Impact of Regressand Stratification in Dataset Shift Caused by Cross-Validation

Data that have not been modeled cannot be correctly predicted. Under this assumption, this research studies how k-fold cross-validation can introduce dataset shift in regression problems. This fact implies data distributions in the training and test sets to be different and, therefore, a deteriorati...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 10; no. 14; p. 2538
Main Authors: Sáez, José A., Romero-Béjar, José L.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-07-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data that have not been modeled cannot be correctly predicted. Under this assumption, this research studies how k-fold cross-validation can introduce dataset shift in regression problems. This fact implies data distributions in the training and test sets to be different and, therefore, a deterioration of the model performance estimation. Even though the stratification of the output variable is widely used in the field of classification to reduce the impacts of dataset shift induced by cross-validation, its use in regression is not widespread in the literature. This paper analyzes the consequences for dataset shift of including different regressand stratification schemes in cross-validation with regression data. The results obtained show that these allow for creating more similar training and test sets, reducing the presence of dataset shift related to cross-validation. The bias and deviation of the performance estimation results obtained by regression algorithms are improved using the highest amounts of strata, as are the number of cross-validation repetitions necessary to obtain these better results.
AbstractList Data that have not been modeled cannot be correctly predicted. Under this assumption, this research studies how k-fold cross-validation can introduce dataset shift in regression problems. This fact implies data distributions in the training and test sets to be different and, therefore, a deterioration of the model performance estimation. Even though the stratification of the output variable is widely used in the field of classification to reduce the impacts of dataset shift induced by cross-validation, its use in regression is not widespread in the literature. This paper analyzes the consequences for dataset shift of including different regressand stratification schemes in cross-validation with regression data. The results obtained show that these allow for creating more similar training and test sets, reducing the presence of dataset shift related to cross-validation. The bias and deviation of the performance estimation results obtained by regression algorithms are improved using the highest amounts of strata, as are the number of cross-validation repetitions necessary to obtain these better results.
Author Romero-Béjar, José L.
Sáez, José A.
Author_xml – sequence: 1
  givenname: José A.
  orcidid: 0000-0002-4592-1538
  surname: Sáez
  fullname: Sáez, José A.
– sequence: 2
  givenname: José L.
  orcidid: 0000-0002-5310-9638
  surname: Romero-Béjar
  fullname: Romero-Béjar, José L.
BookMark eNpNUU1LAzEQDVLBWnvzBwS8uppssrvJUdavQqFg1WuYzUe7pd3UJD3037ttRfoOM8PM480M7xoNOt9ZhG4peWBMkscNpCUllOcFExdomOd5lVX9YHBWX6FxjCvSQ1ImuByi2WSzBZ2wd_jDLoKNETqD5ylAal2r--g73Hb4GRJEm_B82bqEa9hFa3Czx3XwMWbfsG7NkXuDLh2sox3_5RH6en35rN-z6extUj9NM83KKmWNyTnXBIRurCCVlIaTwjAjCKFQlFJUlbHcSYCSNCwvZEltZVxpWK4pI5qN0OSkazys1Da0Gwh75aFVx4YPCwUhtXptFW0axgkrba_YQwjjqBWusJJRZrjrte5OWtvgf3Y2JrXyu9D156u8lJxwTmXRs-5PLH14OVj3v5USdXBAnTvAfgEq8XmZ
CitedBy_id crossref_primary_10_3390_en16041963
Cites_doi 10.3390/math9050547
10.1080/00401706.2021.1921037
10.1214/09-SS054
10.1016/j.eswa.2022.117423
10.1016/j.patcog.2017.03.025
10.1023/B:STCO.0000035301.49549.88
10.1109/ACCESS.2019.2892062
10.1016/S0004-3702(99)00094-6
10.1002/2017WR021470
10.1016/j.patcog.2011.06.019
10.1016/S0378-3758(00)00115-4
10.1002/2012WR012713
10.1109/ACCESS.2019.2920486
10.1139/s02-014
10.2307/1403680
10.1080/095281300146272
10.1007/s10462-013-9405-z
10.1016/j.swevo.2011.02.002
10.1007/s00184-018-0661-4
10.3390/math9212696
10.1080/01431161.2020.1871097
10.1016/j.chemolab.2018.10.008
10.1007/978-0-387-21606-5
10.1109/TNNLS.2012.2199516
10.1201/9781315139470
10.1016/j.ins.2017.12.022
10.1201/9780367816377
10.1145/2939672.2939785
10.1016/j.eswa.2012.01.047
10.1007/s10044-014-0381-y
10.1002/cem.3373
10.1111/rssb.12374
10.1016/j.neunet.2009.11.009
10.1007/s10489-021-02735-2
10.1080/00401706.1977.10489581
10.1186/1758-2946-6-10
10.18637/jss.v095.i10
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10142538
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_1bb34036ede444488df1e8f5e9313d4f
10_3390_math10142538
GroupedDBID -~X
3V.
