Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states
We describe a method for creating an arbitrary coherent superposition of two atomic states in a controlled and robust way by using a sequence of three pulses in a four-state system. The proposed technique is based on the existence of two degenerate dark states (i.e. states having no component of the...
Saved in:
Published in: | Optics communications Vol. 155; no. 1; pp. 144 - 154 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
01-10-1998
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We describe a method for creating an arbitrary coherent superposition of two atomic states in a controlled and robust way by using a sequence of three pulses in a four-state system. The proposed technique is based on the existence of two degenerate dark states (i.e. states having no component of the excited state) and their interaction. The mixing of the dark states can be controlled by changing the relative delay of the pulses, and thus an arbitrary superposition state can be generated. It is shown that the method is robust against small variations of parameters (e.g. the area of the pulses) and is insensitive to radiative decay from the intermediate excited state. A time reversed version of the technique makes possible the determination of phase occurring in a superposition of two atomic states. |
---|---|
AbstractList | We describe a method for creating an arbitrary coherent superposition of two atomic states in a controlled and robust way by using a sequence of three pulses in a four-state system. The proposed technique is based on the existence of two degenerate dark states (i.e. states having no component of the excited state) and their interaction. The mixing of the dark states can be controlled by changing the relative delay of the pulses, and thus an arbitrary superposition state can be generated. It is shown that the method is robust against small variations of parameters (e.g. the area of the pulses) and is insensitive to radiative decay from the intermediate excited state. A time reversed version of the technique makes possible the determination of phase occurring in a superposition of two atomic states. |
Author | Fleischhauer, M. Bergmann, K. Shore, B.W. Unanyan, R. |
Author_xml | – sequence: 1 givenname: R. surname: Unanyan fullname: Unanyan, R. organization: Fachbereich Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany – sequence: 2 givenname: M. surname: Fleischhauer fullname: Fleischhauer, M. organization: Sektion Physik, Ludwig-Maximilians Universität München, 80333 Munich, Germany – sequence: 3 givenname: B.W. surname: Shore fullname: Shore, B.W. organization: Fachbereich Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany – sequence: 4 givenname: K. surname: Bergmann fullname: Bergmann, K. organization: Fachbereich Physik, Universität Kaiserslautern, 67653 Kaiserslautern, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2432298$$DView record in Pascal Francis |
BookMark | eNqFkM9q3DAQxkVJoZu0j1DQoZTk4Fa2bEs-lRD6JxBo2aRnMZZGG7Ve2dXYW_oUeeVos0uuPc0M8_u-Yb5TdhLHiIy9LcWHUpTtx1shpChqUerzTl_kodGFesFWpVayELIUJ2z1jLxip0S_hBBlLfWKPazHfqGZ24QwhzFyiI5P90BYEEYKc9ghn9LYh7jho-e0TJimcb_IMM0wI_FdgNyG7TLk0fE1bCEbuQB99rR8AiLYID-_vbteX_644H_DfM8dbjBiygruIP0-er1mLz0MhG-O9Yz9_PL57upbcfP96_XV5U1hZavmAuqyRg2yB3S9avrWgrW2FX3TNJX3AlRvpdLoXOMddE60Hrq267yoW1WBlGfs_cE3__ZnQZrNNpDFYYCI40KmalVTqVZlsDmANo1ECb2ZUthC-mdKYfbxm6f4zT5b02nzFL_Z694dDwBZGHyCaAM9i6taVlWnM_bpgGF-dhcwGbIBo0UXEtrZuDH859AjWq-e4g |
CODEN | OPCOB8 |
CitedBy_id | crossref_primary_10_1088_0953_4075_39_11_002 crossref_primary_10_1103_PhysRevA_97_013830 crossref_primary_10_1063_1_1389306 crossref_primary_10_1103_PhysRevA_70_053404 crossref_primary_10_1007_s11082_012_9606_8 crossref_primary_10_1103_PhysRevA_64_023414 crossref_primary_10_1103_PhysRevA_70_053405 crossref_primary_10_1088_0953_4075_36_5_310 crossref_primary_10_1088_1361_6455_ab3995 crossref_primary_10_1209_0295_5075_107_50002 crossref_primary_10_1016_j_optcom_2012_11_001 crossref_primary_10_1103_PhysRevA_90_012341 crossref_primary_10_1103_PhysRevLett_100_200405 crossref_primary_10_1103_PhysRevA_75_033404 crossref_primary_10_1103_PhysRevA_85_032331 crossref_primary_10_1103_PhysRevA_88_013807 crossref_primary_10_1088_0953_4075_48_13_135502 crossref_primary_10_1103_PhysRevLett_87_183002 crossref_primary_10_1038_s41598_018_27734_1 crossref_primary_10_1116_5_0036562 crossref_primary_10_1088_0953_4075_43_3_035401 crossref_primary_10_1103_PhysRevA_74_053410 crossref_primary_10_1088_0953_4075_33_12_314 crossref_primary_10_1016_j_aop_2020_168200 crossref_primary_10_1103_PhysRevA_70_032317 crossref_primary_10_1063_1_1535428 crossref_primary_10_1103_PhysRevX_10_021054 crossref_primary_10_1146_annurev_physchem_52_1_763 crossref_primary_10_1103_PhysRevA_65_043413 crossref_primary_10_1103_PhysRevA_72_033403 crossref_primary_10_1016_j_optcom_2008_11_078 crossref_primary_10_1080_09500340110060092 crossref_primary_10_1140_epjd_e2012_30249_3 crossref_primary_10_1103_PhysRevA_63_043405 crossref_primary_10_1103_PhysRevA_78_033416 crossref_primary_10_1103_PhysRevA_87_053840 crossref_primary_10_1016_j_jmmm_2017_01_093 crossref_primary_10_1103_PhysRevA_61_043408 crossref_primary_10_1103_PhysRevA_83_013817 crossref_primary_10_1088_0957_4484_19_44_445202 crossref_primary_10_1016_j_optcom_2006_01_059 crossref_primary_10_1080_09500340_2022_2045373 crossref_primary_10_1103_PhysRevA_93_062321 crossref_primary_10_1364_OE_25_005316 crossref_primary_10_1088_1367_2630_10_4_045022 crossref_primary_10_1103_PhysRevA_78_023818 crossref_primary_10_1016_j_optcom_2011_08_005 crossref_primary_10_1103_PhysRevC_96_044619 crossref_primary_10_1103_PhysRevA_109_052203 crossref_primary_10_1063_1_2336768 crossref_primary_10_1103_PhysRevA_77_023411 crossref_primary_10_1103_PhysRevA_96_013415 crossref_primary_10_1103_PhysRevA_65_053808 crossref_primary_10_1063_1_2916710 crossref_primary_10_1103_RevModPhys_89_015006 crossref_primary_10_1103_PhysRevA_91_053421 crossref_primary_10_1063_1_4916903 crossref_primary_10_1016_j_physe_2020_114522 crossref_primary_10_1103_PhysRevB_101_174301 crossref_primary_10_1007_s11128_019_2285_7 crossref_primary_10_1088_1612_2011_13_12_125203 crossref_primary_10_1103_PhysRevA_69_050302 crossref_primary_10_1364_AOP_9_000563 crossref_primary_10_1088_1612_2011_13_12_125205 crossref_primary_10_1103_PhysRevLett_101_265302 crossref_primary_10_1103_PhysRevA_73_023420 crossref_primary_10_1103_PhysRevA_98_013840 crossref_primary_10_1007_s00340_007_2865_6 crossref_primary_10_1364_OE_19_012000 crossref_primary_10_1103_RevModPhys_83_1523 crossref_primary_10_1016_S0030_4018_01_01024_0 crossref_primary_10_1103_PhysRevA_73_042321 crossref_primary_10_1088_0253_6102_46_1_030 crossref_primary_10_1103_PhysRevA_81_035801 crossref_primary_10_1103_PhysRevA_104_012609 crossref_primary_10_1364_OE_19_011832 crossref_primary_10_1134_S0030400X10030197 crossref_primary_10_1103_PhysRevA_73_022327 crossref_primary_10_1063_1_3587093 crossref_primary_10_1016_j_optcom_2010_01_036 crossref_primary_10_1103_PhysRevLett_126_113601 crossref_primary_10_1016_j_physleta_2006_06_058 crossref_primary_10_1103_PhysRevLett_91_213001 crossref_primary_10_1103_PhysRevA_90_022104 crossref_primary_10_3390_photonics3040062 crossref_primary_10_1103_PhysRevA_91_032307 crossref_primary_10_1103_PhysRevA_64_013408 crossref_primary_10_1364_OE_479872 crossref_primary_10_1088_1367_2630_14_7_073056 crossref_primary_10_1140_epjd_e2005_00315_2 crossref_primary_10_1103_PhysRevA_102_032213 crossref_primary_10_1103_PhysRevLett_95_010404 crossref_primary_10_1063_1_482014 crossref_primary_10_1103_PhysRevA_64_033420 crossref_primary_10_1007_s11128_021_03005_3 crossref_primary_10_1080_09500340110076455 crossref_primary_10_21468_SciPostPhys_11_6_100 crossref_primary_10_1016_j_physrep_2005_12_005 crossref_primary_10_1103_PhysRevA_65_032318 crossref_primary_10_1016_j_physleta_2007_10_026 crossref_primary_10_1063_1_1764503 crossref_primary_10_1103_PhysRevA_77_062336 crossref_primary_10_1364_JOSAB_30_000829 crossref_primary_10_1007_s00340_016_6538_1 crossref_primary_10_1016_j_optcom_2005_12_080 crossref_primary_10_1103_PhysRevA_94_053636 crossref_primary_10_1080_09500340408232482 crossref_primary_10_1103_PhysRevA_70_013415 crossref_primary_10_1103_PhysRevA_87_052307 crossref_primary_10_1103_PhysRevA_101_013426 crossref_primary_10_1103_PhysRevA_92_033403 crossref_primary_10_2478_v10155_010_0090_z crossref_primary_10_1364_JOSAB_28_002785 crossref_primary_10_1080_09500340_2013_837205 crossref_primary_10_1088_0953_4075_32_18_312 crossref_primary_10_1103_PhysRevA_73_022304 crossref_primary_10_1364_OL_33_002380 crossref_primary_10_1016_S0030_4018_99_00545_3 crossref_primary_10_1103_PhysRevA_72_062309 crossref_primary_10_1103_PhysRevLett_92_113003 crossref_primary_10_1103_PhysRevA_83_023812 crossref_primary_10_1063_1_1384871 crossref_primary_10_1103_PhysRevA_81_053403 crossref_primary_10_2184_lsj_31_605 crossref_primary_10_1088_2040_8978_13_6_064013 crossref_primary_10_1103_PhysRevA_70_053822 crossref_primary_10_1088_1402_4896_abb85e crossref_primary_10_1016_S0030_4018_02_01303_2 crossref_primary_10_1103_PhysRevA_81_043640 crossref_primary_10_1080_09500340802326815 crossref_primary_10_1103_PhysRevA_68_063414 crossref_primary_10_1103_PhysRevA_73_033811 crossref_primary_10_1103_PhysRevResearch_4_033180 crossref_primary_10_1134_1_2034614 crossref_primary_10_1103_PhysRevA_59_2910 crossref_primary_10_1134_1_2034613 crossref_primary_10_1143_JPSJ_73_2131 crossref_primary_10_1103_PhysRevA_63_043401 crossref_primary_10_1364_OE_20_014547 crossref_primary_10_1103_PhysRevA_82_033437 crossref_primary_10_1103_PhysRevA_71_023806 crossref_primary_10_1088_0953_4075_45_16_165503 crossref_primary_10_1103_PhysRevA_75_043819 crossref_primary_10_1016_j_photonics_2008_11_006 crossref_primary_10_1016_j_physrep_2023_07_004 crossref_primary_10_1103_PhysRevLett_110_133002 crossref_primary_10_1103_PhysRevA_64_063406 crossref_primary_10_1016_j_optcom_2011_02_064 crossref_primary_10_1088_0034_4885_77_12_126401 crossref_primary_10_1088_1464_4266_4_4_322 crossref_primary_10_1103_PhysRevA_74_031401 crossref_primary_10_1103_PhysRevA_77_063822 crossref_primary_10_1103_RevModPhys_79_53 crossref_primary_10_1088_2058_9565_ab18d5 crossref_primary_10_1103_PhysRevA_70_023805 crossref_primary_10_1088_0953_4075_38_11_013 crossref_primary_10_1038_ncomms9135 crossref_primary_10_1103_PhysRevA_99_033812 crossref_primary_10_1080_09500340110074736 crossref_primary_10_1016_j_optcom_2006_03_072 crossref_primary_10_1103_PhysRevA_77_011802 crossref_primary_10_1103_PhysRevA_84_034103 crossref_primary_10_1088_1361_6455_acaa17 crossref_primary_10_1103_PhysRevLett_109_260502 crossref_primary_10_1103_PhysRevA_109_023719 crossref_primary_10_1103_PhysRevLett_93_193003 crossref_primary_10_1103_PhysRevLett_99_113003 crossref_primary_10_1103_PhysRevA_75_043406 crossref_primary_10_1088_0253_6102_48_5_030 crossref_primary_10_1103_PhysRevA_83_063811 crossref_primary_10_1080_09500340903316285 |
Cites_doi | 10.1016/0009-2614(88)80364-6 10.1063/1.882030 10.1103/PhysRevB.39.3435 10.1103/PhysRevLett.71.3095 10.1103/PhysRevA.29.690 10.1103/PhysRevLett.73.2563 10.1088/0954-8998/6/4/016 10.1103/RevModPhys.68.733 10.1103/PhysRevA.54.1556 10.1103/PhysRevA.44.R4118 |
ContentType | Journal Article |
Copyright | 1998 Elsevier Science B.V. 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 Elsevier Science B.V. – notice: 1998 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1016/S0030-4018(98)00358-7 |
DatabaseName | Pascal-Francis CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-0310 |
EndPage | 154 |
ExternalDocumentID | 10_1016_S0030_4018_98_00358_7 2432298 S0030401898003587 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AETEA AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM LY7 M38 M41 MAGPM MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SSZ T5K TN5 WUQ XJT XPP ZMT ZY4 ~02 ~G- ABPIF ABPTK IQODW AAXKI AAYXX ABDPE AFJKZ AKRWK CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c367t-a414e8a3baedb75b6caccc60b5552ff0a7bc378edd5fda9d06fa9699f04672a33 |
ISSN | 0030-4018 |
IngestDate | Fri Oct 25 23:36:36 EDT 2024 Fri Nov 22 00:12:26 EST 2024 Sun Oct 29 17:09:45 EDT 2023 Fri Feb 23 02:30:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Theoretical study State mixing Quantum optics Adiabatic passage Metastable states |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c367t-a414e8a3baedb75b6caccc60b5552ff0a7bc378edd5fda9d06fa9699f04672a33 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 26752767 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_26752767 crossref_primary_10_1016_S0030_4018_98_00358_7 pascalfrancis_primary_2432298 elsevier_sciencedirect_doi_10_1016_S0030_4018_98_00358_7 |
PublicationCentury | 1900 |
PublicationDate | 1998-10-01 |
PublicationDateYYYYMMDD | 1998-10-01 |
PublicationDate_xml | – month: 10 year: 1998 text: 1998-10-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Optics communications |
PublicationYear | 1998 |
Publisher | Elsevier B.V Elsevier Science |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science |
References | J. Martin, B.W. Shore, K. Bergmann, Phys. Rev. A 54 (1996) 1556; H. Theuer, K. Bergmann, Eur. Phys. J. D 2 (1998) 279. P.R. Berman, Atom Interferometry, Academic, San Diego, 1997. Arimondo (BIB1) 1996; 35 M.D. Lukin, M. Fleischhauer, S.F. Yelin, M.O. Scully, The coupling between degenerate dark states also leads to interesting spectroscopic effects, such as narrow resonances in absorption and spontaneous emission, unpublished. P. Marte, P. Zoller, J.L. Hall, Phys. Rev. A 44 (1991) R4118 Oreg, Hioe, Eberly (BIB2) 1984; 29 Weitz, Young, Chu (BIB8) 1994; 73 A. Ekert, R. Jozsa, Rev. Mod. Phys. 68 (1996) 733; A. Steane, Rep. Prog. Phys. 61 (1998) 117. Goldner, Gerz, Spreeuw, Rolston, Westbrook, Phillips, Marte, Zoller (BIB11) 1994; 6 A.S. Parkins, P. Marte, P. Zoller, H.J. Kimble, Phys. Rev. Lett. 71 (1993) 3095; C.K. Law, J.H. Eberly, Phys. Rev. Lett. 76 (1996) 1055 G. Kurizki, M. Shapiro, P. Brumer, Phys. Rev. B 39 (1989) 3435; M. Shapiro, P. Brumer, Int. Rev. Phys. Chem. 13 (1994) 187; J.H. Eberly, A. Rahman, R. Grobe, Laser Phys. 6 (1996) 69; M. Shapiro, P. Brumer, J. Chem. Soc. Faraday Trans. 93 (1997) 1263 For reviews see: B.W. Shore, K. Bergmann, in: H.L. Dai, R.W. Field (Eds.), Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping, World Scientific, Singapore, 1995, p. 315; B.W. Shore, Contemp. Phys. 36 (1995) 15; K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70 (1998) 1003. Gaubatz, Rudecki, Becker, Schiemann, Külz, Bergmann (BIB3) 1988; 149 Arimondo (10.1016/S0030-4018(98)00358-7_BIB1) 1996; 35 10.1016/S0030-4018(98)00358-7_BIB10 10.1016/S0030-4018(98)00358-7_BIB12 Gaubatz (10.1016/S0030-4018(98)00358-7_BIB3) 1988; 149 Oreg (10.1016/S0030-4018(98)00358-7_BIB2) 1984; 29 Weitz (10.1016/S0030-4018(98)00358-7_BIB8) 1994; 73 10.1016/S0030-4018(98)00358-7_BIB4 10.1016/S0030-4018(98)00358-7_BIB5 Goldner (10.1016/S0030-4018(98)00358-7_BIB11) 1994; 6 10.1016/S0030-4018(98)00358-7_BIB13 10.1016/S0030-4018(98)00358-7_BIB6 10.1016/S0030-4018(98)00358-7_BIB7 10.1016/S0030-4018(98)00358-7_BIB9 |
References_xml | – volume: 35 start-page: 259 year: 1996 ident: BIB1 publication-title: Prog. Optics contributor: fullname: Arimondo – volume: 6 start-page: 387 year: 1994 ident: BIB11 publication-title: Quantum Optics contributor: fullname: Zoller – volume: 73 start-page: 2563 year: 1994 ident: BIB8 publication-title: Phys. Rev. Lett. contributor: fullname: Chu – volume: 149 start-page: 463 year: 1988 ident: BIB3 publication-title: Chem. Phys. Lett. contributor: fullname: Bergmann – volume: 29 start-page: 690 year: 1984 ident: BIB2 publication-title: Phys. Rev. contributor: fullname: Eberly – volume: 35 start-page: 259 year: 1996 ident: 10.1016/S0030-4018(98)00358-7_BIB1 publication-title: Prog. Optics contributor: fullname: Arimondo – volume: 149 start-page: 463 year: 1988 ident: 10.1016/S0030-4018(98)00358-7_BIB3 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(88)80364-6 contributor: fullname: Gaubatz – ident: 10.1016/S0030-4018(98)00358-7_BIB9 doi: 10.1063/1.882030 – ident: 10.1016/S0030-4018(98)00358-7_BIB10 doi: 10.1103/PhysRevB.39.3435 – ident: 10.1016/S0030-4018(98)00358-7_BIB6 doi: 10.1103/PhysRevLett.71.3095 – ident: 10.1016/S0030-4018(98)00358-7_BIB4 – volume: 29 start-page: 690 year: 1984 ident: 10.1016/S0030-4018(98)00358-7_BIB2 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.29.690 contributor: fullname: Oreg – volume: 73 start-page: 2563 year: 1994 ident: 10.1016/S0030-4018(98)00358-7_BIB8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.2563 contributor: fullname: Weitz – volume: 6 start-page: 387 year: 1994 ident: 10.1016/S0030-4018(98)00358-7_BIB11 publication-title: Quantum Optics doi: 10.1088/0954-8998/6/4/016 contributor: fullname: Goldner – ident: 10.1016/S0030-4018(98)00358-7_BIB13 – ident: 10.1016/S0030-4018(98)00358-7_BIB5 doi: 10.1103/RevModPhys.68.733 – ident: 10.1016/S0030-4018(98)00358-7_BIB12 doi: 10.1103/PhysRevA.54.1556 – ident: 10.1016/S0030-4018(98)00358-7_BIB7 doi: 10.1103/PhysRevA.44.R4118 |
SSID | ssj0001438 |
Score | 2.080453 |
Snippet | We describe a method for creating an arbitrary coherent superposition of two atomic states in a controlled and robust way by using a sequence of three pulses... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 144 |
SubjectTerms | Exact sciences and technology Fundamental areas of phenomenology (including applications) Nonclassical field states; squeezed, antibunched and sub-poissonian states; operational definitions of the phase of the field; phase measurements Optics Physics Quantum optics |
Title | Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states |
URI | https://dx.doi.org/10.1016/S0030-4018(98)00358-7 https://search.proquest.com/docview/26752767 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpy2Awxq407brpYQ8twZnjm6THdMtoN3YhSVnfjCxLTRh1Qhzvb-wv7-hiO1kYu8BehJFtyfh8Pvp0fC4IvaSUZQmLAy8SA2hIDHoQHthLmAikzk_im1qHFxPy8Zq-GUWjTqeOv2_7_qukoQ9krSNn_0LazaDQAccgc2hB6tD-kdzHi6wq172GDJpEADNYq7xS-6obTyFdRcZ5O5fVUtfZsp5bPRNeVPa-zTkczm91aS8gpGOuDf06iUFm8rsugXBrVx8gp5Pp5Xj4WZsWjEE3lzcmjfVa9nK--urG2yTAn5YmL7TYjEtpaP1VAarJ_ZjqbyBrDlvwGa8suj40ZyYz5yR83v_SdJ7L1c2tq_z8vt8aNUyUX-0e5yxtO9E2VnuHPux3nb6WVmFTEno6vemWRreZf7ega_XzwCabdEv9wOav3llFrEFj0swHr5NBo42-MfVIu3Q2Do3mWn0po-YisocOAlB9oHkPhpej63cNO9Dl5m2qUDt2G1X2qp3wlNEzN9mv-NI9kDV8xcqWX9lhEoYeTR-g-25fg4cWkA9RRxaP0B3jXyzKx-i7hSWuYYkBlvgnWGIHS7xQeAuW2MIIAyxxC0tsYIkbWGIHS3xqQXmGNSRxC0msIenGeoKu3o6mry88VwvEE2FC1h6PBpGkPMy4zDMSZ4ngQojEz-I4DpTyOclESKjM81jlnOV-ojhLGFM-MIGAh-FTtF8sCnmI4LlkALdFWRLzSClFma_8nBBCRRYyP-6ifv3G06VN-ZK2vpAgolSLKGU0NSJKSRfRWi6p462Wj6YAqN_derIlx2bCIIKVltEuelHLNQW9r3_m8UIuqjINYKcfkIQc_fvkx-hu--09Q_vrVSVP0F6ZV88dan8APzrQGQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+creation+and+phase-sensitive+probing+of+superposition+states+via+stimulated+Raman+adiabatic+passage+%28STIRAP%29+with+degenerate+dark+states&rft.jtitle=Optics+communications&rft.au=Unanyan%2C+R.&rft.au=Fleischhauer%2C+M.&rft.au=Shore%2C+B.W.&rft.au=Bergmann%2C+K.&rft.date=1998-10-01&rft.pub=Elsevier+B.V&rft.issn=0030-4018&rft.eissn=1873-0310&rft.volume=155&rft.issue=1&rft.spage=144&rft.epage=154&rft_id=info:doi/10.1016%2FS0030-4018%2898%2900358-7&rft.externalDocID=S0030401898003587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon |