High-flux and fouling-resistant membranes for brackish water desalination

Novel high-flux and fouling-resistant reverse osmosis membrane were synthesized and characterized under brackish water desalination conditions using 2000ppm NaCl solution at 225psi (1.55MPa) and 25°C. The o-aminobenzoic acid-triethylamine salt was added into m-phenylenediamine (MPD) solution to reac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of membrane science Vol. 425-426; no. 1; pp. 1 - 10
Main Authors: Zhao, Lin, Chang, Philip C.-Y., Yen, Chi, Ho, W.S.Winston
Format: Journal Article
Language:English
Published: Elsevier B.V 01-01-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel high-flux and fouling-resistant reverse osmosis membrane were synthesized and characterized under brackish water desalination conditions using 2000ppm NaCl solution at 225psi (1.55MPa) and 25°C. The o-aminobenzoic acid-triethylamine salt was added into m-phenylenediamine (MPD) solution to react with trimesoyl chloride (TMC) during the interfacial polymerization between MPD and TMC. The membrane synthesis conditions including MPD concentration, TMC concentration, and interfacial polymerization time were optimized. The membrane synthesized under the optimal conditions was post-treated with aqueous solutions containing glycerol, sodium lauryl sulfate, and camphorsulfonic acid-triethylamine salt to further increase the water flux. The resulting membrane showed a flux of 2.22m3/m2/day (54.4gallons/ft2/day (gfd)) and a salt rejection of 98.6%. The fouling-resistant property of the synthesized membrane was enhanced by physically coating a cross-linked polyethylene glycol (PEG-200) layer on top of the thin film. The membrane coated with 10wt% cross-linked PEG demonstrated a very high flux of 2.46m3/m2/day (60.4gfd) and outperformed the state-of-the-art commercial membrane. Using dodecyltrimethylammonium bromide, a cationic foulant, and tannic acid, an anionic foulant, as model foulants, the coated membrane exhibited much reduced flux decline. The surface morphologies of the modified and unmodified membranes were analyzed using scanning electron microscopy and atomic force microscopy. The results showed a smoother membrane surface by coating the PEG layer. ► High-flux and fouling-resistant membranes were synthesized for brackish water desalination. ► Cross-linked PEG was synthesized to modify the membrane surface for fouling resistance. ► The resultant membrane showed a very high water flux of 2.46m3/m2/day or 60.4gallons/ft2/day. ► The membrane exhibited significantly improved fouling resistances to two foulants.
Bibliography:http://dx.doi.org/10.1016/j.memsci.2012.09.018
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2012.09.018