbSc0o_YQqr7uy75ZbEdRZknAjhaM-e_qHKUZHGKDxw09lV1RZ4rHKFFPMPUBVAZ8q0UlPcU-PbeF47hw7DXV79uBrcH8LFal0JTPd9hczFbukNoze3yqCzefwE_UPO2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+of+bread+quality+to+kernel%2C+flour%2C+and+dough+properties&rft.jtitle=Cereal+chemistry&rft.au=Dowell%2C+F.E&rft.au=Maghirang%2C+E.B&rft.au=Pierce%2C+R.O&rft.au=Lookhart%2C+G.L&rft.date=2008&rft.issn=0009-0352&rft.eissn=1943-3638&rft.volume=85&rft.issue=1&rft.spage=82&rft.epage=91&rft_id=info:doi/10.1094%2FCCHEM-85-1-0082&rft.externalDocID=US201300885053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-0352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-0352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-0352&client=summon |