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABJNI
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M0N
M7S
MODMG
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNS
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-bd244c0a8cbe80799d405d3d8001a569877de4f9aa60b325961e7df6d32c130c3
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Tue Oct 22 15:02:10 EDT 2024
Thu Oct 10 19:19:31 EDT 2024
Fri Nov 22 02:37:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-bd244c0a8cbe80799d405d3d8001a569877de4f9aa60b325961e7df6d32c130c3
ORCID 0000-0002-4592-1538
0000-0002-5310-9638
OpenAccessLink https://doaj.org/article/1bb34036ede444488df1e8f5e9313d4f
PQID 2694044195
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_1bb34036ede444488df1e8f5e9313d4f
proquest_journals_2694044195
crossref_primary_10_3390_math10142538
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Arlot (ref_5) 2010; 4
ref_14
Derrac (ref_47) 2011; 1
Herrera (ref_8) 2012; 23
ref_13
Wu (ref_33) 2013; 49
ref_17
ref_16
ref_15
Snee (ref_29) 1977; 19
Liu (ref_1) 2020; 42
Baxter (ref_22) 2002; 1
Shimodaira (ref_38) 2000; 90
Krstajic (ref_7) 2014; 6
Baringhaus (ref_25) 2018; 81
Maldonado (ref_9) 2022; 52
Xu (ref_26) 2018; 183
Joseph (ref_31) 2022; 64
ref_23
Jiang (ref_4) 2017; 69
Carrizosa (ref_19) 2022; 203
May (ref_27) 2010; 23
Kang (ref_18) 2018; 432
Sahoo (ref_30) 2012; 39
Sugiyama (ref_37) 2007; 20
Kanamori (ref_39) 2009; 10
Rad (ref_2) 2020; 82
ref_36
Smola (ref_48) 2004; 14
Diamantidis (ref_28) 2000; 116
ref_32
Chapaneri (ref_35) 2019; 7
Qi (ref_3) 2019; 7
Huang (ref_40) 2006; 19
Breiman (ref_21) 1992; 60
Zheng (ref_34) 2018; 54
Wei (ref_10) 2021; 42
Dimitrova (ref_46) 2020; 95
Andries (ref_12) 2021; 35
ref_45
ref_44
Raeder (ref_11) 2012; 45
ref_43
ref_41
Zeng (ref_42) 2000; 12
ref_49
Ding (ref_24) 2015; 44
Dhanjal (ref_20) 2016; 19
ref_6
References_xml – ident: ref_43
  doi: 10.3390/math9050547
– volume: 64
  start-page: 166
  year: 2022
  ident: ref_31
  article-title: SPlit: An optimal method for data splitting
  publication-title: Technometrics
  doi: 10.1080/00401706.2021.1921037
  contributor:
    fullname: Joseph
– ident: ref_32
– volume: 19
  start-page: 601
  year: 2006
  ident: ref_40
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Huang
– volume: 4
  start-page: 40
  year: 2010
  ident: ref_5
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
  contributor:
    fullname: Arlot
– volume: 203
  start-page: 117423
  year: 2022
  ident: ref_19
  article-title: The tree based linear regression model for hierarchical categorical variables
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117423
  contributor:
    fullname: Carrizosa
– volume: 69
  start-page: 94
  year: 2017
  ident: ref_4
  article-title: Error estimation based on variance analysis of k-fold cross-validation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.03.025
  contributor:
    fullname: Jiang
– ident: ref_16
– volume: 14
  start-page: 199
  year: 2004
  ident: ref_48
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
  contributor:
    fullname: Smola
– volume: 7
  start-page: 33454
  year: 2019
  ident: ref_3
  article-title: On estimating model in feature selection with cross-validation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892062
  contributor:
    fullname: Qi
– volume: 116
  start-page: 1
  year: 2000
  ident: ref_28
  article-title: Unsupervised stratification of cross-validation for accuracy estimation
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(99)00094-6
  contributor:
    fullname: Diamantidis
– volume: 54
  start-page: 1013
  year: 2018
  ident: ref_34
  article-title: On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: Demonstration for data-driven models
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021470
  contributor:
    fullname: Zheng
– volume: 45
  start-page: 521
  year: 2012
  ident: ref_11
  article-title: A unifying view on dataset shift in classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.06.019
  contributor:
    fullname: Raeder
– volume: 90
  start-page: 227
  year: 2000
  ident: ref_38
  article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(00)00115-4
  contributor:
    fullname: Shimodaira
– volume: 49
  start-page: 7598
  year: 2013
  ident: ref_33
  article-title: A benchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks
  publication-title: Water Resour. Res.
  doi: 10.1002/2012WR012713
  contributor:
    fullname: Wu
– volume: 7
  start-page: 73804
  year: 2019
  ident: ref_35
  article-title: Covariate shift adaptation for structured regression with Frank-Wolfe algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920486
  contributor:
    fullname: Chapaneri
– volume: 42
  start-page: 1083
  year: 2020
  ident: ref_1
  article-title: Fast cross-validation for kernel-based algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Liu
– volume: 1
  start-page: 201
  year: 2002
  ident: ref_22
  article-title: Developing artificial neural network models of water treatment processes: A guide for utilities
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/s02-014
  contributor:
    fullname: Baxter
– volume: 60
  start-page: 291
  year: 1992
  ident: ref_21
  article-title: Submodel selection and evaluation in regression. The x-random case
  publication-title: Int. Stat. Rev.
  doi: 10.2307/1403680
  contributor:
    fullname: Breiman
– volume: 12
  start-page: 1
  year: 2000
  ident: ref_42
  article-title: Distribution-balanced stratified cross-validation for accuracy estimation
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/095281300146272
  contributor:
    fullname: Zeng
– volume: 44
  start-page: 103
  year: 2015
  ident: ref_24
  article-title: Extreme learning machine: Algorithm, theory and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-013-9405-z
  contributor:
    fullname: Ding
– ident: ref_41
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_47
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
  contributor:
    fullname: Derrac
– ident: ref_13
– volume: 81
  start-page: 891
  year: 2018
  ident: ref_25
  article-title: Efficiency comparison of the Wilcoxon tests in paired and independent survey samples
  publication-title: Metrika
  doi: 10.1007/s00184-018-0661-4
  contributor:
    fullname: Baringhaus
– ident: ref_44
  doi: 10.3390/math9212696
– volume: 42
  start-page: 3326
  year: 2021
  ident: ref_10
  article-title: L2-norm prototypical networks for tackling the data shift problem in scene classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1871097
  contributor:
    fullname: Wei
– volume: 183
  start-page: 29
  year: 2018
  ident: ref_26
  article-title: Representative splitting cross validation
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.10.008
  contributor:
    fullname: Xu
– ident: ref_17
  doi: 10.1007/978-0-387-21606-5
– volume: 23
  start-page: 1304
  year: 2012
  ident: ref_8
  article-title: Study on the impact of partition-induced dataset shift on k-fold cross-validation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2199516
  contributor:
    fullname: Herrera
– ident: ref_23
  doi: 10.1201/9781315139470
– volume: 10
  start-page: 1391
  year: 2009
  ident: ref_39
  article-title: A least-squares approach to direct importance estimation
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Kanamori
– ident: ref_14
– volume: 432
  start-page: 199
  year: 2018
  ident: ref_18
  article-title: Locally linear ensemble for regression
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.12.022
  contributor:
    fullname: Kang
– ident: ref_45
  doi: 10.1201/9780367816377
– ident: ref_6
– ident: ref_49
  doi: 10.1145/2939672.2939785
– volume: 39
  start-page: 7004
  year: 2012
  ident: ref_30
  article-title: A data clustering algorithm for stratified data partitioning in artificial neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.047
  contributor:
    fullname: Sahoo
– volume: 19
  start-page: 41
  year: 2016
  ident: ref_20
  article-title: An empirical comparison of V-fold penalisation and cross-validation for model selection in distribution-free regression
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-014-0381-y
  contributor:
    fullname: Dhanjal
– volume: 35
  start-page: e3373
  year: 2021
  ident: ref_12
  article-title: A chemometrician’s guide to transfer learning
  publication-title: J. Chemom.
  doi: 10.1002/cem.3373
  contributor:
    fullname: Andries
– volume: 20
  start-page: 1
  year: 2007
  ident: ref_37
  article-title: Direct importance estimation with model selection and its application to covariate shift adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Sugiyama
– volume: 82
  start-page: 965
  year: 2020
  ident: ref_2
  article-title: A scalable estimate of the out-of-sample prediction error via approximate leave-one-out cross-validation
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/rssb.12374
  contributor:
    fullname: Rad
– volume: 23
  start-page: 283
  year: 2010
  ident: ref_27
  article-title: Data splitting for artificial neural networks using SOM-based stratified sampling
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.11.009
  contributor:
    fullname: May
– ident: ref_15
– volume: 52
  start-page: 5770
  year: 2022
  ident: ref_9
  article-title: Out-of-time cross-validation strategies for classification in the presence of dataset shift
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02735-2
  contributor:
    fullname: Maldonado
– ident: ref_36
– volume: 19
  start-page: 415
  year: 1977
  ident: ref_29
  article-title: Validation of regression models: Methods and examples
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489581
  contributor:
    fullname: Snee
– volume: 6
  start-page: 10
  year: 2014
  ident: ref_7
  article-title: Cross-validation pitfalls when selecting and assessing regression and classification models
  publication-title: J. Cheminform.
  doi: 10.1186/1758-2946-6-10
  contributor:
    fullname: Krstajic
– volume: 95
  start-page: 1
  year: 2020
  ident: ref_46
  article-title: Computing the Kolmogorov-Smirnov distribution when the underlying CDF is purely discrete, mixed, or continuous
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v095.i10
  contributor:
    fullname: Dimitrova
SSID ssj0000913849
Score 2.2466624
Snippet Data that have not been modeled cannot be correctly predicted. Under this assumption, this research studies how k-fold cross-validation can introduce dataset...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2538
SubjectTerms Algorithms
cross-validation
dataset shift
Datasets
Decision trees
Mathematics
Neural networks
Regression
Stratification
target shift
Test sets
Training
Title Impact of Regressand Stratification in Dataset Shift Caused by Cross-Validation
URI https://www.proquest.com/docview/2694044195
https://doaj.org/article/1bb34036ede444488df1e8f5e9313d4f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwyIT1EoyAOMUe3YcewR-qEyABIFxBY5_lC7pIikA_-es9NWlRhYyBhFivUuuXdPunuH0A2IKs6NAVmSOpZwJWiicyMTQQyQeeZBQ4dp5Mk0f_qQw1Gwydms-go9Ya09cAtcn5Yl45BmnXUcLimtp076zClGmeU-Zl8itsRUzMGKMslV2-nOQNf3of6bhb20aRZGUbY4KFr1_8rEkV7Gh-hgVRfiu_Y8R2jHVcdo_3FjqlqfoOeHONGIFx6_uCiTdWVxtJcN_T4RYjyv8FA3QE0Nns7mvsEDvaydxeU3HoTDJO9QeLd7lE7R23j0Opgkq30IiWEib5LSAhcboqUpnSS5UhaqLcss1HxUZ0LJPAeQvNJakJKBrhHU5dYLy1IDVGXYGepUi8qdIywNIaaUmXbBsM8qLXTpmdEuFRm3lHXR7Rqh4rO1vShALgQki20ku-g-wLd5JphVxxsQwmIVwuKvEHZRbw1-sfqD6iJM2BKo1VR28R_vuER7aRhciI22PdRpvpbuCu3Wdnkdv5wfmRvHfw
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Regressand+Stratification+in+Dataset+Shift+Caused+by+Cross-Validation&rft.jtitle=Mathematics+%28Basel%29&rft.au=S%C3%A1ez%2C+Jos%C3%A9+A&rft.au=Romero-B%C3%A9jar%2C+Jos%C3%A9+L&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=14&rft.spage=2538&rft_id=info:doi/10.3390%2Fmath10142538&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon