A numerical study of the effects of reformer gas composition on the combustion and emission characteristics of a natural gas/diesel RCCI engine enriched with reformer gas

•Shortened ignition delay and advanced CA50 were obtained with higher CO content.•RI and PRR were increased significantly with increasing CO fraction in the syngas.•By syngas enrichment, CO and NOx declined as the H2 in the mixture increased.•High-H2 mixtures requires intake preheating more than one...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) Vol. 209; pp. 742 - 753
Main Authors: Rahnama, Pourya, Paykani, Amin, Bordbar, Vahid, Reitz, Rolf D.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-12-2017
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Shortened ignition delay and advanced CA50 were obtained with higher CO content.•RI and PRR were increased significantly with increasing CO fraction in the syngas.•By syngas enrichment, CO and NOx declined as the H2 in the mixture increased.•High-H2 mixtures requires intake preheating more than ones with low-H2 content. In natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engines, the large reactivity gradient between the two fuels is beneficial in achieving lower pressure rise rate and peak pressure values at high loads. However, by using natural gas, combustion efficiency and engine performance suffer at low loads due to its lower reactivity and higher ignition delay compared to gasoline. The use of reformer gas (containing H2 and CO), which can be produced onboard by a catalytic fuel reformer integrated within the exhaust pipe, as an additive can improve the combustion process of the engine at low loads since it enhances burning rate and compensates the low reactivity of natural gas. The objective of the present study is to investigate the effect of reformer gas (syngas) composition on the performance and exhaust emissions properties of a natural gas/diesel RCCI engine at low loads numerically, when 3% of intake air is volumetrically replaced by reformer gas. Shortened ignition delay and combustion duration, advanced combustion phasing (CA50), and increased peak pressure rise rate, ringing intensity, and lower combustion efficiency were obtained by the mixture with higher CO content. The results indicated that reformer gas addition could enhance the combustion efficiency and decrease CO emission, however, the mixture with higher hydrogen content requires intake charge preheating more than that with lower hydrogen content and mixture with higher CO content is more sensitive to intake temperature.
AbstractList In natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engines, the large reactivity gradient between the two fuels is beneficial in achieving lower pressure rise rate and peak pressure values at high loads. However, by using natural gas, combustion efficiency and engine performance suffer at low loads due to its lower reactivity and higher ignition delay compared to gasoline. The use of reformer gas (containing H2 and CO), which can be produced onboard by a catalytic fuel reformer integrated within the exhaust pipe, as an additive can improve the combustion process of the engine at low loads since it enhances burning rate and compensates the low reactivity of natural gas. The objective of the present study is to investigate the effect of reformer gas (syngas) composition on the performance and exhaust emissions properties of a natural gas/diesel RCCI engine at low loads numerically, when 3% of intake air is volumetrically replaced by reformer gas. Shortened ignition delay and combustion duration, advanced combustion phasing (CA50), and increased peak pressure rise rate, ringing intensity, and lower combustion efficiency were obtained by the mixture with higher CO content. The results indicated that reformer gas addition could enhance the combustion efficiency and decrease CO emission, however, the mixture with higher hydrogen content requires intake charge preheating more than that with lower hydrogen content and mixture with higher CO content is more sensitive to intake temperature.
•Shortened ignition delay and advanced CA50 were obtained with higher CO content.•RI and PRR were increased significantly with increasing CO fraction in the syngas.•By syngas enrichment, CO and NOx declined as the H2 in the mixture increased.•High-H2 mixtures requires intake preheating more than ones with low-H2 content. In natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engines, the large reactivity gradient between the two fuels is beneficial in achieving lower pressure rise rate and peak pressure values at high loads. However, by using natural gas, combustion efficiency and engine performance suffer at low loads due to its lower reactivity and higher ignition delay compared to gasoline. The use of reformer gas (containing H2 and CO), which can be produced onboard by a catalytic fuel reformer integrated within the exhaust pipe, as an additive can improve the combustion process of the engine at low loads since it enhances burning rate and compensates the low reactivity of natural gas. The objective of the present study is to investigate the effect of reformer gas (syngas) composition on the performance and exhaust emissions properties of a natural gas/diesel RCCI engine at low loads numerically, when 3% of intake air is volumetrically replaced by reformer gas. Shortened ignition delay and combustion duration, advanced combustion phasing (CA50), and increased peak pressure rise rate, ringing intensity, and lower combustion efficiency were obtained by the mixture with higher CO content. The results indicated that reformer gas addition could enhance the combustion efficiency and decrease CO emission, however, the mixture with higher hydrogen content requires intake charge preheating more than that with lower hydrogen content and mixture with higher CO content is more sensitive to intake temperature.
Author Rahnama, Pourya
Bordbar, Vahid
Paykani, Amin
Reitz, Rolf D.
Author_xml – sequence: 1
  givenname: Pourya
  surname: Rahnama
  fullname: Rahnama, Pourya
  email: pouryarahnama@gmail.com, pouryarahnama@alumni.iust.ac.ir
  organization: Vehicle Powertrain System Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
– sequence: 2
  givenname: Amin
  surname: Paykani
  fullname: Paykani, Amin
  email: paykani@lav.mavt.ethz.ch
  organization: Vehicle Powertrain System Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
– sequence: 3
  givenname: Vahid
  surname: Bordbar
  fullname: Bordbar, Vahid
  organization: School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
– sequence: 4
  givenname: Rolf D.
  surname: Reitz
  fullname: Reitz, Rolf D.
  organization: Engine Research Center, University of Wisconsin-Madison, Madison, WI, USA
BookMark eNp9UcFqGzEUFCWB2k5-ICdBz-tIK-9qF3oxJk0CgUJpz0IrPdkytuRK2gb_Ur-yb-1eeikIxBvNmxk0c3ITYgBCHjhbcsbbx_3SjXBY1ozLJZOIiQ9kxjspKskbcUNmDFlVLVr-kcxz3jPGZNesZuT3mobxCMkbfaC5jPZMo6NlBxScA1PyNCZwMSGJbnWmJh5PMfviY6B4JipCw5gviA6WwtHnPA1mp5M2BdXx0VykNA26jAnNUOvReshwoN82m1cKYesD2gbMsgNL333Z_eN8R26dPmS4_3svyI8vT983L9Xb1-fXzfqtMqKVpeqsabiTYsUAmrbltWjk0HeWdU0NQgrXOWnN0NaiG1YNBwBTC2Zg5XQ39NqKBfl01T2l-HOEXNQ-jimgpeJ92_d13zOGrPrKMinmjDnVKfmjTmfFmZo6UXs1daKmThSTiAlc-nxdAsz_y0NS2XgIBqxP-NnKRv-_9T_8RJp8
CitedBy_id crossref_primary_10_1080_15435075_2018_1529583
crossref_primary_10_1016_j_fuel_2019_116607
crossref_primary_10_1016_j_ijhydene_2022_03_088
crossref_primary_10_1007_s10973_019_08513_0
crossref_primary_10_1016_j_ijhydene_2019_11_222
crossref_primary_10_1016_j_jaecs_2023_100132
crossref_primary_10_1016_j_energy_2023_127341
crossref_primary_10_1016_j_energy_2018_09_064
crossref_primary_10_1016_j_ijhydene_2018_09_077
crossref_primary_10_1155_2022_8239783
crossref_primary_10_1016_j_apenergy_2019_113380
crossref_primary_10_53941_ijamm_2024_100001
crossref_primary_10_1007_s00231_018_2479_z
crossref_primary_10_1016_j_fuel_2018_02_062
crossref_primary_10_1016_j_joei_2023_101511
crossref_primary_10_3390_fluids3020024
crossref_primary_10_1016_j_egyai_2023_100266
crossref_primary_10_1016_j_apenergy_2020_116174
crossref_primary_10_1177_09544070231186278
crossref_primary_10_3390_en14102834
crossref_primary_10_1002_ep_13683
crossref_primary_10_1016_j_ijhydene_2022_08_277
crossref_primary_10_1016_j_apenergy_2020_114643
crossref_primary_10_1016_j_applthermaleng_2023_121138
crossref_primary_10_3390_en16073192
crossref_primary_10_1016_j_fuel_2018_07_020
crossref_primary_10_1016_j_energy_2020_119706
crossref_primary_10_1016_j_fuel_2021_121281
crossref_primary_10_1016_j_ijhydene_2019_01_115
crossref_primary_10_1016_j_ijhydene_2020_04_263
crossref_primary_10_3390_en13010212
crossref_primary_10_1016_j_ijhydene_2024_06_255
crossref_primary_10_1016_j_matpr_2021_04_557
crossref_primary_10_1016_j_fuel_2019_116815
crossref_primary_10_1016_j_ijhydene_2019_02_010
crossref_primary_10_1016_j_pecs_2022_100995
crossref_primary_10_1080_01430750_2022_2056914
crossref_primary_10_1016_j_fuel_2020_118454
Cites_doi 10.4271/2015-01-0849
10.4271/2005-01-1091
10.1016/j.enconman.2016.08.023
10.1016/j.enconman.2017.02.073
10.4271/2010-01-1086
10.1016/j.enconman.2016.09.026
10.1016/j.apenergy.2017.05.011
10.1080/00102209508907782
10.1016/j.enconman.2017.01.010
10.1177/1468087415615255
10.1016/j.ijhydene.2015.11.062
10.4271/2017-01-0773
10.1006/jcph.2000.6568
10.1016/j.apenergy.2016.08.038
10.1016/j.apenergy.2017.02.023
10.1177/1468087413516119
10.1016/j.fuel.2015.07.064
10.1615/AtomizSpr.v9.i6.40
10.4271/2005-01-1731
10.3311/PPtr.7756
10.4271/2009-01-2647
10.1016/j.fuel.2016.11.010
10.1080/00102202.2013.858137
10.1016/j.rser.2012.06.012
10.1016/0021-9991(80)90087-X
10.1115/1.4003956
10.4271/2012-01-0379
10.1016/j.apenergy.2016.06.150
10.1016/j.apenergy.2016.04.095
10.1016/j.applthermaleng.2013.10.052
10.1016/j.apenergy.2017.03.078
10.1016/j.pecs.2014.05.003
10.1016/j.apenergy.2015.07.072
10.1016/j.ijhydene.2014.10.068
10.1016/j.apenergy.2016.07.100
10.1016/j.apenergy.2016.04.018
10.1016/j.applthermaleng.2011.08.021
10.4271/2002-01-2859
10.1016/j.enconman.2015.05.041
10.1177/1468087411401548
10.4271/760129
10.1016/j.ijhydene.2012.02.055
10.1016/j.applthermaleng.2016.03.162
10.1016/j.ijhydene.2011.04.192
10.1016/j.rser.2015.04.019
10.4271/2012-01-0135
10.4271/820088
10.1016/j.energy.2015.07.112
10.4271/2015-01-0839
10.1016/j.enconman.2015.07.047
10.1016/j.ijhydene.2012.03.014
10.31224/osf.io/94s8d
10.4271/2014-32-0002
10.1016/j.energy.2015.04.076
10.1016/j.combustflame.2012.11.002
10.4271/930072
10.1002/cjce.22443
10.1016/j.ijhydene.2015.07.098
10.1016/j.fuel.2013.12.021
10.1016/j.fuel.2009.06.030
10.1016/j.enconman.2016.11.019
10.4271/2014-01-1318
10.1016/j.rser.2014.05.080
10.1016/j.fuel.2010.12.026
10.1177/1468087415593013
10.4271/2015-01-0851
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2017
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2017.07.103
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
EndPage 753
ExternalDocumentID 10_1016_j_fuel_2017_07_103
S001623611730964X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AAXKI
AAYXX
ABDEX
ABEFU
ABTAH
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AI.
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c367t-8dc51f7340ee56612357b98d0852e373f8f7dcb6238b451eeec230ce4fa8b9ad3
ISSN 0016-2361
IngestDate Thu Oct 10 18:31:10 EDT 2024
Thu Sep 26 18:55:19 EDT 2024
Fri Feb 23 02:21:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reformer gas
Low load
Composition
Reactivity controlled compression ignition (RCCI)
Efficiency
Emissions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-8dc51f7340ee56612357b98d0852e373f8f7dcb6238b451eeec230ce4fa8b9ad3
PQID 1969929900
PQPubID 2045474
PageCount 12
ParticipantIDs proquest_journals_1969929900
crossref_primary_10_1016_j_fuel_2017_07_103
elsevier_sciencedirect_doi_10_1016_j_fuel_2017_07_103
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Law (b0305) 2010
Kavuri, Paz, Kokjohn (b0045) 2016; 127
Mahgoub, Sulaiman, Karim, Hagos (b0220) 2015
Kakaee, Rahnama, Paykani (b0085) 2015; 43
Han, Reitz (b0275) 1995; 106
Lounici, Boussadi, Loubar, Tazerout (b0155) 2014; 39
Kokjohn, Hanson, Splitter, Reitz (b0340) 2009; 2
Shahsavan M, Mack JH. The effect of heavy working fluids on hydrogen combustion. 2017.
Hiroyasu H, Kadota T. Models for combustion and formation of nitric oxide and soot in direct injection diesel engines. SAE Technical Paper; 1976.
Xu, Yao, Rutland (b0375) 2014
Benajes, García, Monsalve-Serrano, Boronat (b0070) 2017; 136
Kokjohn, Hanson, Splitter, Reitz (b0345) 2011; 12
Bika (b0175) 2010
Smith, Golden, Frenklach, Moriarty, Eiteneer, Goldenberg (b0285) 1999
Fayaz, Saidur, Razali, Anuar, Saleman, Islam (b0150) 2012; 16
Liu, Yang, Wang, Ouyang (b0160) 2012; 37
Paykani, Kakaee, Rahnama, Reitz (b0025) 2015; 90
Rahnama, Paykani, Reitz (b0245) 2017; 193
Palumbo, Sorli, Weimer (b0205) 2015; 157
Poorghasemi, Saray, Ansari, Irdmousa, Shahbakhti, Naber (b0100) 2017; 199
An, Yang, Maghbouli, Li, Chou, Chua (b0320) 2014; 120
Speight (b0355) 2008
Li, Jia, Chang, Kokjohn, Reitz (b0005) 2016; 180
DelVescovo, Kokjohn, Reitz (b0035) 2017; 10
Dempsey (b0380) 2013
Lewis, Von Elbe (b0310) 2012
Liu AB, Mather D, Reitz RD. Modeling the effects of drop drag and breakup on fuel sprays. DTIC Document; 1993.
Christodoulou (b0350) 2014
Bika, Franklin, Kittelson (b0230) 2012; 37
Benajes, Pastor, García, Monsalve-Serrano (b0065) 2015; 159
Dahodwala M, Joshi S, Koehler E, Franke M, Tomazic D. Experimental and computational analysis of diesel-natural gas RCCI combustion in heavy-duty engines. SAE Technical Paper; 2015.
Azimov, Tomita, Kawahara, Harada (b0235) 2011; 36
Banerjee, Roy, Bose (b0165) 2015; 40
Gamiño, Aguillón (b0315) 2010; 89
Reitz (b0010) 2013; 1
Kakaee, Rahnama, Paykani (b0090) 2014
Eng J. Characterization of pressure waves in HCCI combustion. SAE Technical Paper; 2002.
Benajes, García, Monsalve-Serrano, Boronat (b0055) 2017; 140
Kakaee, Nasiri-Toosi, Partovi, Paykani (b0105) 2016; 102
Reitz, Duraisamy (b0115) 2015; 46
Benajes, Pastor, García, Monsalve-Serrano (b0075) 2015; 103
Sahoo, Sahoo, Saha (b0215) 2012; 49
Kakaee, Paykani, Ghajar (b0120) 2014; 38
Dukowicz (b0255) 1980; 35
Garnier C, Bilcan A, Le Corre O, Rahmouni C. Characterisation of a syngas-diesel fuelled CI engine. SAE Technical Paper; 2005.
Zoldak, Sobiesiak, Wickman, Bergin (b0140) 2015; 8
Beale, Reitz (b0260) 1999; 9
Chuahy, Kokjohn (b0200) 2017; 195
Bhaduri, Contino, Jeanmart, Breuer (b0225) 2015; 87
Benajes, Pastor, García, Boronat (b0060) 2016; 126
Nobakht, Saray, Rahimi (b0410) 2011; 90
DelVescovo, Wang, Wissink, Reitz (b0050) 2015; 8
Sahoo, Saha, Sahoo (b0240) 2011; 133
Raju M, Wang M, Dai M, Piggott W, Flowers D. Acceleration of detailed chemical kinetics using multi-zone modeling for CFD in internal combustion engine simulations. SAE Technical Paper; 2012.
Splitter (b0385) 2012
Mujeebu (b0180) 2016; 173
Doosje E, Willems F, Baert R. Experimental demonstration of RCCI in heavy-duty engines using diesel and natural gas. SAE Technical Paper; 2014.
Topinka, Gerty, Heywood, Keck (b0360) 2004
Kavuri, Kokjohn, Klos, Hou (b0040) 2016; 17
Mansor, Abbood, Mohamad (b0335) 2017; 190
Omidvarborna, Kumar, Kim (b0400) 2015; 48
Paykani, Kakaee, Rahnama, Reitz (b0110) 2016; 17
Benajes, Molina, García, Belarte, Vanvolsem (b0020) 2014; 63
Bogarra, Herreros, Tsolakis, York, Millington (b0170) 2016; 180
Wang, Yao, Li, Zhang, Zheng (b0015) 2016; 175
Lim, Dames, Acocella, Needham, Arce, Cohn (b0185) 2016
Yamasaki Y, Kaneko S. Prediction of Ignition and Combustion Development in an HCCI Engine Fueled by Syngas. SAE Technical Paper; 2014.
Dempsey, Walker, Gingrich, Reitz (b0030) 2014; 186
Richards, Senecal, Pomraning (b0250) 2014
Salahi, Esfahanian, Gharehghani, Mirsalim (b0095) 2017; 132
Lieuwen, Yang, Yetter (b0370) 2009
Li, Jia, Chang, Fan, Xie, Wang (b0080) 2015; 101
Nieman, Dempsey, Reitz (b0125) 2012; 5
Neshat, Saray, Hosseini (b0210) 2016; 179
Schmidt, Rutland (b0265) 2000; 164
Heywood (b0290) 1988
Dec, Yang (b0390) 2010; 3
Neely GD, Sasaki S, Huang Y, Leet JA, Stewart DW. New diesel emission control strategy to meet US Tier 2 emissions regulations. SAE Technical Paper; 2005.
Khairallah HA, Koylu UO. A Computational Study of In-Cylinder NOx Reduction Strategies for a Compression-Ignition Engine Fueled With Diesel/Hydrogen Mixtures. In: ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum: American Society of Mechanical Engineers; 2015. p. V001T08A-VT08A.
Pourfallah, Ranjbar (b0190) 2015; 28
Namazian M, Heywood JB. Flow in the piston-cylinder-ring crevices of a spark-ignition engine: effect on hydrocarbon emissions, efficiency and power. SAE Technical Paper; 1982.
Gong, Li, Li, Liu (b0325) 2016; 41
Li (10.1016/j.fuel.2017.07.103_b0005) 2016; 180
Schmidt (10.1016/j.fuel.2017.07.103_b0265) 2000; 164
Salahi (10.1016/j.fuel.2017.07.103_b0095) 2017; 132
Dempsey (10.1016/j.fuel.2017.07.103_b0030) 2014; 186
An (10.1016/j.fuel.2017.07.103_b0320) 2014; 120
Reitz (10.1016/j.fuel.2017.07.103_b0010) 2013; 1
Lieuwen (10.1016/j.fuel.2017.07.103_b0370) 2009
Benajes (10.1016/j.fuel.2017.07.103_b0075) 2015; 103
Palumbo (10.1016/j.fuel.2017.07.103_b0205) 2015; 157
Splitter (10.1016/j.fuel.2017.07.103_b0385) 2012
Law (10.1016/j.fuel.2017.07.103_b0305) 2010
Rahnama (10.1016/j.fuel.2017.07.103_b0245) 2017; 193
10.1016/j.fuel.2017.07.103_b0365
10.1016/j.fuel.2017.07.103_b0405
Zoldak (10.1016/j.fuel.2017.07.103_b0140) 2015; 8
Pourfallah (10.1016/j.fuel.2017.07.103_b0190) 2015; 28
Kavuri (10.1016/j.fuel.2017.07.103_b0045) 2016; 127
Fayaz (10.1016/j.fuel.2017.07.103_b0150) 2012; 16
Gamiño (10.1016/j.fuel.2017.07.103_b0315) 2010; 89
Mahgoub (10.1016/j.fuel.2017.07.103_b0220) 2015
Speight (10.1016/j.fuel.2017.07.103_b0355) 2008
Nieman (10.1016/j.fuel.2017.07.103_b0125) 2012; 5
Gong (10.1016/j.fuel.2017.07.103_b0325) 2016; 41
Dempsey (10.1016/j.fuel.2017.07.103_b0380) 2013
10.1016/j.fuel.2017.07.103_b0280
Lewis (10.1016/j.fuel.2017.07.103_b0310) 2012
Christodoulou (10.1016/j.fuel.2017.07.103_b0350) 2014
10.1016/j.fuel.2017.07.103_b0395
Lim (10.1016/j.fuel.2017.07.103_b0185) 2016
DelVescovo (10.1016/j.fuel.2017.07.103_b0035) 2017; 10
Benajes (10.1016/j.fuel.2017.07.103_b0020) 2014; 63
Banerjee (10.1016/j.fuel.2017.07.103_b0165) 2015; 40
Paykani (10.1016/j.fuel.2017.07.103_b0110) 2016; 17
Dec (10.1016/j.fuel.2017.07.103_b0390) 2010; 3
Smith (10.1016/j.fuel.2017.07.103_b0285) 1999
Dukowicz (10.1016/j.fuel.2017.07.103_b0255) 1980; 35
Kavuri (10.1016/j.fuel.2017.07.103_b0040) 2016; 17
Wang (10.1016/j.fuel.2017.07.103_b0015) 2016; 175
Heywood (10.1016/j.fuel.2017.07.103_b0290) 1988
Xu (10.1016/j.fuel.2017.07.103_b0375) 2014
10.1016/j.fuel.2017.07.103_b0195
10.1016/j.fuel.2017.07.103_b0270
Bika (10.1016/j.fuel.2017.07.103_b0175) 2010
Benajes (10.1016/j.fuel.2017.07.103_b0065) 2015; 159
Paykani (10.1016/j.fuel.2017.07.103_b0025) 2015; 90
10.1016/j.fuel.2017.07.103_b0145
Kakaee (10.1016/j.fuel.2017.07.103_b0120) 2014; 38
10.1016/j.fuel.2017.07.103_b0300
Lounici (10.1016/j.fuel.2017.07.103_b0155) 2014; 39
Sahoo (10.1016/j.fuel.2017.07.103_b0215) 2012; 49
Liu (10.1016/j.fuel.2017.07.103_b0160) 2012; 37
Kakaee (10.1016/j.fuel.2017.07.103_b0085) 2015; 43
Poorghasemi (10.1016/j.fuel.2017.07.103_b0100) 2017; 199
Richards (10.1016/j.fuel.2017.07.103_b0250) 2014
Azimov (10.1016/j.fuel.2017.07.103_b0235) 2011; 36
Omidvarborna (10.1016/j.fuel.2017.07.103_b0400) 2015; 48
Bogarra (10.1016/j.fuel.2017.07.103_b0170) 2016; 180
Benajes (10.1016/j.fuel.2017.07.103_b0055) 2017; 140
Sahoo (10.1016/j.fuel.2017.07.103_b0240) 2011; 133
Neshat (10.1016/j.fuel.2017.07.103_b0210) 2016; 179
Benajes (10.1016/j.fuel.2017.07.103_b0060) 2016; 126
Bika (10.1016/j.fuel.2017.07.103_b0230) 2012; 37
Topinka (10.1016/j.fuel.2017.07.103_b0360) 2004
Kakaee (10.1016/j.fuel.2017.07.103_b0090) 2014
10.1016/j.fuel.2017.07.103_b0330
10.1016/j.fuel.2017.07.103_b0130
10.1016/j.fuel.2017.07.103_b0295
Han (10.1016/j.fuel.2017.07.103_b0275) 1995; 106
Chuahy (10.1016/j.fuel.2017.07.103_b0200) 2017; 195
Beale (10.1016/j.fuel.2017.07.103_b0260) 1999; 9
DelVescovo (10.1016/j.fuel.2017.07.103_b0050) 2015; 8
10.1016/j.fuel.2017.07.103_b0135
Nobakht (10.1016/j.fuel.2017.07.103_b0410) 2011; 90
Kakaee (10.1016/j.fuel.2017.07.103_b0105) 2016; 102
Reitz (10.1016/j.fuel.2017.07.103_b0115) 2015; 46
Mansor (10.1016/j.fuel.2017.07.103_b0335) 2017; 190
Mujeebu (10.1016/j.fuel.2017.07.103_b0180) 2016; 173
Benajes (10.1016/j.fuel.2017.07.103_b0070) 2017; 136
Bhaduri (10.1016/j.fuel.2017.07.103_b0225) 2015; 87
Kokjohn (10.1016/j.fuel.2017.07.103_b0340) 2009; 2
Li (10.1016/j.fuel.2017.07.103_b0080) 2015; 101
Kokjohn (10.1016/j.fuel.2017.07.103_b0345) 2011; 12
References_xml – volume: 120
  start-page: 186
  year: 2014
  end-page: 194
  ident: b0320
  article-title: Numerical investigation on the combustion and emission characteristics of a hydrogen assisted biodiesel combustion in a diesel engine
  publication-title: Fuel
  contributor:
    fullname: Chua
– volume: 12
  start-page: 209
  year: 2011
  end-page: 226
  ident: b0345
  article-title: Fuel Reactivity Controlled Compression Ignition (RCCI): a pathway to controlled high-efficiency clean combustion
  publication-title: Int J Engine Res
  contributor:
    fullname: Reitz
– volume: 157
  start-page: 13
  year: 2015
  end-page: 24
  ident: b0205
  article-title: High temperature thermochemical processing of biomass and methane for high conversion and selectivity to H 2-enriched syngas
  publication-title: Appl Energy
  contributor:
    fullname: Weimer
– volume: 46
  start-page: 12
  year: 2015
  end-page: 71
  ident: b0115
  article-title: Review of high efficiency and clean Reactivity Controlled Compression Ignition (RCCI) combustion in internal combustion engines
  publication-title: Prog Energy Combust Sci
  contributor:
    fullname: Duraisamy
– volume: 179
  start-page: 463
  year: 2016
  end-page: 478
  ident: b0210
  article-title: Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism
  publication-title: Appl Energy
  contributor:
    fullname: Hosseini
– volume: 101
  start-page: 40
  year: 2015
  end-page: 51
  ident: b0080
  article-title: Evaluation of the necessity of exhaust gas recirculation employment for a methanol/diesel Reactivity Controlled Compression Ignition engine operated at medium loads
  publication-title: Energy Convers Manage
  contributor:
    fullname: Wang
– volume: 17
  start-page: 811
  year: 2016
  end-page: 824
  ident: b0040
  article-title: Blending the benefits of Reactivity Controlled Compression Ignition and Gasoline Compression Ignition combustion using an adaptive fuel injection system
  publication-title: Int J Engine Res
  contributor:
    fullname: Hou
– volume: 175
  start-page: 389
  year: 2016
  end-page: 402
  ident: b0015
  article-title: A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads
  publication-title: Appl Energy
  contributor:
    fullname: Zheng
– volume: 103
  start-page: 1019
  year: 2015
  end-page: 1030
  ident: b0075
  article-title: An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine
  publication-title: Energy Convers Manage
  contributor:
    fullname: Monsalve-Serrano
– year: 2014
  ident: b0250
  article-title: CONVERGE (v2. 2.0)
  contributor:
    fullname: Pomraning
– volume: 8
  start-page: 329
  year: 2015
  end-page: 343
  ident: b0050
  article-title: Isobutanol as both low reactivity and high reactivity fuels with addition of di-tert butyl peroxide (DTBP) in RCCI combustion
  publication-title: SAE Int J Fuels Lubricants
  contributor:
    fullname: Reitz
– volume: 2
  start-page: 24
  year: 2009
  end-page: 39
  ident: b0340
  article-title: Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending
  publication-title: SAE Int J Eng
  contributor:
    fullname: Reitz
– volume: 186
  start-page: 210
  year: 2014
  end-page: 241
  ident: b0030
  article-title: Comparison of low temperature combustion strategies for advanced compression ignition engines with a focus on controllability
  publication-title: Combust Sci Technol
  contributor:
    fullname: Reitz
– volume: 41
  start-page: 647
  year: 2016
  end-page: 655
  ident: b0325
  article-title: Numerical study on combustion and emission in a DISI methanol engine with hydrogen addition
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Liu
– volume: 37
  start-page: 8688
  year: 2012
  end-page: 8697
  ident: b0160
  article-title: Numerical study of hydrogen addition to DME/CH4 dual fuel RCCI engine
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Ouyang
– volume: 106
  start-page: 267
  year: 1995
  end-page: 295
  ident: b0275
  article-title: Turbulence modeling of internal combustion engines using RNG κ-ε models
  publication-title: Combust Sci Technol
  contributor:
    fullname: Reitz
– volume: 16
  start-page: 5511
  year: 2012
  end-page: 5528
  ident: b0150
  article-title: An overview of hydrogen as a vehicle fuel
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Islam
– year: 2012
  ident: b0310
  article-title: Combustion, flames and explosions of gases
  contributor:
    fullname: Von Elbe
– volume: 39
  start-page: 21297
  year: 2014
  end-page: 21306
  ident: b0155
  article-title: Experimental investigation on NG dual fuel engine improvement by hydrogen enrichment
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Tazerout
– volume: 35
  start-page: 229
  year: 1980
  end-page: 253
  ident: b0255
  article-title: A particle-fluid numerical model for liquid sprays
  publication-title: J Comput Phys
  contributor:
    fullname: Dukowicz
– year: 2010
  ident: b0175
  article-title: Synthesis gas use in internal combustion engines
  contributor:
    fullname: Bika
– volume: 127
  start-page: 324
  year: 2016
  end-page: 341
  ident: b0045
  article-title: A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions
  publication-title: Energy Convers Manage
  contributor:
    fullname: Kokjohn
– volume: 3
  start-page: 750
  year: 2010
  end-page: 767
  ident: b0390
  article-title: Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline
  publication-title: SAE Int J Eng
  contributor:
    fullname: Yang
– volume: 180
  start-page: 849
  year: 2016
  end-page: 858
  ident: b0005
  article-title: Thermodynamic energy and exergy analysis of three different engine combustion regimes
  publication-title: Appl Energy
  contributor:
    fullname: Reitz
– volume: 195
  start-page: 503
  year: 2017
  end-page: 522
  ident: b0200
  article-title: High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming
  publication-title: Appl Energy
  contributor:
    fullname: Kokjohn
– volume: 17
  start-page: 481
  year: 2016
  end-page: 524
  ident: b0110
  article-title: Progress and recent trends in reactivity-controlled compression ignition engines
  publication-title: Int J Engine Res
  contributor:
    fullname: Reitz
– volume: 190
  start-page: 281
  year: 2017
  end-page: 291
  ident: b0335
  article-title: The influence of varying hydrogen-methane-diesel mixture ratio on the combustion characteristics and emissions of a direct injection diesel engine
  publication-title: Fuel
  contributor:
    fullname: Mohamad
– year: 2012
  ident: b0385
  article-title: High efficiency RCCI combustion
  contributor:
    fullname: Splitter
– volume: 89
  start-page: 581
  year: 2010
  end-page: 591
  ident: b0315
  article-title: Numerical simulation of syngas combustion with a multi-spark ignition system in a diesel engine adapted to work at the Otto cycle
  publication-title: Fuel
  contributor:
    fullname: Aguillón
– volume: 136
  start-page: 142
  year: 2017
  end-page: 151
  ident: b0070
  article-title: Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies
  publication-title: Energy Convers Manage
  contributor:
    fullname: Boronat
– volume: 28
  start-page: 1239
  year: 2015
  end-page: 1246
  ident: b0190
  article-title: Studying the effect of reformer gas and exhaust gas recirculation on homogeneous charge compression ignition engine operation
  publication-title: Int J Eng Trans B
  contributor:
    fullname: Ranjbar
– volume: 37
  start-page: 9402
  year: 2012
  end-page: 9411
  ident: b0230
  article-title: Homogeneous charge compression ignition engine operating on synthesis gas
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Kittelson
– volume: 173
  start-page: 210
  year: 2016
  end-page: 224
  ident: b0180
  article-title: Hydrogen and syngas production by superadiabatic combustion–a review
  publication-title: Appl Energy
  contributor:
    fullname: Mujeebu
– volume: 36
  start-page: 11985
  year: 2011
  end-page: 11996
  ident: b0235
  article-title: Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Harada
– volume: 90
  start-page: 1508
  year: 2011
  end-page: 1514
  ident: b0410
  article-title: A parametric study on natural gas fueled HCCI combustion engine using a multi-zone combustion model
  publication-title: Fuel
  contributor:
    fullname: Rahimi
– year: 2008
  ident: b0355
  article-title: Synthetic fuels handbook: properties, process and performance
  contributor:
    fullname: Speight
– volume: 43
  start-page: 177
  year: 2015
  ident: b0085
  article-title: CFD study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine
  publication-title: Periodica Polytech Transp Eng
  contributor:
    fullname: Paykani
– volume: 40
  start-page: 12824
  year: 2015
  end-page: 12847
  ident: b0165
  article-title: Hydrogen-EGR synergy as a promising pathway to meet the PM–NO x–BSFC trade-off contingencies of the diesel engine: a comprehensive review
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Bose
– volume: 164
  start-page: 62
  year: 2000
  end-page: 80
  ident: b0265
  article-title: A new droplet collision algorithm
  publication-title: J Comput Phys
  contributor:
    fullname: Rutland
– volume: 63
  start-page: 66
  year: 2014
  end-page: 76
  ident: b0020
  article-title: An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels
  publication-title: Appl Therm Eng
  contributor:
    fullname: Vanvolsem
– volume: 159
  start-page: 952
  year: 2015
  end-page: 961
  ident: b0065
  article-title: The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map
  publication-title: Fuel
  contributor:
    fullname: Monsalve-Serrano
– volume: 199
  start-page: 430
  year: 2017
  end-page: 446
  ident: b0100
  article-title: Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine
  publication-title: Appl Energy
  contributor:
    fullname: Naber
– year: 2016
  ident: b0185
  article-title: The engine reformer: syngas production in an engine for compact gas-to-liquids synthesis
  publication-title: Can J Chem Eng
  contributor:
    fullname: Cohn
– year: 2015
  ident: b0220
  article-title: Experimental study on the effect of varying syngas composition on the emissions of dual fuel CI engine operating at various engine speeds
  publication-title: IOP conference series: materials science and engineering
  contributor:
    fullname: Hagos
– volume: 8
  start-page: 846
  year: 2015
  end-page: 858
  ident: b0140
  article-title: Combustion simulation of dual fuel CNG engine using direct injection of natural gas and diesel
  publication-title: SAE Int J Eng
  contributor:
    fullname: Bergin
– year: 2013
  ident: b0380
  article-title: Dual-fuel Reactivity Controlled Compression Ignition (RCCI) with alternative fuels
  contributor:
    fullname: Dempsey
– volume: 1
  start-page: 1
  year: 2013
  end-page: 8
  ident: b0010
  article-title: Directions in internal combustion engine research
  publication-title: Combust Flame
  contributor:
    fullname: Reitz
– year: 2004
  ident: b0360
  article-title: Knock behavior of a lean-burn, H2 and CO enhanced
  contributor:
    fullname: Keck
– year: 2014
  ident: b0090
  article-title: Numerical study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine using 3D-CFD coupled with chemical kinetics
  publication-title: Int J Auto Eng
  contributor:
    fullname: Paykani
– year: 1999
  ident: b0285
  article-title: GRI 3.0 mechanism, version 3.0
  contributor:
    fullname: Goldenberg
– year: 1988
  ident: b0290
  article-title: Internal combustion engine fundamentals
  contributor:
    fullname: Heywood
– volume: 87
  start-page: 289
  year: 2015
  end-page: 302
  ident: b0225
  article-title: The effects of biomass syngas composition, moisture, tar loading and operating conditions on the combustion of a tar-tolerant HCCI (Homogeneous Charge Compression Ignition) engine
  publication-title: Energy
  contributor:
    fullname: Breuer
– volume: 193
  start-page: 182
  year: 2017
  end-page: 198
  ident: b0245
  article-title: A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine
  publication-title: Appl Energy
  contributor:
    fullname: Reitz
– volume: 140
  start-page: 98
  year: 2017
  end-page: 108
  ident: b0055
  article-title: An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining RCCI and dual-fuel diesel-gasoline
  publication-title: Energy Convers Manage
  contributor:
    fullname: Boronat
– year: 2009
  ident: b0370
  article-title: Synthesis gas combustion: fundamentals and applications
  publication-title: CRC Press
  contributor:
    fullname: Yetter
– volume: 49
  start-page: 139
  year: 2012
  end-page: 146
  ident: b0215
  article-title: Effect of H 2: CO ratio in syngas on the performance of a dual fuel diesel engine operation
  publication-title: Appl Therm Eng
  contributor:
    fullname: Saha
– volume: 38
  start-page: 64
  year: 2014
  end-page: 78
  ident: b0120
  article-title: The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Ghajar
– volume: 9
  start-page: 623
  year: 1999
  end-page: 650
  ident: b0260
  article-title: Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model
  publication-title: Atomization Sprays
  contributor:
    fullname: Reitz
– volume: 48
  start-page: 635
  year: 2015
  end-page: 647
  ident: b0400
  article-title: Recent studies on soot modeling for diesel combustion
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Kim
– year: 2014
  ident: b0375
  article-title: Simulations of diesel-methanol dual-fuel engine combustion with large eddy simulation and Reynolds-averaged Navier-Stokes model
  publication-title: Int J Engine Res
  contributor:
    fullname: Rutland
– volume: 90
  start-page: 814
  year: 2015
  end-page: 826
  ident: b0025
  article-title: Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion
  publication-title: Energy
  contributor:
    fullname: Reitz
– volume: 5
  start-page: 270
  year: 2012
  end-page: 285
  ident: b0125
  article-title: Heavy-duty RCCI operation using natural gas and diesel
  publication-title: SAE Int J Eng
  contributor:
    fullname: Reitz
– year: 2014
  ident: b0350
  article-title: Hydrogen, nitrogen and syngas enriched diesel combustion
  contributor:
    fullname: Christodoulou
– volume: 10
  year: 2017
  ident: b0035
  article-title: The Effects of charge preparation, fuel stratification, and premixed fuel chemistry on Reactivity Controlled Compression Ignition (RCCI) combustion
  publication-title: SAE Int J Engines
  contributor:
    fullname: Reitz
– volume: 126
  start-page: 497
  year: 2016
  end-page: 508
  ident: b0060
  article-title: A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio
  publication-title: Energy Convers Manage
  contributor:
    fullname: Boronat
– year: 2010
  ident: b0305
  article-title: Combustion physics
  contributor:
    fullname: Law
– volume: 180
  start-page: 245
  year: 2016
  end-page: 255
  ident: b0170
  article-title: Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming
  publication-title: Appl Energy
  contributor:
    fullname: Millington
– volume: 132
  start-page: 40
  year: 2017
  end-page: 53
  ident: b0095
  article-title: Investigating the Reactivity Controlled Compression Ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber
  publication-title: Energy Convers Manage
  contributor:
    fullname: Mirsalim
– volume: 133
  start-page: 122802
  year: 2011
  ident: b0240
  article-title: Effect of load level on the performance of a dual fuel compression ignition engine operating on syngas fuels with varying h2/co content
  publication-title: J Eng Gas Turbines Power
  contributor:
    fullname: Sahoo
– volume: 102
  start-page: 1462
  year: 2016
  end-page: 1472
  ident: b0105
  article-title: Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine
  publication-title: Appl Therm Eng
  contributor:
    fullname: Paykani
– ident: 10.1016/j.fuel.2017.07.103_b0130
  doi: 10.4271/2015-01-0849
– year: 2013
  ident: 10.1016/j.fuel.2017.07.103_b0380
  contributor:
    fullname: Dempsey
– ident: 10.1016/j.fuel.2017.07.103_b0405
  doi: 10.4271/2005-01-1091
– volume: 126
  start-page: 497
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0060
  article-title: A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.08.023
  contributor:
    fullname: Benajes
– year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0220
  article-title: Experimental study on the effect of varying syngas composition on the emissions of dual fuel CI engine operating at various engine speeds
  contributor:
    fullname: Mahgoub
– year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0090
  article-title: Numerical study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine using 3D-CFD coupled with chemical kinetics
  publication-title: Int J Auto Eng
  contributor:
    fullname: Kakaee
– volume: 28
  start-page: 1239
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0190
  article-title: Studying the effect of reformer gas and exhaust gas recirculation on homogeneous charge compression ignition engine operation
  publication-title: Int J Eng Trans B
  contributor:
    fullname: Pourfallah
– volume: 140
  start-page: 98
  year: 2017
  ident: 10.1016/j.fuel.2017.07.103_b0055
  article-title: An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining RCCI and dual-fuel diesel-gasoline
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.02.073
  contributor:
    fullname: Benajes
– volume: 3
  start-page: 750
  year: 2010
  ident: 10.1016/j.fuel.2017.07.103_b0390
  article-title: Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline
  publication-title: SAE Int J Eng
  doi: 10.4271/2010-01-1086
  contributor:
    fullname: Dec
– volume: 127
  start-page: 324
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0045
  article-title: A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.09.026
  contributor:
    fullname: Kavuri
– volume: 199
  start-page: 430
  year: 2017
  ident: 10.1016/j.fuel.2017.07.103_b0100
  article-title: Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.011
  contributor:
    fullname: Poorghasemi
– volume: 106
  start-page: 267
  year: 1995
  ident: 10.1016/j.fuel.2017.07.103_b0275
  article-title: Turbulence modeling of internal combustion engines using RNG κ-ε models
  publication-title: Combust Sci Technol
  doi: 10.1080/00102209508907782
  contributor:
    fullname: Han
– volume: 136
  start-page: 142
  year: 2017
  ident: 10.1016/j.fuel.2017.07.103_b0070
  article-title: Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.01.010
  contributor:
    fullname: Benajes
– volume: 17
  start-page: 811
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0040
  article-title: Blending the benefits of Reactivity Controlled Compression Ignition and Gasoline Compression Ignition combustion using an adaptive fuel injection system
  publication-title: Int J Engine Res
  doi: 10.1177/1468087415615255
  contributor:
    fullname: Kavuri
– volume: 41
  start-page: 647
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0325
  article-title: Numerical study on combustion and emission in a DISI methanol engine with hydrogen addition
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.11.062
  contributor:
    fullname: Gong
– volume: 10
  year: 2017
  ident: 10.1016/j.fuel.2017.07.103_b0035
  article-title: The Effects of charge preparation, fuel stratification, and premixed fuel chemistry on Reactivity Controlled Compression Ignition (RCCI) combustion
  publication-title: SAE Int J Engines
  doi: 10.4271/2017-01-0773
  contributor:
    fullname: DelVescovo
– volume: 164
  start-page: 62
  year: 2000
  ident: 10.1016/j.fuel.2017.07.103_b0265
  article-title: A new droplet collision algorithm
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2000.6568
  contributor:
    fullname: Schmidt
– volume: 180
  start-page: 849
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0005
  article-title: Thermodynamic energy and exergy analysis of three different engine combustion regimes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.038
  contributor:
    fullname: Li
– volume: 193
  start-page: 182
  year: 2017
  ident: 10.1016/j.fuel.2017.07.103_b0245
  article-title: A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.02.023
  contributor:
    fullname: Rahnama
– year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0375
  article-title: Simulations of diesel-methanol dual-fuel engine combustion with large eddy simulation and Reynolds-averaged Navier-Stokes model
  publication-title: Int J Engine Res
  doi: 10.1177/1468087413516119
  contributor:
    fullname: Xu
– volume: 159
  start-page: 952
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0065
  article-title: The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.07.064
  contributor:
    fullname: Benajes
– year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0250
  contributor:
    fullname: Richards
– year: 1988
  ident: 10.1016/j.fuel.2017.07.103_b0290
  contributor:
    fullname: Heywood
– volume: 9
  start-page: 623
  year: 1999
  ident: 10.1016/j.fuel.2017.07.103_b0260
  article-title: Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model
  publication-title: Atomization Sprays
  doi: 10.1615/AtomizSpr.v9.i6.40
  contributor:
    fullname: Beale
– year: 2012
  ident: 10.1016/j.fuel.2017.07.103_b0385
  contributor:
    fullname: Splitter
– ident: 10.1016/j.fuel.2017.07.103_b0365
  doi: 10.4271/2005-01-1731
– volume: 43
  start-page: 177
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0085
  article-title: CFD study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine
  publication-title: Periodica Polytech Transp Eng
  doi: 10.3311/PPtr.7756
  contributor:
    fullname: Kakaee
– volume: 2
  start-page: 24
  year: 2009
  ident: 10.1016/j.fuel.2017.07.103_b0340
  article-title: Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending
  publication-title: SAE Int J Eng
  doi: 10.4271/2009-01-2647
  contributor:
    fullname: Kokjohn
– volume: 190
  start-page: 281
  year: 2017
  ident: 10.1016/j.fuel.2017.07.103_b0335
  article-title: The influence of varying hydrogen-methane-diesel mixture ratio on the combustion characteristics and emissions of a direct injection diesel engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.11.010
  contributor:
    fullname: Mansor
– year: 2010
  ident: 10.1016/j.fuel.2017.07.103_b0305
  contributor:
    fullname: Law
– volume: 186
  start-page: 210
  year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0030
  article-title: Comparison of low temperature combustion strategies for advanced compression ignition engines with a focus on controllability
  publication-title: Combust Sci Technol
  doi: 10.1080/00102202.2013.858137
  contributor:
    fullname: Dempsey
– year: 1999
  ident: 10.1016/j.fuel.2017.07.103_b0285
  contributor:
    fullname: Smith
– volume: 16
  start-page: 5511
  year: 2012
  ident: 10.1016/j.fuel.2017.07.103_b0150
  article-title: An overview of hydrogen as a vehicle fuel
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.06.012
  contributor:
    fullname: Fayaz
– volume: 35
  start-page: 229
  year: 1980
  ident: 10.1016/j.fuel.2017.07.103_b0255
  article-title: A particle-fluid numerical model for liquid sprays
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(80)90087-X
  contributor:
    fullname: Dukowicz
– year: 2010
  ident: 10.1016/j.fuel.2017.07.103_b0175
  contributor:
    fullname: Bika
– volume: 133
  start-page: 122802
  year: 2011
  ident: 10.1016/j.fuel.2017.07.103_b0240
  article-title: Effect of load level on the performance of a dual fuel compression ignition engine operating on syngas fuels with varying h2/co content
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.4003956
  contributor:
    fullname: Sahoo
– volume: 5
  start-page: 270
  year: 2012
  ident: 10.1016/j.fuel.2017.07.103_b0125
  article-title: Heavy-duty RCCI operation using natural gas and diesel
  publication-title: SAE Int J Eng
  doi: 10.4271/2012-01-0379
  contributor:
    fullname: Nieman
– volume: 179
  start-page: 463
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0210
  article-title: Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.150
  contributor:
    fullname: Neshat
– volume: 175
  start-page: 389
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0015
  article-title: A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.04.095
  contributor:
    fullname: Wang
– volume: 63
  start-page: 66
  year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0020
  article-title: An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.10.052
  contributor:
    fullname: Benajes
– volume: 195
  start-page: 503
  year: 2017
  ident: 10.1016/j.fuel.2017.07.103_b0200
  article-title: High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.078
  contributor:
    fullname: Chuahy
– volume: 46
  start-page: 12
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0115
  article-title: Review of high efficiency and clean Reactivity Controlled Compression Ignition (RCCI) combustion in internal combustion engines
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2014.05.003
  contributor:
    fullname: Reitz
– volume: 157
  start-page: 13
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0205
  article-title: High temperature thermochemical processing of biomass and methane for high conversion and selectivity to H 2-enriched syngas
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.07.072
  contributor:
    fullname: Palumbo
– volume: 39
  start-page: 21297
  year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0155
  article-title: Experimental investigation on NG dual fuel engine improvement by hydrogen enrichment
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.10.068
  contributor:
    fullname: Lounici
– volume: 180
  start-page: 245
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0170
  article-title: Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.100
  contributor:
    fullname: Bogarra
– volume: 173
  start-page: 210
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0180
  article-title: Hydrogen and syngas production by superadiabatic combustion–a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.04.018
  contributor:
    fullname: Mujeebu
– volume: 49
  start-page: 139
  year: 2012
  ident: 10.1016/j.fuel.2017.07.103_b0215
  article-title: Effect of H 2: CO ratio in syngas on the performance of a dual fuel diesel engine operation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.08.021
  contributor:
    fullname: Sahoo
– ident: 10.1016/j.fuel.2017.07.103_b0395
  doi: 10.4271/2002-01-2859
– volume: 101
  start-page: 40
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0080
  article-title: Evaluation of the necessity of exhaust gas recirculation employment for a methanol/diesel Reactivity Controlled Compression Ignition engine operated at medium loads
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.05.041
  contributor:
    fullname: Li
– volume: 12
  start-page: 209
  year: 2011
  ident: 10.1016/j.fuel.2017.07.103_b0345
  article-title: Fuel Reactivity Controlled Compression Ignition (RCCI): a pathway to controlled high-efficiency clean combustion
  publication-title: Int J Engine Res
  doi: 10.1177/1468087411401548
  contributor:
    fullname: Kokjohn
– ident: 10.1016/j.fuel.2017.07.103_b0295
  doi: 10.4271/760129
– year: 2012
  ident: 10.1016/j.fuel.2017.07.103_b0310
  contributor:
    fullname: Lewis
– volume: 37
  start-page: 8688
  year: 2012
  ident: 10.1016/j.fuel.2017.07.103_b0160
  article-title: Numerical study of hydrogen addition to DME/CH4 dual fuel RCCI engine
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.02.055
  contributor:
    fullname: Liu
– ident: 10.1016/j.fuel.2017.07.103_b0330
– volume: 102
  start-page: 1462
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0105
  article-title: Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.03.162
  contributor:
    fullname: Kakaee
– volume: 36
  start-page: 11985
  year: 2011
  ident: 10.1016/j.fuel.2017.07.103_b0235
  article-title: Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.04.192
  contributor:
    fullname: Azimov
– year: 2008
  ident: 10.1016/j.fuel.2017.07.103_b0355
  contributor:
    fullname: Speight
– volume: 48
  start-page: 635
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0400
  article-title: Recent studies on soot modeling for diesel combustion
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.019
  contributor:
    fullname: Omidvarborna
– ident: 10.1016/j.fuel.2017.07.103_b0280
  doi: 10.4271/2012-01-0135
– ident: 10.1016/j.fuel.2017.07.103_b0300
  doi: 10.4271/820088
– volume: 90
  start-page: 814
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0025
  article-title: Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.112
  contributor:
    fullname: Paykani
– volume: 8
  start-page: 329
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0050
  article-title: Isobutanol as both low reactivity and high reactivity fuels with addition of di-tert butyl peroxide (DTBP) in RCCI combustion
  publication-title: SAE Int J Fuels Lubricants
  doi: 10.4271/2015-01-0839
  contributor:
    fullname: DelVescovo
– volume: 103
  start-page: 1019
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0075
  article-title: An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.07.047
  contributor:
    fullname: Benajes
– volume: 37
  start-page: 9402
  year: 2012
  ident: 10.1016/j.fuel.2017.07.103_b0230
  article-title: Homogeneous charge compression ignition engine operating on synthesis gas
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.03.014
  contributor:
    fullname: Bika
– ident: 10.1016/j.fuel.2017.07.103_b0145
  doi: 10.31224/osf.io/94s8d
– year: 2009
  ident: 10.1016/j.fuel.2017.07.103_b0370
  article-title: Synthesis gas combustion: fundamentals and applications
  publication-title: CRC Press
  contributor:
    fullname: Lieuwen
– ident: 10.1016/j.fuel.2017.07.103_b0195
  doi: 10.4271/2014-32-0002
– volume: 87
  start-page: 289
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0225
  article-title: The effects of biomass syngas composition, moisture, tar loading and operating conditions on the combustion of a tar-tolerant HCCI (Homogeneous Charge Compression Ignition) engine
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.076
  contributor:
    fullname: Bhaduri
– volume: 1
  start-page: 1
  year: 2013
  ident: 10.1016/j.fuel.2017.07.103_b0010
  article-title: Directions in internal combustion engine research
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2012.11.002
  contributor:
    fullname: Reitz
– ident: 10.1016/j.fuel.2017.07.103_b0270
  doi: 10.4271/930072
– year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0185
  article-title: The engine reformer: syngas production in an engine for compact gas-to-liquids synthesis
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.22443
  contributor:
    fullname: Lim
– volume: 40
  start-page: 12824
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0165
  article-title: Hydrogen-EGR synergy as a promising pathway to meet the PM–NO x–BSFC trade-off contingencies of the diesel engine: a comprehensive review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.07.098
  contributor:
    fullname: Banerjee
– volume: 120
  start-page: 186
  year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0320
  article-title: Numerical investigation on the combustion and emission characteristics of a hydrogen assisted biodiesel combustion in a diesel engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.12.021
  contributor:
    fullname: An
– volume: 89
  start-page: 581
  year: 2010
  ident: 10.1016/j.fuel.2017.07.103_b0315
  article-title: Numerical simulation of syngas combustion with a multi-spark ignition system in a diesel engine adapted to work at the Otto cycle
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.06.030
  contributor:
    fullname: Gamiño
– year: 2004
  ident: 10.1016/j.fuel.2017.07.103_b0360
  contributor:
    fullname: Topinka
– volume: 132
  start-page: 40
  year: 2017
  ident: 10.1016/j.fuel.2017.07.103_b0095
  article-title: Investigating the Reactivity Controlled Compression Ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.11.019
  contributor:
    fullname: Salahi
– ident: 10.1016/j.fuel.2017.07.103_b0135
  doi: 10.4271/2014-01-1318
– volume: 38
  start-page: 64
  year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0120
  article-title: The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.05.080
  contributor:
    fullname: Kakaee
– volume: 90
  start-page: 1508
  year: 2011
  ident: 10.1016/j.fuel.2017.07.103_b0410
  article-title: A parametric study on natural gas fueled HCCI combustion engine using a multi-zone combustion model
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.12.026
  contributor:
    fullname: Nobakht
– volume: 17
  start-page: 481
  year: 2016
  ident: 10.1016/j.fuel.2017.07.103_b0110
  article-title: Progress and recent trends in reactivity-controlled compression ignition engines
  publication-title: Int J Engine Res
  doi: 10.1177/1468087415593013
  contributor:
    fullname: Paykani
– year: 2014
  ident: 10.1016/j.fuel.2017.07.103_b0350
  contributor:
    fullname: Christodoulou
– volume: 8
  start-page: 846
  year: 2015
  ident: 10.1016/j.fuel.2017.07.103_b0140
  article-title: Combustion simulation of dual fuel CNG engine using direct injection of natural gas and diesel
  publication-title: SAE Int J Eng
  doi: 10.4271/2015-01-0851
  contributor:
    fullname: Zoldak
SSID ssj0007854
Score 2.4856272
Snippet •Shortened ignition delay and advanced CA50 were obtained with higher CO content.•RI and PRR were increased significantly with increasing CO fraction in the...
In natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engines, the large reactivity gradient between the two fuels is beneficial in achieving...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 742
SubjectTerms Burning
Burning rate
Catalysis
Combustion
Combustion efficiency
Combustion products
Composition
Composition effects
Compression
Delay
Diesel
Diesel engines
Efficiency
Emissions
Exhaust emissions
Exhaust gases
Exhaust pipes
Gas composition
Gasoline
Heating
Hydrogen storage
Ignition
Loads (forces)
Low load
Natural gas
Natural gas industry
Numerical analysis
Peak pressure
Pressure
Reactivity
Reactivity controlled compression ignition (RCCI)
Reformer gas
Synthetic fuels
Temperature
Title A numerical study of the effects of reformer gas composition on the combustion and emission characteristics of a natural gas/diesel RCCI engine enriched with reformer gas
URI https://dx.doi.org/10.1016/j.fuel.2017.07.103
https://www.proquest.com/docview/1969929900
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6l7QUOiKeAFrQHbpaL7bWz66NJE7UcUJUWlJu1ttd9pQ5KmkP_Un8lM_uwnSAQICFFjrPy7lqeLzOz629mCPkQlZiGbMh8UQTCj-tQ-mDXh35RovPKiqTQ4WLHZ_zLTByN4_Fg4ApddG3_VdLQBrLGyNm_kHY7KDTAOcgcjiB1OP6R3DOvWZu3MHOTO9axAHrMDbCK4KqqpXchV5pUbplb9s0BNhVY5csylbEkHG6qYZTwRnZnHVupU4PCZBcYGjZBUqKae9PR6MRTOtchfC2Rb2pp7v25-57xZA3dcM8C63Qbxn27RzGVl4281W7uKTyD-9aUnMr7G1OUystur1qcf4LuhWGOf5OXjrMP46grXb7Wmy7mtXd02N_yADO6SR9pY3E64pPW7QAxTCVjLJtR54Izn4cmHbHT91GQ9jQ2N8m9rPHn5tKf7IrZ4rg-rOFZIB-QY8bXMGCdFW25jWd4I3gfISjPdBjPdsheBFoQlPBedjKefW4dBS4SkyTc3riN6TL0w-2ZfuU3bXkQ2i06f0qe2PUMzQwQn5GBap6Tx70sly_IQ0ZbSFINSbqoKeCMWkjiTwcLCrCgPUhS-OClHSQpQJI6SNItSOJQklpI4lgfDSApApIaQFIHSIqA3Jj5Jfk6GZ-Pjn1bIsQv2ZDf-aIqk7DmLA6UgoUJBn7zIhUVLCQixTirRc2rsgB5iCJOQqVUCWvuUsW1FEUqK_aK7DaLRr0mNE5LGEEmLJIsroVMWVAlXFV6UQR-9hviOQHk300mmNxRJK9zFFeO4soDDm1wdeJklFtf1vioOUDqt_0OnEBzq1VWOaawStFvDN7-47D75FH3Rzogu3fLtXpHdlbV-r1F5Q9CCM-A
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+of+the+effects+of+reformer+gas+composition+on+the+combustion+and+emission+characteristics+of+a+natural+gas%2Fdiesel+RCCI+engine+enriched+with+reformer+gas&rft.jtitle=Fuel+%28Guildford%29&rft.au=Rahnama%2C+Pourya&rft.au=Paykani%2C+Amin&rft.au=Bordbar%2C+Vahid&rft.au=Reitz%2C+Rolf+D.&rft.date=2017-12-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=209&rft.spage=742&rft.epage=753&rft_id=info:doi/10.1016%2Fj.fuel.2017.07.103&rft.externalDocID=S001623611730964X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon