Impact of Regressand Stratification in Dataset Shift Caused by Cross-Validation
Data that have not been modeled cannot be correctly predicted. Under this assumption, this research studies how k-fold cross-validation can introduce dataset shift in regression problems. This fact implies data distributions in the training and test sets to be different and, therefore, a deteriorati...
Saved in:
Published in: | Mathematics (Basel) Vol. 10; no. 14; p. 2538 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Data that have not been modeled cannot be correctly predicted. Under this assumption, this research studies how k-fold cross-validation can introduce dataset shift in regression problems. This fact implies data distributions in the training and test sets to be different and, therefore, a deterioration of the model performance estimation. Even though the stratification of the output variable is widely used in the field of classification to reduce the impacts of dataset shift induced by cross-validation, its use in regression is not widespread in the literature. This paper analyzes the consequences for dataset shift of including different regressand stratification schemes in cross-validation with regression data. The results obtained show that these allow for creating more similar training and test sets, reducing the presence of dataset shift related to cross-validation. The bias and deviation of the performance estimation results obtained by regression algorithms are improved using the highest amounts of strata, as are the number of cross-validation repetitions necessary to obtain these better results. |
---|---|
AbstractList | Data that have not been modeled cannot be correctly predicted. Under this assumption, this research studies how k-fold cross-validation can introduce dataset shift in regression problems. This fact implies data distributions in the training and test sets to be different and, therefore, a deterioration of the model performance estimation. Even though the stratification of the output variable is widely used in the field of classification to reduce the impacts of dataset shift induced by cross-validation, its use in regression is not widespread in the literature. This paper analyzes the consequences for dataset shift of including different regressand stratification schemes in cross-validation with regression data. The results obtained show that these allow for creating more similar training and test sets, reducing the presence of dataset shift related to cross-validation. The bias and deviation of the performance estimation results obtained by regression algorithms are improved using the highest amounts of strata, as are the number of cross-validation repetitions necessary to obtain these better results. |
Author | Romero-Béjar, José L. Sáez, José A. |
Author_xml | – sequence: 1 givenname: José A. orcidid: 0000-0002-4592-1538 surname: Sáez fullname: Sáez, José A. – sequence: 2 givenname: José L. orcidid: 0000-0002-5310-9638 surname: Romero-Béjar fullname: Romero-Béjar, José L. |
BookMark | eNpNUU1LAzEQDVLBWnvzBwS8uppssrvJUdavQqFg1WuYzUe7pd3UJD3037ttRfoOM8PM480M7xoNOt9ZhG4peWBMkscNpCUllOcFExdomOd5lVX9YHBWX6FxjCvSQ1ImuByi2WSzBZ2wd_jDLoKNETqD5ylAal2r--g73Hb4GRJEm_B82bqEa9hFa3Czx3XwMWbfsG7NkXuDLh2sox3_5RH6en35rN-z6extUj9NM83KKmWNyTnXBIRurCCVlIaTwjAjCKFQlFJUlbHcSYCSNCwvZEltZVxpWK4pI5qN0OSkazys1Da0Gwh75aFVx4YPCwUhtXptFW0axgkrba_YQwjjqBWusJJRZrjrte5OWtvgf3Y2JrXyu9D156u8lJxwTmXRs-5PLH14OVj3v5USdXBAnTvAfgEq8XmZ |
CitedBy_id | crossref_primary_10_3390_en16041963 |
Cites_doi | 10.3390/math9050547 10.1080/00401706.2021.1921037 10.1214/09-SS054 10.1016/j.eswa.2022.117423 10.1016/j.patcog.2017.03.025 10.1023/B:STCO.0000035301.49549.88 10.1109/ACCESS.2019.2892062 10.1016/S0004-3702(99)00094-6 10.1002/2017WR021470 10.1016/j.patcog.2011.06.019 10.1016/S0378-3758(00)00115-4 10.1002/2012WR012713 10.1109/ACCESS.2019.2920486 10.1139/s02-014 10.2307/1403680 10.1080/095281300146272 10.1007/s10462-013-9405-z 10.1016/j.swevo.2011.02.002 10.1007/s00184-018-0661-4 10.3390/math9212696 10.1080/01431161.2020.1871097 10.1016/j.chemolab.2018.10.008 10.1007/978-0-387-21606-5 10.1109/TNNLS.2012.2199516 10.1201/9781315139470 10.1016/j.ins.2017.12.022 10.1201/9780367816377 10.1145/2939672.2939785 10.1016/j.eswa.2012.01.047 10.1007/s10044-014-0381-y 10.1002/cem.3373 10.1111/rssb.12374 10.1016/j.neunet.2009.11.009 10.1007/s10489-021-02735-2 10.1080/00401706.1977.10489581 10.1186/1758-2946-6-10 10.18637/jss.v095.i10 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math10142538 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_1bb34036ede444488df1e8f5e9313d4f 10_3390_math10142538 |
GroupedDBID | -~X 3V. 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABJNI ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M0N M7S MODMG M~E OK1 PIMPY PQQKQ PROAC PTHSS RNS 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c367t-bd244c0a8cbe80799d405d3d8001a569877de4f9aa60b325961e7df6d32c130c3 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Tue Oct 22 15:02:10 EDT 2024 Thu Oct 10 19:19:31 EDT 2024 Fri Nov 22 02:37:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-bd244c0a8cbe80799d405d3d8001a569877de4f9aa60b325961e7df6d32c130c3 |
ORCID | 0000-0002-4592-1538 0000-0002-5310-9638 |
OpenAccessLink | https://doaj.org/article/1bb34036ede444488df1e8f5e9313d4f |
PQID | 2694044195 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1bb34036ede444488df1e8f5e9313d4f proquest_journals_2694044195 crossref_primary_10_3390_math10142538 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Arlot (ref_5) 2010; 4 ref_14 Derrac (ref_47) 2011; 1 Herrera (ref_8) 2012; 23 ref_13 Wu (ref_33) 2013; 49 ref_17 ref_16 ref_15 Snee (ref_29) 1977; 19 Liu (ref_1) 2020; 42 Baxter (ref_22) 2002; 1 Shimodaira (ref_38) 2000; 90 Krstajic (ref_7) 2014; 6 Baringhaus (ref_25) 2018; 81 Maldonado (ref_9) 2022; 52 Xu (ref_26) 2018; 183 Joseph (ref_31) 2022; 64 ref_23 Jiang (ref_4) 2017; 69 Carrizosa (ref_19) 2022; 203 May (ref_27) 2010; 23 Kang (ref_18) 2018; 432 Sahoo (ref_30) 2012; 39 Sugiyama (ref_37) 2007; 20 Kanamori (ref_39) 2009; 10 Rad (ref_2) 2020; 82 ref_36 Smola (ref_48) 2004; 14 Diamantidis (ref_28) 2000; 116 ref_32 Chapaneri (ref_35) 2019; 7 Qi (ref_3) 2019; 7 Huang (ref_40) 2006; 19 Breiman (ref_21) 1992; 60 Zheng (ref_34) 2018; 54 Wei (ref_10) 2021; 42 Dimitrova (ref_46) 2020; 95 Andries (ref_12) 2021; 35 ref_45 ref_44 Raeder (ref_11) 2012; 45 ref_43 ref_41 Zeng (ref_42) 2000; 12 ref_49 Ding (ref_24) 2015; 44 Dhanjal (ref_20) 2016; 19 ref_6 |
References_xml | – ident: ref_43 doi: 10.3390/math9050547 – volume: 64 start-page: 166 year: 2022 ident: ref_31 article-title: SPlit: An optimal method for data splitting publication-title: Technometrics doi: 10.1080/00401706.2021.1921037 contributor: fullname: Joseph – ident: ref_32 – volume: 19 start-page: 601 year: 2006 ident: ref_40 article-title: Correcting sample selection bias by unlabeled data publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Huang – volume: 4 start-page: 40 year: 2010 ident: ref_5 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 contributor: fullname: Arlot – volume: 203 start-page: 117423 year: 2022 ident: ref_19 article-title: The tree based linear regression model for hierarchical categorical variables publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117423 contributor: fullname: Carrizosa – volume: 69 start-page: 94 year: 2017 ident: ref_4 article-title: Error estimation based on variance analysis of k-fold cross-validation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.03.025 contributor: fullname: Jiang – ident: ref_16 – volume: 14 start-page: 199 year: 2004 ident: ref_48 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 contributor: fullname: Smola – volume: 7 start-page: 33454 year: 2019 ident: ref_3 article-title: On estimating model in feature selection with cross-validation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892062 contributor: fullname: Qi – volume: 116 start-page: 1 year: 2000 ident: ref_28 article-title: Unsupervised stratification of cross-validation for accuracy estimation publication-title: Artif. Intell. doi: 10.1016/S0004-3702(99)00094-6 contributor: fullname: Diamantidis – volume: 54 start-page: 1013 year: 2018 ident: ref_34 article-title: On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: Demonstration for data-driven models publication-title: Water Resour. Res. doi: 10.1002/2017WR021470 contributor: fullname: Zheng – volume: 45 start-page: 521 year: 2012 ident: ref_11 article-title: A unifying view on dataset shift in classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.06.019 contributor: fullname: Raeder – volume: 90 start-page: 227 year: 2000 ident: ref_38 article-title: Improving predictive inference under covariate shift by weighting the log-likelihood function publication-title: J. Stat. Plan. Inference doi: 10.1016/S0378-3758(00)00115-4 contributor: fullname: Shimodaira – volume: 49 start-page: 7598 year: 2013 ident: ref_33 article-title: A benchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks publication-title: Water Resour. Res. doi: 10.1002/2012WR012713 contributor: fullname: Wu – volume: 7 start-page: 73804 year: 2019 ident: ref_35 article-title: Covariate shift adaptation for structured regression with Frank-Wolfe algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920486 contributor: fullname: Chapaneri – volume: 42 start-page: 1083 year: 2020 ident: ref_1 article-title: Fast cross-validation for kernel-based algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Liu – volume: 1 start-page: 201 year: 2002 ident: ref_22 article-title: Developing artificial neural network models of water treatment processes: A guide for utilities publication-title: J. Environ. Eng. Sci. doi: 10.1139/s02-014 contributor: fullname: Baxter – volume: 60 start-page: 291 year: 1992 ident: ref_21 article-title: Submodel selection and evaluation in regression. The x-random case publication-title: Int. Stat. Rev. doi: 10.2307/1403680 contributor: fullname: Breiman – volume: 12 start-page: 1 year: 2000 ident: ref_42 article-title: Distribution-balanced stratified cross-validation for accuracy estimation publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/095281300146272 contributor: fullname: Zeng – volume: 44 start-page: 103 year: 2015 ident: ref_24 article-title: Extreme learning machine: Algorithm, theory and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-013-9405-z contributor: fullname: Ding – ident: ref_41 – volume: 1 start-page: 3 year: 2011 ident: ref_47 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 contributor: fullname: Derrac – ident: ref_13 – volume: 81 start-page: 891 year: 2018 ident: ref_25 article-title: Efficiency comparison of the Wilcoxon tests in paired and independent survey samples publication-title: Metrika doi: 10.1007/s00184-018-0661-4 contributor: fullname: Baringhaus – ident: ref_44 doi: 10.3390/math9212696 – volume: 42 start-page: 3326 year: 2021 ident: ref_10 article-title: L2-norm prototypical networks for tackling the data shift problem in scene classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1871097 contributor: fullname: Wei – volume: 183 start-page: 29 year: 2018 ident: ref_26 article-title: Representative splitting cross validation publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.10.008 contributor: fullname: Xu – ident: ref_17 doi: 10.1007/978-0-387-21606-5 – volume: 23 start-page: 1304 year: 2012 ident: ref_8 article-title: Study on the impact of partition-induced dataset shift on k-fold cross-validation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2199516 contributor: fullname: Herrera – ident: ref_23 doi: 10.1201/9781315139470 – volume: 10 start-page: 1391 year: 2009 ident: ref_39 article-title: A least-squares approach to direct importance estimation publication-title: J. Mach. Learn. Res. contributor: fullname: Kanamori – ident: ref_14 – volume: 432 start-page: 199 year: 2018 ident: ref_18 article-title: Locally linear ensemble for regression publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.12.022 contributor: fullname: Kang – ident: ref_45 doi: 10.1201/9780367816377 – ident: ref_6 – ident: ref_49 doi: 10.1145/2939672.2939785 – volume: 39 start-page: 7004 year: 2012 ident: ref_30 article-title: A data clustering algorithm for stratified data partitioning in artificial neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.01.047 contributor: fullname: Sahoo – volume: 19 start-page: 41 year: 2016 ident: ref_20 article-title: An empirical comparison of V-fold penalisation and cross-validation for model selection in distribution-free regression publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-014-0381-y contributor: fullname: Dhanjal – volume: 35 start-page: e3373 year: 2021 ident: ref_12 article-title: A chemometrician’s guide to transfer learning publication-title: J. Chemom. doi: 10.1002/cem.3373 contributor: fullname: Andries – volume: 20 start-page: 1 year: 2007 ident: ref_37 article-title: Direct importance estimation with model selection and its application to covariate shift adaptation publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Sugiyama – volume: 82 start-page: 965 year: 2020 ident: ref_2 article-title: A scalable estimate of the out-of-sample prediction error via approximate leave-one-out cross-validation publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/rssb.12374 contributor: fullname: Rad – volume: 23 start-page: 283 year: 2010 ident: ref_27 article-title: Data splitting for artificial neural networks using SOM-based stratified sampling publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.11.009 contributor: fullname: May – ident: ref_15 – volume: 52 start-page: 5770 year: 2022 ident: ref_9 article-title: Out-of-time cross-validation strategies for classification in the presence of dataset shift publication-title: Appl. Intell. doi: 10.1007/s10489-021-02735-2 contributor: fullname: Maldonado – ident: ref_36 – volume: 19 start-page: 415 year: 1977 ident: ref_29 article-title: Validation of regression models: Methods and examples publication-title: Technometrics doi: 10.1080/00401706.1977.10489581 contributor: fullname: Snee – volume: 6 start-page: 10 year: 2014 ident: ref_7 article-title: Cross-validation pitfalls when selecting and assessing regression and classification models publication-title: J. Cheminform. doi: 10.1186/1758-2946-6-10 contributor: fullname: Krstajic – volume: 95 start-page: 1 year: 2020 ident: ref_46 article-title: Computing the Kolmogorov-Smirnov distribution when the underlying CDF is purely discrete, mixed, or continuous publication-title: J. Stat. Softw. doi: 10.18637/jss.v095.i10 contributor: fullname: Dimitrova |
SSID | ssj0000913849 |
Score | 2.2466624 |
Snippet | Data that have not been modeled cannot be correctly predicted. Under this assumption, this research studies how k-fold cross-validation can introduce dataset... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2538 |
SubjectTerms | Algorithms cross-validation dataset shift Datasets Decision trees Mathematics Neural networks Regression Stratification target shift Test sets Training |
Title | Impact of Regressand Stratification in Dataset Shift Caused by Cross-Validation |
URI | https://www.proquest.com/docview/2694044195 https://doaj.org/article/1bb34036ede444488df1e8f5e9313d4f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwyIT1EoyAOMUe3YcewR-qEyABIFxBY5_lC7pIikA_-es9NWlRhYyBhFivUuuXdPunuH0A2IKs6NAVmSOpZwJWiicyMTQQyQeeZBQ4dp5Mk0f_qQw1Gwydms-go9Ya09cAtcn5Yl45BmnXUcLimtp076zClGmeU-Zl8itsRUzMGKMslV2-nOQNf3of6bhb20aRZGUbY4KFr1_8rEkV7Gh-hgVRfiu_Y8R2jHVcdo_3FjqlqfoOeHONGIFx6_uCiTdWVxtJcN_T4RYjyv8FA3QE0Nns7mvsEDvaydxeU3HoTDJO9QeLd7lE7R23j0Opgkq30IiWEib5LSAhcboqUpnSS5UhaqLcss1HxUZ0LJPAeQvNJakJKBrhHU5dYLy1IDVGXYGepUi8qdIywNIaaUmXbBsM8qLXTpmdEuFRm3lHXR7Rqh4rO1vShALgQki20ku-g-wLd5JphVxxsQwmIVwuKvEHZRbw1-sfqD6iJM2BKo1VR28R_vuER7aRhciI22PdRpvpbuCu3Wdnkdv5wfmRvHfw |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Regressand+Stratification+in+Dataset+Shift+Caused+by+Cross-Validation&rft.jtitle=Mathematics+%28Basel%29&rft.au=S%C3%A1ez%2C+Jos%C3%A9+A&rft.au=Romero-B%C3%A9jar%2C+Jos%C3%A9+L&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=14&rft.spage=2538&rft_id=info:doi/10.3390%2Fmath10142538&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |