Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states

We describe a method for creating an arbitrary coherent superposition of two atomic states in a controlled and robust way by using a sequence of three pulses in a four-state system. The proposed technique is based on the existence of two degenerate dark states (i.e. states having no component of the...

Full description

Saved in:
Bibliographic Details
Published in:Optics communications Vol. 155; no. 1; pp. 144 - 154
Main Authors: Unanyan, R., Fleischhauer, M., Shore, B.W., Bergmann, K.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-10-1998
Elsevier Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We describe a method for creating an arbitrary coherent superposition of two atomic states in a controlled and robust way by using a sequence of three pulses in a four-state system. The proposed technique is based on the existence of two degenerate dark states (i.e. states having no component of the excited state) and their interaction. The mixing of the dark states can be controlled by changing the relative delay of the pulses, and thus an arbitrary superposition state can be generated. It is shown that the method is robust against small variations of parameters (e.g. the area of the pulses) and is insensitive to radiative decay from the intermediate excited state. A time reversed version of the technique makes possible the determination of phase occurring in a superposition of two atomic states.
AbstractList We describe a method for creating an arbitrary coherent superposition of two atomic states in a controlled and robust way by using a sequence of three pulses in a four-state system. The proposed technique is based on the existence of two degenerate dark states (i.e. states having no component of the excited state) and their interaction. The mixing of the dark states can be controlled by changing the relative delay of the pulses, and thus an arbitrary superposition state can be generated. It is shown that the method is robust against small variations of parameters (e.g. the area of the pulses) and is insensitive to radiative decay from the intermediate excited state. A time reversed version of the technique makes possible the determination of phase occurring in a superposition of two atomic states.
Author Fleischhauer, M.
Bergmann, K.
Shore, B.W.
Unanyan, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Unanyan
  fullname: Unanyan, R.
  organization: Fachbereich Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany
– sequence: 2
  givenname: M.
  surname: Fleischhauer
  fullname: Fleischhauer, M.
  organization: Sektion Physik, Ludwig-Maximilians Universität München, 80333 Munich, Germany
– sequence: 3
  givenname: B.W.
  surname: Shore
  fullname: Shore, B.W.
  organization: Fachbereich Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany
– sequence: 4
  givenname: K.
  surname: Bergmann
  fullname: Bergmann, K.
  organization: Fachbereich Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2432298$$DView record in Pascal Francis
BookMark eNqFkM9q3DAQxkVJoZu0j1DQoZTk4Fa2bEs-lRD6JxBo2aRnMZZGG7Ve2dXYW_oUeeVos0uuPc0M8_u-Yb5TdhLHiIy9LcWHUpTtx1shpChqUerzTl_kodGFesFWpVayELIUJ2z1jLxip0S_hBBlLfWKPazHfqGZ24QwhzFyiI5P90BYEEYKc9ghn9LYh7jho-e0TJimcb_IMM0wI_FdgNyG7TLk0fE1bCEbuQB99rR8AiLYID-_vbteX_644H_DfM8dbjBiygruIP0-er1mLz0MhG-O9Yz9_PL57upbcfP96_XV5U1hZavmAuqyRg2yB3S9avrWgrW2FX3TNJX3AlRvpdLoXOMddE60Hrq267yoW1WBlGfs_cE3__ZnQZrNNpDFYYCI40KmalVTqVZlsDmANo1ECb2ZUthC-mdKYfbxm6f4zT5b02nzFL_Z694dDwBZGHyCaAM9i6taVlWnM_bpgGF-dhcwGbIBo0UXEtrZuDH859AjWq-e4g
CODEN OPCOB8
CitedBy_id crossref_primary_10_1088_0953_4075_39_11_002
crossref_primary_10_1103_PhysRevA_97_013830
crossref_primary_10_1063_1_1389306
crossref_primary_10_1103_PhysRevA_70_053404
crossref_primary_10_1007_s11082_012_9606_8
crossref_primary_10_1103_PhysRevA_64_023414
crossref_primary_10_1103_PhysRevA_70_053405
crossref_primary_10_1088_0953_4075_36_5_310
crossref_primary_10_1088_1361_6455_ab3995
crossref_primary_10_1209_0295_5075_107_50002
crossref_primary_10_1016_j_optcom_2012_11_001
crossref_primary_10_1103_PhysRevA_90_012341
crossref_primary_10_1103_PhysRevLett_100_200405
crossref_primary_10_1103_PhysRevA_75_033404
crossref_primary_10_1103_PhysRevA_85_032331
crossref_primary_10_1103_PhysRevA_88_013807
crossref_primary_10_1088_0953_4075_48_13_135502
crossref_primary_10_1103_PhysRevLett_87_183002
crossref_primary_10_1038_s41598_018_27734_1
crossref_primary_10_1116_5_0036562
crossref_primary_10_1088_0953_4075_43_3_035401
crossref_primary_10_1103_PhysRevA_74_053410
crossref_primary_10_1088_0953_4075_33_12_314
crossref_primary_10_1016_j_aop_2020_168200
crossref_primary_10_1103_PhysRevA_70_032317
crossref_primary_10_1063_1_1535428
crossref_primary_10_1103_PhysRevX_10_021054
crossref_primary_10_1146_annurev_physchem_52_1_763
crossref_primary_10_1103_PhysRevA_65_043413
crossref_primary_10_1103_PhysRevA_72_033403
crossref_primary_10_1016_j_optcom_2008_11_078
crossref_primary_10_1080_09500340110060092
crossref_primary_10_1140_epjd_e2012_30249_3
crossref_primary_10_1103_PhysRevA_63_043405
crossref_primary_10_1103_PhysRevA_78_033416
crossref_primary_10_1103_PhysRevA_87_053840
crossref_primary_10_1016_j_jmmm_2017_01_093
crossref_primary_10_1103_PhysRevA_61_043408
crossref_primary_10_1103_PhysRevA_83_013817
crossref_primary_10_1088_0957_4484_19_44_445202
crossref_primary_10_1016_j_optcom_2006_01_059
crossref_primary_10_1080_09500340_2022_2045373
crossref_primary_10_1103_PhysRevA_93_062321
crossref_primary_10_1364_OE_25_005316
crossref_primary_10_1088_1367_2630_10_4_045022
crossref_primary_10_1103_PhysRevA_78_023818
crossref_primary_10_1016_j_optcom_2011_08_005
crossref_primary_10_1103_PhysRevC_96_044619
crossref_primary_10_1103_PhysRevA_109_052203
crossref_primary_10_1063_1_2336768
crossref_primary_10_1103_PhysRevA_77_023411
crossref_primary_10_1103_PhysRevA_96_013415
crossref_primary_10_1103_PhysRevA_65_053808
crossref_primary_10_1063_1_2916710
crossref_primary_10_1103_RevModPhys_89_015006
crossref_primary_10_1103_PhysRevA_91_053421
crossref_primary_10_1063_1_4916903
crossref_primary_10_1016_j_physe_2020_114522
crossref_primary_10_1103_PhysRevB_101_174301
crossref_primary_10_1007_s11128_019_2285_7
crossref_primary_10_1088_1612_2011_13_12_125203
crossref_primary_10_1103_PhysRevA_69_050302
crossref_primary_10_1364_AOP_9_000563
crossref_primary_10_1088_1612_2011_13_12_125205
crossref_primary_10_1103_PhysRevLett_101_265302
crossref_primary_10_1103_PhysRevA_73_023420
crossref_primary_10_1103_PhysRevA_98_013840
crossref_primary_10_1007_s00340_007_2865_6
crossref_primary_10_1364_OE_19_012000
crossref_primary_10_1103_RevModPhys_83_1523
crossref_primary_10_1016_S0030_4018_01_01024_0
crossref_primary_10_1103_PhysRevA_73_042321
crossref_primary_10_1088_0253_6102_46_1_030
crossref_primary_10_1103_PhysRevA_81_035801
crossref_primary_10_1103_PhysRevA_104_012609
crossref_primary_10_1364_OE_19_011832
crossref_primary_10_1134_S0030400X10030197
crossref_primary_10_1103_PhysRevA_73_022327
crossref_primary_10_1063_1_3587093
crossref_primary_10_1016_j_optcom_2010_01_036
crossref_primary_10_1103_PhysRevLett_126_113601
crossref_primary_10_1016_j_physleta_2006_06_058
crossref_primary_10_1103_PhysRevLett_91_213001
crossref_primary_10_1103_PhysRevA_90_022104
crossref_primary_10_3390_photonics3040062
crossref_primary_10_1103_PhysRevA_91_032307
crossref_primary_10_1103_PhysRevA_64_013408
crossref_primary_10_1364_OE_479872
crossref_primary_10_1088_1367_2630_14_7_073056
crossref_primary_10_1140_epjd_e2005_00315_2
crossref_primary_10_1103_PhysRevA_102_032213
crossref_primary_10_1103_PhysRevLett_95_010404
crossref_primary_10_1063_1_482014
crossref_primary_10_1103_PhysRevA_64_033420
crossref_primary_10_1007_s11128_021_03005_3
crossref_primary_10_1080_09500340110076455
crossref_primary_10_21468_SciPostPhys_11_6_100
crossref_primary_10_1016_j_physrep_2005_12_005
crossref_primary_10_1103_PhysRevA_65_032318
crossref_primary_10_1016_j_physleta_2007_10_026
crossref_primary_10_1063_1_1764503
crossref_primary_10_1103_PhysRevA_77_062336
crossref_primary_10_1364_JOSAB_30_000829
crossref_primary_10_1007_s00340_016_6538_1
crossref_primary_10_1016_j_optcom_2005_12_080
crossref_primary_10_1103_PhysRevA_94_053636
crossref_primary_10_1080_09500340408232482
crossref_primary_10_1103_PhysRevA_70_013415
crossref_primary_10_1103_PhysRevA_87_052307
crossref_primary_10_1103_PhysRevA_101_013426
crossref_primary_10_1103_PhysRevA_92_033403
crossref_primary_10_2478_v10155_010_0090_z
crossref_primary_10_1364_JOSAB_28_002785
crossref_primary_10_1080_09500340_2013_837205
crossref_primary_10_1088_0953_4075_32_18_312
crossref_primary_10_1103_PhysRevA_73_022304
crossref_primary_10_1364_OL_33_002380
crossref_primary_10_1016_S0030_4018_99_00545_3
crossref_primary_10_1103_PhysRevA_72_062309
crossref_primary_10_1103_PhysRevLett_92_113003
crossref_primary_10_1103_PhysRevA_83_023812
crossref_primary_10_1063_1_1384871
crossref_primary_10_1103_PhysRevA_81_053403
crossref_primary_10_2184_lsj_31_605
crossref_primary_10_1088_2040_8978_13_6_064013
crossref_primary_10_1103_PhysRevA_70_053822
crossref_primary_10_1088_1402_4896_abb85e
crossref_primary_10_1016_S0030_4018_02_01303_2
crossref_primary_10_1103_PhysRevA_81_043640
crossref_primary_10_1080_09500340802326815
crossref_primary_10_1103_PhysRevA_68_063414
crossref_primary_10_1103_PhysRevA_73_033811
crossref_primary_10_1103_PhysRevResearch_4_033180
crossref_primary_10_1134_1_2034614
crossref_primary_10_1103_PhysRevA_59_2910
crossref_primary_10_1134_1_2034613
crossref_primary_10_1143_JPSJ_73_2131
crossref_primary_10_1103_PhysRevA_63_043401
crossref_primary_10_1364_OE_20_014547
crossref_primary_10_1103_PhysRevA_82_033437
crossref_primary_10_1103_PhysRevA_71_023806
crossref_primary_10_1088_0953_4075_45_16_165503
crossref_primary_10_1103_PhysRevA_75_043819
crossref_primary_10_1016_j_photonics_2008_11_006
crossref_primary_10_1016_j_physrep_2023_07_004
crossref_primary_10_1103_PhysRevLett_110_133002
crossref_primary_10_1103_PhysRevA_64_063406
crossref_primary_10_1016_j_optcom_2011_02_064
crossref_primary_10_1088_0034_4885_77_12_126401
crossref_primary_10_1088_1464_4266_4_4_322
crossref_primary_10_1103_PhysRevA_74_031401
crossref_primary_10_1103_PhysRevA_77_063822
crossref_primary_10_1103_RevModPhys_79_53
crossref_primary_10_1088_2058_9565_ab18d5
crossref_primary_10_1103_PhysRevA_70_023805
crossref_primary_10_1088_0953_4075_38_11_013
crossref_primary_10_1038_ncomms9135
crossref_primary_10_1103_PhysRevA_99_033812
crossref_primary_10_1080_09500340110074736
crossref_primary_10_1016_j_optcom_2006_03_072
crossref_primary_10_1103_PhysRevA_77_011802
crossref_primary_10_1103_PhysRevA_84_034103
crossref_primary_10_1088_1361_6455_acaa17
crossref_primary_10_1103_PhysRevLett_109_260502
crossref_primary_10_1103_PhysRevA_109_023719
crossref_primary_10_1103_PhysRevLett_93_193003
crossref_primary_10_1103_PhysRevLett_99_113003
crossref_primary_10_1103_PhysRevA_75_043406
crossref_primary_10_1088_0253_6102_48_5_030
crossref_primary_10_1103_PhysRevA_83_063811
crossref_primary_10_1080_09500340903316285
Cites_doi 10.1016/0009-2614(88)80364-6
10.1063/1.882030
10.1103/PhysRevB.39.3435
10.1103/PhysRevLett.71.3095
10.1103/PhysRevA.29.690
10.1103/PhysRevLett.73.2563
10.1088/0954-8998/6/4/016
10.1103/RevModPhys.68.733
10.1103/PhysRevA.54.1556
10.1103/PhysRevA.44.R4118
ContentType Journal Article
Copyright 1998 Elsevier Science B.V.
1998 INIST-CNRS
Copyright_xml – notice: 1998 Elsevier Science B.V.
– notice: 1998 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/S0030-4018(98)00358-7
DatabaseName Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-0310
EndPage 154
ExternalDocumentID 10_1016_S0030_4018_98_00358_7
2432298
S0030401898003587
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
TN5
WUQ
XJT
XPP
ZMT
ZY4
~02
~G-
ABPIF
ABPTK
IQODW
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c367t-a414e8a3baedb75b6caccc60b5552ff0a7bc378edd5fda9d06fa9699f04672a33
ISSN 0030-4018
IngestDate Fri Oct 25 23:36:36 EDT 2024
Fri Nov 22 00:12:26 EST 2024
Sun Oct 29 17:09:45 EDT 2023
Fri Feb 23 02:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Theoretical study
State mixing
Quantum optics
Adiabatic passage
Metastable states
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-a414e8a3baedb75b6caccc60b5552ff0a7bc378edd5fda9d06fa9699f04672a33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 26752767
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_26752767
crossref_primary_10_1016_S0030_4018_98_00358_7
pascalfrancis_primary_2432298
elsevier_sciencedirect_doi_10_1016_S0030_4018_98_00358_7
PublicationCentury 1900
PublicationDate 1998-10-01
PublicationDateYYYYMMDD 1998-10-01
PublicationDate_xml – month: 10
  year: 1998
  text: 1998-10-01
  day: 01
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Optics communications
PublicationYear 1998
Publisher Elsevier B.V
Elsevier Science
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
References J. Martin, B.W. Shore, K. Bergmann, Phys. Rev. A 54 (1996) 1556; H. Theuer, K. Bergmann, Eur. Phys. J. D 2 (1998) 279.
P.R. Berman, Atom Interferometry, Academic, San Diego, 1997.
Arimondo (BIB1) 1996; 35
M.D. Lukin, M. Fleischhauer, S.F. Yelin, M.O. Scully, The coupling between degenerate dark states also leads to interesting spectroscopic effects, such as narrow resonances in absorption and spontaneous emission, unpublished.
P. Marte, P. Zoller, J.L. Hall, Phys. Rev. A 44 (1991) R4118
Oreg, Hioe, Eberly (BIB2) 1984; 29
Weitz, Young, Chu (BIB8) 1994; 73
A. Ekert, R. Jozsa, Rev. Mod. Phys. 68 (1996) 733; A. Steane, Rep. Prog. Phys. 61 (1998) 117.
Goldner, Gerz, Spreeuw, Rolston, Westbrook, Phillips, Marte, Zoller (BIB11) 1994; 6
A.S. Parkins, P. Marte, P. Zoller, H.J. Kimble, Phys. Rev. Lett. 71 (1993) 3095; C.K. Law, J.H. Eberly, Phys. Rev. Lett. 76 (1996) 1055
G. Kurizki, M. Shapiro, P. Brumer, Phys. Rev. B 39 (1989) 3435; M. Shapiro, P. Brumer, Int. Rev. Phys. Chem. 13 (1994) 187; J.H. Eberly, A. Rahman, R. Grobe, Laser Phys. 6 (1996) 69; M. Shapiro, P. Brumer, J. Chem. Soc. Faraday Trans. 93 (1997) 1263
For reviews see: B.W. Shore, K. Bergmann, in: H.L. Dai, R.W. Field (Eds.), Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping, World Scientific, Singapore, 1995, p. 315; B.W. Shore, Contemp. Phys. 36 (1995) 15; K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70 (1998) 1003.
Gaubatz, Rudecki, Becker, Schiemann, Külz, Bergmann (BIB3) 1988; 149
Arimondo (10.1016/S0030-4018(98)00358-7_BIB1) 1996; 35
10.1016/S0030-4018(98)00358-7_BIB10
10.1016/S0030-4018(98)00358-7_BIB12
Gaubatz (10.1016/S0030-4018(98)00358-7_BIB3) 1988; 149
Oreg (10.1016/S0030-4018(98)00358-7_BIB2) 1984; 29
Weitz (10.1016/S0030-4018(98)00358-7_BIB8) 1994; 73
10.1016/S0030-4018(98)00358-7_BIB4
10.1016/S0030-4018(98)00358-7_BIB5
Goldner (10.1016/S0030-4018(98)00358-7_BIB11) 1994; 6
10.1016/S0030-4018(98)00358-7_BIB13
10.1016/S0030-4018(98)00358-7_BIB6
10.1016/S0030-4018(98)00358-7_BIB7
10.1016/S0030-4018(98)00358-7_BIB9
References_xml – volume: 35
  start-page: 259
  year: 1996
  ident: BIB1
  publication-title: Prog. Optics
  contributor:
    fullname: Arimondo
– volume: 6
  start-page: 387
  year: 1994
  ident: BIB11
  publication-title: Quantum Optics
  contributor:
    fullname: Zoller
– volume: 73
  start-page: 2563
  year: 1994
  ident: BIB8
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Chu
– volume: 149
  start-page: 463
  year: 1988
  ident: BIB3
  publication-title: Chem. Phys. Lett.
  contributor:
    fullname: Bergmann
– volume: 29
  start-page: 690
  year: 1984
  ident: BIB2
  publication-title: Phys. Rev.
  contributor:
    fullname: Eberly
– volume: 35
  start-page: 259
  year: 1996
  ident: 10.1016/S0030-4018(98)00358-7_BIB1
  publication-title: Prog. Optics
  contributor:
    fullname: Arimondo
– volume: 149
  start-page: 463
  year: 1988
  ident: 10.1016/S0030-4018(98)00358-7_BIB3
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)80364-6
  contributor:
    fullname: Gaubatz
– ident: 10.1016/S0030-4018(98)00358-7_BIB9
  doi: 10.1063/1.882030
– ident: 10.1016/S0030-4018(98)00358-7_BIB10
  doi: 10.1103/PhysRevB.39.3435
– ident: 10.1016/S0030-4018(98)00358-7_BIB6
  doi: 10.1103/PhysRevLett.71.3095
– ident: 10.1016/S0030-4018(98)00358-7_BIB4
– volume: 29
  start-page: 690
  year: 1984
  ident: 10.1016/S0030-4018(98)00358-7_BIB2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.29.690
  contributor:
    fullname: Oreg
– volume: 73
  start-page: 2563
  year: 1994
  ident: 10.1016/S0030-4018(98)00358-7_BIB8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.73.2563
  contributor:
    fullname: Weitz
– volume: 6
  start-page: 387
  year: 1994
  ident: 10.1016/S0030-4018(98)00358-7_BIB11
  publication-title: Quantum Optics
  doi: 10.1088/0954-8998/6/4/016
  contributor:
    fullname: Goldner
– ident: 10.1016/S0030-4018(98)00358-7_BIB13
– ident: 10.1016/S0030-4018(98)00358-7_BIB5
  doi: 10.1103/RevModPhys.68.733
– ident: 10.1016/S0030-4018(98)00358-7_BIB12
  doi: 10.1103/PhysRevA.54.1556
– ident: 10.1016/S0030-4018(98)00358-7_BIB7
  doi: 10.1103/PhysRevA.44.R4118
SSID ssj0001438
Score 2.080453
Snippet We describe a method for creating an arbitrary coherent superposition of two atomic states in a controlled and robust way by using a sequence of three pulses...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 144
SubjectTerms Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Nonclassical field states; squeezed, antibunched and sub-poissonian states; operational definitions of the phase of the field; phase measurements
Optics
Physics
Quantum optics
Title Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states
URI https://dx.doi.org/10.1016/S0030-4018(98)00358-7
https://search.proquest.com/docview/26752767
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpy2Awxq407brpYQ8twZnjm6THdMtoN3YhSVnfjCxLTRh1Qhzvb-wv7-hiO1kYu8BehJFtyfh8Pvp0fC4IvaSUZQmLAy8SA2hIDHoQHthLmAikzk_im1qHFxPy8Zq-GUWjTqeOv2_7_qukoQ9krSNn_0LazaDQAccgc2hB6tD-kdzHi6wq172GDJpEADNYq7xS-6obTyFdRcZ5O5fVUtfZsp5bPRNeVPa-zTkczm91aS8gpGOuDf06iUFm8rsugXBrVx8gp5Pp5Xj4WZsWjEE3lzcmjfVa9nK--urG2yTAn5YmL7TYjEtpaP1VAarJ_ZjqbyBrDlvwGa8suj40ZyYz5yR83v_SdJ7L1c2tq_z8vt8aNUyUX-0e5yxtO9E2VnuHPux3nb6WVmFTEno6vemWRreZf7ega_XzwCabdEv9wOav3llFrEFj0swHr5NBo42-MfVIu3Q2Do3mWn0po-YisocOAlB9oHkPhpej63cNO9Dl5m2qUDt2G1X2qp3wlNEzN9mv-NI9kDV8xcqWX9lhEoYeTR-g-25fg4cWkA9RRxaP0B3jXyzKx-i7hSWuYYkBlvgnWGIHS7xQeAuW2MIIAyxxC0tsYIkbWGIHS3xqQXmGNSRxC0msIenGeoKu3o6mry88VwvEE2FC1h6PBpGkPMy4zDMSZ4ngQojEz-I4DpTyOclESKjM81jlnOV-ojhLGFM-MIGAh-FTtF8sCnmI4LlkALdFWRLzSClFma_8nBBCRRYyP-6ifv3G06VN-ZK2vpAgolSLKGU0NSJKSRfRWi6p462Wj6YAqN_derIlx2bCIIKVltEuelHLNQW9r3_m8UIuqjINYKcfkIQc_fvkx-hu--09Q_vrVSVP0F6ZV88dan8APzrQGQ
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+creation+and+phase-sensitive+probing+of+superposition+states+via+stimulated+Raman+adiabatic+passage+%28STIRAP%29+with+degenerate+dark+states&rft.jtitle=Optics+communications&rft.au=Unanyan%2C+R.&rft.au=Fleischhauer%2C+M.&rft.au=Shore%2C+B.W.&rft.au=Bergmann%2C+K.&rft.date=1998-10-01&rft.pub=Elsevier+B.V&rft.issn=0030-4018&rft.eissn=1873-0310&rft.volume=155&rft.issue=1&rft.spage=144&rft.epage=154&rft_id=info:doi/10.1016%2FS0030-4018%2898%2900358-7&rft.externalDocID=S0030401898003587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon