A numerical study of the effects of reformer gas composition on the combustion and emission characteristics of a natural gas/diesel RCCI engine enriched with reformer gas
•Shortened ignition delay and advanced CA50 were obtained with higher CO content.•RI and PRR were increased significantly with increasing CO fraction in the syngas.•By syngas enrichment, CO and NOx declined as the H2 in the mixture increased.•High-H2 mixtures requires intake preheating more than one...
Saved in:
Published in: | Fuel (Guildford) Vol. 209; pp. 742 - 753 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-12-2017
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Shortened ignition delay and advanced CA50 were obtained with higher CO content.•RI and PRR were increased significantly with increasing CO fraction in the syngas.•By syngas enrichment, CO and NOx declined as the H2 in the mixture increased.•High-H2 mixtures requires intake preheating more than ones with low-H2 content.
In natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engines, the large reactivity gradient between the two fuels is beneficial in achieving lower pressure rise rate and peak pressure values at high loads. However, by using natural gas, combustion efficiency and engine performance suffer at low loads due to its lower reactivity and higher ignition delay compared to gasoline. The use of reformer gas (containing H2 and CO), which can be produced onboard by a catalytic fuel reformer integrated within the exhaust pipe, as an additive can improve the combustion process of the engine at low loads since it enhances burning rate and compensates the low reactivity of natural gas. The objective of the present study is to investigate the effect of reformer gas (syngas) composition on the performance and exhaust emissions properties of a natural gas/diesel RCCI engine at low loads numerically, when 3% of intake air is volumetrically replaced by reformer gas. Shortened ignition delay and combustion duration, advanced combustion phasing (CA50), and increased peak pressure rise rate, ringing intensity, and lower combustion efficiency were obtained by the mixture with higher CO content. The results indicated that reformer gas addition could enhance the combustion efficiency and decrease CO emission, however, the mixture with higher hydrogen content requires intake charge preheating more than that with lower hydrogen content and mixture with higher CO content is more sensitive to intake temperature. |
---|---|
AbstractList | In natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engines, the large reactivity gradient between the two fuels is beneficial in achieving lower pressure rise rate and peak pressure values at high loads. However, by using natural gas, combustion efficiency and engine performance suffer at low loads due to its lower reactivity and higher ignition delay compared to gasoline. The use of reformer gas (containing H2 and CO), which can be produced onboard by a catalytic fuel reformer integrated within the exhaust pipe, as an additive can improve the combustion process of the engine at low loads since it enhances burning rate and compensates the low reactivity of natural gas. The objective of the present study is to investigate the effect of reformer gas (syngas) composition on the performance and exhaust emissions properties of a natural gas/diesel RCCI engine at low loads numerically, when 3% of intake air is volumetrically replaced by reformer gas. Shortened ignition delay and combustion duration, advanced combustion phasing (CA50), and increased peak pressure rise rate, ringing intensity, and lower combustion efficiency were obtained by the mixture with higher CO content. The results indicated that reformer gas addition could enhance the combustion efficiency and decrease CO emission, however, the mixture with higher hydrogen content requires intake charge preheating more than that with lower hydrogen content and mixture with higher CO content is more sensitive to intake temperature. •Shortened ignition delay and advanced CA50 were obtained with higher CO content.•RI and PRR were increased significantly with increasing CO fraction in the syngas.•By syngas enrichment, CO and NOx declined as the H2 in the mixture increased.•High-H2 mixtures requires intake preheating more than ones with low-H2 content. In natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engines, the large reactivity gradient between the two fuels is beneficial in achieving lower pressure rise rate and peak pressure values at high loads. However, by using natural gas, combustion efficiency and engine performance suffer at low loads due to its lower reactivity and higher ignition delay compared to gasoline. The use of reformer gas (containing H2 and CO), which can be produced onboard by a catalytic fuel reformer integrated within the exhaust pipe, as an additive can improve the combustion process of the engine at low loads since it enhances burning rate and compensates the low reactivity of natural gas. The objective of the present study is to investigate the effect of reformer gas (syngas) composition on the performance and exhaust emissions properties of a natural gas/diesel RCCI engine at low loads numerically, when 3% of intake air is volumetrically replaced by reformer gas. Shortened ignition delay and combustion duration, advanced combustion phasing (CA50), and increased peak pressure rise rate, ringing intensity, and lower combustion efficiency were obtained by the mixture with higher CO content. The results indicated that reformer gas addition could enhance the combustion efficiency and decrease CO emission, however, the mixture with higher hydrogen content requires intake charge preheating more than that with lower hydrogen content and mixture with higher CO content is more sensitive to intake temperature. |
Author | Rahnama, Pourya Bordbar, Vahid Paykani, Amin Reitz, Rolf D. |
Author_xml | – sequence: 1 givenname: Pourya surname: Rahnama fullname: Rahnama, Pourya email: pouryarahnama@gmail.com, pouryarahnama@alumni.iust.ac.ir organization: Vehicle Powertrain System Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran – sequence: 2 givenname: Amin surname: Paykani fullname: Paykani, Amin email: paykani@lav.mavt.ethz.ch organization: Vehicle Powertrain System Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran – sequence: 3 givenname: Vahid surname: Bordbar fullname: Bordbar, Vahid organization: School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran – sequence: 4 givenname: Rolf D. surname: Reitz fullname: Reitz, Rolf D. organization: Engine Research Center, University of Wisconsin-Madison, Madison, WI, USA |
BookMark | eNp9UcFqGzEUFCWB2k5-ICdBz-tIK-9qF3oxJk0CgUJpz0IrPdkytuRK2gb_Ur-yb-1eeikIxBvNmxk0c3ITYgBCHjhbcsbbx_3SjXBY1ozLJZOIiQ9kxjspKskbcUNmDFlVLVr-kcxz3jPGZNesZuT3mobxCMkbfaC5jPZMo6NlBxScA1PyNCZwMSGJbnWmJh5PMfviY6B4JipCw5gviA6WwtHnPA1mp5M2BdXx0VykNA26jAnNUOvReshwoN82m1cKYesD2gbMsgNL333Z_eN8R26dPmS4_3svyI8vT983L9Xb1-fXzfqtMqKVpeqsabiTYsUAmrbltWjk0HeWdU0NQgrXOWnN0NaiG1YNBwBTC2Zg5XQ39NqKBfl01T2l-HOEXNQ-jimgpeJ92_d13zOGrPrKMinmjDnVKfmjTmfFmZo6UXs1daKmThSTiAlc-nxdAsz_y0NS2XgIBqxP-NnKRv-_9T_8RJp8 |
CitedBy_id | crossref_primary_10_1080_15435075_2018_1529583 crossref_primary_10_1016_j_fuel_2019_116607 crossref_primary_10_1016_j_ijhydene_2022_03_088 crossref_primary_10_1007_s10973_019_08513_0 crossref_primary_10_1016_j_ijhydene_2019_11_222 crossref_primary_10_1016_j_jaecs_2023_100132 crossref_primary_10_1016_j_energy_2023_127341 crossref_primary_10_1016_j_energy_2018_09_064 crossref_primary_10_1016_j_ijhydene_2018_09_077 crossref_primary_10_1155_2022_8239783 crossref_primary_10_1016_j_apenergy_2019_113380 crossref_primary_10_53941_ijamm_2024_100001 crossref_primary_10_1007_s00231_018_2479_z crossref_primary_10_1016_j_fuel_2018_02_062 crossref_primary_10_1016_j_joei_2023_101511 crossref_primary_10_3390_fluids3020024 crossref_primary_10_1016_j_egyai_2023_100266 crossref_primary_10_1016_j_apenergy_2020_116174 crossref_primary_10_1177_09544070231186278 crossref_primary_10_3390_en14102834 crossref_primary_10_1002_ep_13683 crossref_primary_10_1016_j_ijhydene_2022_08_277 crossref_primary_10_1016_j_apenergy_2020_114643 crossref_primary_10_1016_j_applthermaleng_2023_121138 crossref_primary_10_3390_en16073192 crossref_primary_10_1016_j_fuel_2018_07_020 crossref_primary_10_1016_j_energy_2020_119706 crossref_primary_10_1016_j_fuel_2021_121281 crossref_primary_10_1016_j_ijhydene_2019_01_115 crossref_primary_10_1016_j_ijhydene_2020_04_263 crossref_primary_10_3390_en13010212 crossref_primary_10_1016_j_ijhydene_2024_06_255 crossref_primary_10_1016_j_matpr_2021_04_557 crossref_primary_10_1016_j_fuel_2019_116815 crossref_primary_10_1016_j_ijhydene_2019_02_010 crossref_primary_10_1016_j_pecs_2022_100995 crossref_primary_10_1080_01430750_2022_2056914 crossref_primary_10_1016_j_fuel_2020_118454 |
Cites_doi | 10.4271/2015-01-0849 10.4271/2005-01-1091 10.1016/j.enconman.2016.08.023 10.1016/j.enconman.2017.02.073 10.4271/2010-01-1086 10.1016/j.enconman.2016.09.026 10.1016/j.apenergy.2017.05.011 10.1080/00102209508907782 10.1016/j.enconman.2017.01.010 10.1177/1468087415615255 10.1016/j.ijhydene.2015.11.062 10.4271/2017-01-0773 10.1006/jcph.2000.6568 10.1016/j.apenergy.2016.08.038 10.1016/j.apenergy.2017.02.023 10.1177/1468087413516119 10.1016/j.fuel.2015.07.064 10.1615/AtomizSpr.v9.i6.40 10.4271/2005-01-1731 10.3311/PPtr.7756 10.4271/2009-01-2647 10.1016/j.fuel.2016.11.010 10.1080/00102202.2013.858137 10.1016/j.rser.2012.06.012 10.1016/0021-9991(80)90087-X 10.1115/1.4003956 10.4271/2012-01-0379 10.1016/j.apenergy.2016.06.150 10.1016/j.apenergy.2016.04.095 10.1016/j.applthermaleng.2013.10.052 10.1016/j.apenergy.2017.03.078 10.1016/j.pecs.2014.05.003 10.1016/j.apenergy.2015.07.072 10.1016/j.ijhydene.2014.10.068 10.1016/j.apenergy.2016.07.100 10.1016/j.apenergy.2016.04.018 10.1016/j.applthermaleng.2011.08.021 10.4271/2002-01-2859 10.1016/j.enconman.2015.05.041 10.1177/1468087411401548 10.4271/760129 10.1016/j.ijhydene.2012.02.055 10.1016/j.applthermaleng.2016.03.162 10.1016/j.ijhydene.2011.04.192 10.1016/j.rser.2015.04.019 10.4271/2012-01-0135 10.4271/820088 10.1016/j.energy.2015.07.112 10.4271/2015-01-0839 10.1016/j.enconman.2015.07.047 10.1016/j.ijhydene.2012.03.014 10.31224/osf.io/94s8d 10.4271/2014-32-0002 10.1016/j.energy.2015.04.076 10.1016/j.combustflame.2012.11.002 10.4271/930072 10.1002/cjce.22443 10.1016/j.ijhydene.2015.07.098 10.1016/j.fuel.2013.12.021 10.1016/j.fuel.2009.06.030 10.1016/j.enconman.2016.11.019 10.4271/2014-01-1318 10.1016/j.rser.2014.05.080 10.1016/j.fuel.2010.12.026 10.1177/1468087415593013 10.4271/2015-01-0851 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Dec 1, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Dec 1, 2017 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1016/j.fuel.2017.07.103 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7153 |
EndPage | 753 |
ExternalDocumentID | 10_1016_j_fuel_2017_07_103 S001623611730964X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AAXKI AAYXX ABDEX ABEFU ABTAH ABXDB ACNNM ADMUD AFFNX AFJKZ AI. AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c367t-8dc51f7340ee56612357b98d0852e373f8f7dcb6238b451eeec230ce4fa8b9ad3 |
ISSN | 0016-2361 |
IngestDate | Thu Oct 10 18:31:10 EDT 2024 Thu Sep 26 18:55:19 EDT 2024 Fri Feb 23 02:21:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reformer gas Low load Composition Reactivity controlled compression ignition (RCCI) Efficiency Emissions |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c367t-8dc51f7340ee56612357b98d0852e373f8f7dcb6238b451eeec230ce4fa8b9ad3 |
PQID | 1969929900 |
PQPubID | 2045474 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1969929900 crossref_primary_10_1016_j_fuel_2017_07_103 elsevier_sciencedirect_doi_10_1016_j_fuel_2017_07_103 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Law (b0305) 2010 Kavuri, Paz, Kokjohn (b0045) 2016; 127 Mahgoub, Sulaiman, Karim, Hagos (b0220) 2015 Kakaee, Rahnama, Paykani (b0085) 2015; 43 Han, Reitz (b0275) 1995; 106 Lounici, Boussadi, Loubar, Tazerout (b0155) 2014; 39 Kokjohn, Hanson, Splitter, Reitz (b0340) 2009; 2 Shahsavan M, Mack JH. The effect of heavy working fluids on hydrogen combustion. 2017. Hiroyasu H, Kadota T. Models for combustion and formation of nitric oxide and soot in direct injection diesel engines. SAE Technical Paper; 1976. Xu, Yao, Rutland (b0375) 2014 Benajes, García, Monsalve-Serrano, Boronat (b0070) 2017; 136 Kokjohn, Hanson, Splitter, Reitz (b0345) 2011; 12 Bika (b0175) 2010 Smith, Golden, Frenklach, Moriarty, Eiteneer, Goldenberg (b0285) 1999 Fayaz, Saidur, Razali, Anuar, Saleman, Islam (b0150) 2012; 16 Liu, Yang, Wang, Ouyang (b0160) 2012; 37 Paykani, Kakaee, Rahnama, Reitz (b0025) 2015; 90 Rahnama, Paykani, Reitz (b0245) 2017; 193 Palumbo, Sorli, Weimer (b0205) 2015; 157 Poorghasemi, Saray, Ansari, Irdmousa, Shahbakhti, Naber (b0100) 2017; 199 An, Yang, Maghbouli, Li, Chou, Chua (b0320) 2014; 120 Speight (b0355) 2008 Li, Jia, Chang, Kokjohn, Reitz (b0005) 2016; 180 DelVescovo, Kokjohn, Reitz (b0035) 2017; 10 Dempsey (b0380) 2013 Lewis, Von Elbe (b0310) 2012 Liu AB, Mather D, Reitz RD. Modeling the effects of drop drag and breakup on fuel sprays. DTIC Document; 1993. Christodoulou (b0350) 2014 Bika, Franklin, Kittelson (b0230) 2012; 37 Benajes, Pastor, García, Monsalve-Serrano (b0065) 2015; 159 Dahodwala M, Joshi S, Koehler E, Franke M, Tomazic D. Experimental and computational analysis of diesel-natural gas RCCI combustion in heavy-duty engines. SAE Technical Paper; 2015. Azimov, Tomita, Kawahara, Harada (b0235) 2011; 36 Banerjee, Roy, Bose (b0165) 2015; 40 Gamiño, Aguillón (b0315) 2010; 89 Reitz (b0010) 2013; 1 Kakaee, Rahnama, Paykani (b0090) 2014 Eng J. Characterization of pressure waves in HCCI combustion. SAE Technical Paper; 2002. Benajes, García, Monsalve-Serrano, Boronat (b0055) 2017; 140 Kakaee, Nasiri-Toosi, Partovi, Paykani (b0105) 2016; 102 Reitz, Duraisamy (b0115) 2015; 46 Benajes, Pastor, García, Monsalve-Serrano (b0075) 2015; 103 Sahoo, Sahoo, Saha (b0215) 2012; 49 Kakaee, Paykani, Ghajar (b0120) 2014; 38 Dukowicz (b0255) 1980; 35 Garnier C, Bilcan A, Le Corre O, Rahmouni C. Characterisation of a syngas-diesel fuelled CI engine. SAE Technical Paper; 2005. Zoldak, Sobiesiak, Wickman, Bergin (b0140) 2015; 8 Beale, Reitz (b0260) 1999; 9 Chuahy, Kokjohn (b0200) 2017; 195 Bhaduri, Contino, Jeanmart, Breuer (b0225) 2015; 87 Benajes, Pastor, García, Boronat (b0060) 2016; 126 Nobakht, Saray, Rahimi (b0410) 2011; 90 DelVescovo, Wang, Wissink, Reitz (b0050) 2015; 8 Sahoo, Saha, Sahoo (b0240) 2011; 133 Raju M, Wang M, Dai M, Piggott W, Flowers D. Acceleration of detailed chemical kinetics using multi-zone modeling for CFD in internal combustion engine simulations. SAE Technical Paper; 2012. Splitter (b0385) 2012 Mujeebu (b0180) 2016; 173 Doosje E, Willems F, Baert R. Experimental demonstration of RCCI in heavy-duty engines using diesel and natural gas. SAE Technical Paper; 2014. Topinka, Gerty, Heywood, Keck (b0360) 2004 Kavuri, Kokjohn, Klos, Hou (b0040) 2016; 17 Mansor, Abbood, Mohamad (b0335) 2017; 190 Omidvarborna, Kumar, Kim (b0400) 2015; 48 Paykani, Kakaee, Rahnama, Reitz (b0110) 2016; 17 Benajes, Molina, García, Belarte, Vanvolsem (b0020) 2014; 63 Bogarra, Herreros, Tsolakis, York, Millington (b0170) 2016; 180 Wang, Yao, Li, Zhang, Zheng (b0015) 2016; 175 Lim, Dames, Acocella, Needham, Arce, Cohn (b0185) 2016 Yamasaki Y, Kaneko S. Prediction of Ignition and Combustion Development in an HCCI Engine Fueled by Syngas. SAE Technical Paper; 2014. Dempsey, Walker, Gingrich, Reitz (b0030) 2014; 186 Richards, Senecal, Pomraning (b0250) 2014 Salahi, Esfahanian, Gharehghani, Mirsalim (b0095) 2017; 132 Lieuwen, Yang, Yetter (b0370) 2009 Li, Jia, Chang, Fan, Xie, Wang (b0080) 2015; 101 Nieman, Dempsey, Reitz (b0125) 2012; 5 Neshat, Saray, Hosseini (b0210) 2016; 179 Schmidt, Rutland (b0265) 2000; 164 Heywood (b0290) 1988 Dec, Yang (b0390) 2010; 3 Neely GD, Sasaki S, Huang Y, Leet JA, Stewart DW. New diesel emission control strategy to meet US Tier 2 emissions regulations. SAE Technical Paper; 2005. Khairallah HA, Koylu UO. A Computational Study of In-Cylinder NOx Reduction Strategies for a Compression-Ignition Engine Fueled With Diesel/Hydrogen Mixtures. In: ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum: American Society of Mechanical Engineers; 2015. p. V001T08A-VT08A. Pourfallah, Ranjbar (b0190) 2015; 28 Namazian M, Heywood JB. Flow in the piston-cylinder-ring crevices of a spark-ignition engine: effect on hydrocarbon emissions, efficiency and power. SAE Technical Paper; 1982. Gong, Li, Li, Liu (b0325) 2016; 41 Li (10.1016/j.fuel.2017.07.103_b0005) 2016; 180 Schmidt (10.1016/j.fuel.2017.07.103_b0265) 2000; 164 Salahi (10.1016/j.fuel.2017.07.103_b0095) 2017; 132 Dempsey (10.1016/j.fuel.2017.07.103_b0030) 2014; 186 An (10.1016/j.fuel.2017.07.103_b0320) 2014; 120 Reitz (10.1016/j.fuel.2017.07.103_b0010) 2013; 1 Lieuwen (10.1016/j.fuel.2017.07.103_b0370) 2009 Benajes (10.1016/j.fuel.2017.07.103_b0075) 2015; 103 Palumbo (10.1016/j.fuel.2017.07.103_b0205) 2015; 157 Splitter (10.1016/j.fuel.2017.07.103_b0385) 2012 Law (10.1016/j.fuel.2017.07.103_b0305) 2010 Rahnama (10.1016/j.fuel.2017.07.103_b0245) 2017; 193 10.1016/j.fuel.2017.07.103_b0365 10.1016/j.fuel.2017.07.103_b0405 Zoldak (10.1016/j.fuel.2017.07.103_b0140) 2015; 8 Pourfallah (10.1016/j.fuel.2017.07.103_b0190) 2015; 28 Kavuri (10.1016/j.fuel.2017.07.103_b0045) 2016; 127 Fayaz (10.1016/j.fuel.2017.07.103_b0150) 2012; 16 Gamiño (10.1016/j.fuel.2017.07.103_b0315) 2010; 89 Mahgoub (10.1016/j.fuel.2017.07.103_b0220) 2015 Speight (10.1016/j.fuel.2017.07.103_b0355) 2008 Nieman (10.1016/j.fuel.2017.07.103_b0125) 2012; 5 Gong (10.1016/j.fuel.2017.07.103_b0325) 2016; 41 Dempsey (10.1016/j.fuel.2017.07.103_b0380) 2013 10.1016/j.fuel.2017.07.103_b0280 Lewis (10.1016/j.fuel.2017.07.103_b0310) 2012 Christodoulou (10.1016/j.fuel.2017.07.103_b0350) 2014 10.1016/j.fuel.2017.07.103_b0395 Lim (10.1016/j.fuel.2017.07.103_b0185) 2016 DelVescovo (10.1016/j.fuel.2017.07.103_b0035) 2017; 10 Benajes (10.1016/j.fuel.2017.07.103_b0020) 2014; 63 Banerjee (10.1016/j.fuel.2017.07.103_b0165) 2015; 40 Paykani (10.1016/j.fuel.2017.07.103_b0110) 2016; 17 Dec (10.1016/j.fuel.2017.07.103_b0390) 2010; 3 Smith (10.1016/j.fuel.2017.07.103_b0285) 1999 Dukowicz (10.1016/j.fuel.2017.07.103_b0255) 1980; 35 Kavuri (10.1016/j.fuel.2017.07.103_b0040) 2016; 17 Wang (10.1016/j.fuel.2017.07.103_b0015) 2016; 175 Heywood (10.1016/j.fuel.2017.07.103_b0290) 1988 Xu (10.1016/j.fuel.2017.07.103_b0375) 2014 10.1016/j.fuel.2017.07.103_b0195 10.1016/j.fuel.2017.07.103_b0270 Bika (10.1016/j.fuel.2017.07.103_b0175) 2010 Benajes (10.1016/j.fuel.2017.07.103_b0065) 2015; 159 Paykani (10.1016/j.fuel.2017.07.103_b0025) 2015; 90 10.1016/j.fuel.2017.07.103_b0145 Kakaee (10.1016/j.fuel.2017.07.103_b0120) 2014; 38 10.1016/j.fuel.2017.07.103_b0300 Lounici (10.1016/j.fuel.2017.07.103_b0155) 2014; 39 Sahoo (10.1016/j.fuel.2017.07.103_b0215) 2012; 49 Liu (10.1016/j.fuel.2017.07.103_b0160) 2012; 37 Kakaee (10.1016/j.fuel.2017.07.103_b0085) 2015; 43 Poorghasemi (10.1016/j.fuel.2017.07.103_b0100) 2017; 199 Richards (10.1016/j.fuel.2017.07.103_b0250) 2014 Azimov (10.1016/j.fuel.2017.07.103_b0235) 2011; 36 Omidvarborna (10.1016/j.fuel.2017.07.103_b0400) 2015; 48 Bogarra (10.1016/j.fuel.2017.07.103_b0170) 2016; 180 Benajes (10.1016/j.fuel.2017.07.103_b0055) 2017; 140 Sahoo (10.1016/j.fuel.2017.07.103_b0240) 2011; 133 Neshat (10.1016/j.fuel.2017.07.103_b0210) 2016; 179 Benajes (10.1016/j.fuel.2017.07.103_b0060) 2016; 126 Bika (10.1016/j.fuel.2017.07.103_b0230) 2012; 37 Topinka (10.1016/j.fuel.2017.07.103_b0360) 2004 Kakaee (10.1016/j.fuel.2017.07.103_b0090) 2014 10.1016/j.fuel.2017.07.103_b0330 10.1016/j.fuel.2017.07.103_b0130 10.1016/j.fuel.2017.07.103_b0295 Han (10.1016/j.fuel.2017.07.103_b0275) 1995; 106 Chuahy (10.1016/j.fuel.2017.07.103_b0200) 2017; 195 Beale (10.1016/j.fuel.2017.07.103_b0260) 1999; 9 DelVescovo (10.1016/j.fuel.2017.07.103_b0050) 2015; 8 10.1016/j.fuel.2017.07.103_b0135 Nobakht (10.1016/j.fuel.2017.07.103_b0410) 2011; 90 Kakaee (10.1016/j.fuel.2017.07.103_b0105) 2016; 102 Reitz (10.1016/j.fuel.2017.07.103_b0115) 2015; 46 Mansor (10.1016/j.fuel.2017.07.103_b0335) 2017; 190 Mujeebu (10.1016/j.fuel.2017.07.103_b0180) 2016; 173 Benajes (10.1016/j.fuel.2017.07.103_b0070) 2017; 136 Bhaduri (10.1016/j.fuel.2017.07.103_b0225) 2015; 87 Kokjohn (10.1016/j.fuel.2017.07.103_b0340) 2009; 2 Li (10.1016/j.fuel.2017.07.103_b0080) 2015; 101 Kokjohn (10.1016/j.fuel.2017.07.103_b0345) 2011; 12 |
References_xml | – volume: 120 start-page: 186 year: 2014 end-page: 194 ident: b0320 article-title: Numerical investigation on the combustion and emission characteristics of a hydrogen assisted biodiesel combustion in a diesel engine publication-title: Fuel contributor: fullname: Chua – volume: 12 start-page: 209 year: 2011 end-page: 226 ident: b0345 article-title: Fuel Reactivity Controlled Compression Ignition (RCCI): a pathway to controlled high-efficiency clean combustion publication-title: Int J Engine Res contributor: fullname: Reitz – volume: 157 start-page: 13 year: 2015 end-page: 24 ident: b0205 article-title: High temperature thermochemical processing of biomass and methane for high conversion and selectivity to H 2-enriched syngas publication-title: Appl Energy contributor: fullname: Weimer – volume: 46 start-page: 12 year: 2015 end-page: 71 ident: b0115 article-title: Review of high efficiency and clean Reactivity Controlled Compression Ignition (RCCI) combustion in internal combustion engines publication-title: Prog Energy Combust Sci contributor: fullname: Duraisamy – volume: 179 start-page: 463 year: 2016 end-page: 478 ident: b0210 article-title: Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism publication-title: Appl Energy contributor: fullname: Hosseini – volume: 101 start-page: 40 year: 2015 end-page: 51 ident: b0080 article-title: Evaluation of the necessity of exhaust gas recirculation employment for a methanol/diesel Reactivity Controlled Compression Ignition engine operated at medium loads publication-title: Energy Convers Manage contributor: fullname: Wang – volume: 17 start-page: 811 year: 2016 end-page: 824 ident: b0040 article-title: Blending the benefits of Reactivity Controlled Compression Ignition and Gasoline Compression Ignition combustion using an adaptive fuel injection system publication-title: Int J Engine Res contributor: fullname: Hou – volume: 175 start-page: 389 year: 2016 end-page: 402 ident: b0015 article-title: A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads publication-title: Appl Energy contributor: fullname: Zheng – volume: 103 start-page: 1019 year: 2015 end-page: 1030 ident: b0075 article-title: An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine publication-title: Energy Convers Manage contributor: fullname: Monsalve-Serrano – year: 2014 ident: b0250 article-title: CONVERGE (v2. 2.0) contributor: fullname: Pomraning – volume: 8 start-page: 329 year: 2015 end-page: 343 ident: b0050 article-title: Isobutanol as both low reactivity and high reactivity fuels with addition of di-tert butyl peroxide (DTBP) in RCCI combustion publication-title: SAE Int J Fuels Lubricants contributor: fullname: Reitz – volume: 2 start-page: 24 year: 2009 end-page: 39 ident: b0340 article-title: Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending publication-title: SAE Int J Eng contributor: fullname: Reitz – volume: 186 start-page: 210 year: 2014 end-page: 241 ident: b0030 article-title: Comparison of low temperature combustion strategies for advanced compression ignition engines with a focus on controllability publication-title: Combust Sci Technol contributor: fullname: Reitz – volume: 41 start-page: 647 year: 2016 end-page: 655 ident: b0325 article-title: Numerical study on combustion and emission in a DISI methanol engine with hydrogen addition publication-title: Int J Hydrogen Energy contributor: fullname: Liu – volume: 37 start-page: 8688 year: 2012 end-page: 8697 ident: b0160 article-title: Numerical study of hydrogen addition to DME/CH4 dual fuel RCCI engine publication-title: Int J Hydrogen Energy contributor: fullname: Ouyang – volume: 106 start-page: 267 year: 1995 end-page: 295 ident: b0275 article-title: Turbulence modeling of internal combustion engines using RNG κ-ε models publication-title: Combust Sci Technol contributor: fullname: Reitz – volume: 16 start-page: 5511 year: 2012 end-page: 5528 ident: b0150 article-title: An overview of hydrogen as a vehicle fuel publication-title: Renew Sustain Energy Rev contributor: fullname: Islam – year: 2012 ident: b0310 article-title: Combustion, flames and explosions of gases contributor: fullname: Von Elbe – volume: 39 start-page: 21297 year: 2014 end-page: 21306 ident: b0155 article-title: Experimental investigation on NG dual fuel engine improvement by hydrogen enrichment publication-title: Int J Hydrogen Energy contributor: fullname: Tazerout – volume: 35 start-page: 229 year: 1980 end-page: 253 ident: b0255 article-title: A particle-fluid numerical model for liquid sprays publication-title: J Comput Phys contributor: fullname: Dukowicz – year: 2010 ident: b0175 article-title: Synthesis gas use in internal combustion engines contributor: fullname: Bika – volume: 127 start-page: 324 year: 2016 end-page: 341 ident: b0045 article-title: A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions publication-title: Energy Convers Manage contributor: fullname: Kokjohn – volume: 3 start-page: 750 year: 2010 end-page: 767 ident: b0390 article-title: Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline publication-title: SAE Int J Eng contributor: fullname: Yang – volume: 180 start-page: 849 year: 2016 end-page: 858 ident: b0005 article-title: Thermodynamic energy and exergy analysis of three different engine combustion regimes publication-title: Appl Energy contributor: fullname: Reitz – volume: 195 start-page: 503 year: 2017 end-page: 522 ident: b0200 article-title: High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming publication-title: Appl Energy contributor: fullname: Kokjohn – volume: 17 start-page: 481 year: 2016 end-page: 524 ident: b0110 article-title: Progress and recent trends in reactivity-controlled compression ignition engines publication-title: Int J Engine Res contributor: fullname: Reitz – volume: 190 start-page: 281 year: 2017 end-page: 291 ident: b0335 article-title: The influence of varying hydrogen-methane-diesel mixture ratio on the combustion characteristics and emissions of a direct injection diesel engine publication-title: Fuel contributor: fullname: Mohamad – year: 2012 ident: b0385 article-title: High efficiency RCCI combustion contributor: fullname: Splitter – volume: 89 start-page: 581 year: 2010 end-page: 591 ident: b0315 article-title: Numerical simulation of syngas combustion with a multi-spark ignition system in a diesel engine adapted to work at the Otto cycle publication-title: Fuel contributor: fullname: Aguillón – volume: 136 start-page: 142 year: 2017 end-page: 151 ident: b0070 article-title: Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies publication-title: Energy Convers Manage contributor: fullname: Boronat – volume: 28 start-page: 1239 year: 2015 end-page: 1246 ident: b0190 article-title: Studying the effect of reformer gas and exhaust gas recirculation on homogeneous charge compression ignition engine operation publication-title: Int J Eng Trans B contributor: fullname: Ranjbar – volume: 37 start-page: 9402 year: 2012 end-page: 9411 ident: b0230 article-title: Homogeneous charge compression ignition engine operating on synthesis gas publication-title: Int J Hydrogen Energy contributor: fullname: Kittelson – volume: 173 start-page: 210 year: 2016 end-page: 224 ident: b0180 article-title: Hydrogen and syngas production by superadiabatic combustion–a review publication-title: Appl Energy contributor: fullname: Mujeebu – volume: 36 start-page: 11985 year: 2011 end-page: 11996 ident: b0235 article-title: Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode publication-title: Int J Hydrogen Energy contributor: fullname: Harada – volume: 90 start-page: 1508 year: 2011 end-page: 1514 ident: b0410 article-title: A parametric study on natural gas fueled HCCI combustion engine using a multi-zone combustion model publication-title: Fuel contributor: fullname: Rahimi – year: 2008 ident: b0355 article-title: Synthetic fuels handbook: properties, process and performance contributor: fullname: Speight – volume: 43 start-page: 177 year: 2015 ident: b0085 article-title: CFD study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine publication-title: Periodica Polytech Transp Eng contributor: fullname: Paykani – volume: 40 start-page: 12824 year: 2015 end-page: 12847 ident: b0165 article-title: Hydrogen-EGR synergy as a promising pathway to meet the PM–NO x–BSFC trade-off contingencies of the diesel engine: a comprehensive review publication-title: Int J Hydrogen Energy contributor: fullname: Bose – volume: 164 start-page: 62 year: 2000 end-page: 80 ident: b0265 article-title: A new droplet collision algorithm publication-title: J Comput Phys contributor: fullname: Rutland – volume: 63 start-page: 66 year: 2014 end-page: 76 ident: b0020 article-title: An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels publication-title: Appl Therm Eng contributor: fullname: Vanvolsem – volume: 159 start-page: 952 year: 2015 end-page: 961 ident: b0065 article-title: The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map publication-title: Fuel contributor: fullname: Monsalve-Serrano – volume: 199 start-page: 430 year: 2017 end-page: 446 ident: b0100 article-title: Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine publication-title: Appl Energy contributor: fullname: Naber – year: 2016 ident: b0185 article-title: The engine reformer: syngas production in an engine for compact gas-to-liquids synthesis publication-title: Can J Chem Eng contributor: fullname: Cohn – year: 2015 ident: b0220 article-title: Experimental study on the effect of varying syngas composition on the emissions of dual fuel CI engine operating at various engine speeds publication-title: IOP conference series: materials science and engineering contributor: fullname: Hagos – volume: 8 start-page: 846 year: 2015 end-page: 858 ident: b0140 article-title: Combustion simulation of dual fuel CNG engine using direct injection of natural gas and diesel publication-title: SAE Int J Eng contributor: fullname: Bergin – year: 2013 ident: b0380 article-title: Dual-fuel Reactivity Controlled Compression Ignition (RCCI) with alternative fuels contributor: fullname: Dempsey – volume: 1 start-page: 1 year: 2013 end-page: 8 ident: b0010 article-title: Directions in internal combustion engine research publication-title: Combust Flame contributor: fullname: Reitz – year: 2004 ident: b0360 article-title: Knock behavior of a lean-burn, H2 and CO enhanced contributor: fullname: Keck – year: 2014 ident: b0090 article-title: Numerical study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine using 3D-CFD coupled with chemical kinetics publication-title: Int J Auto Eng contributor: fullname: Paykani – year: 1999 ident: b0285 article-title: GRI 3.0 mechanism, version 3.0 contributor: fullname: Goldenberg – year: 1988 ident: b0290 article-title: Internal combustion engine fundamentals contributor: fullname: Heywood – volume: 87 start-page: 289 year: 2015 end-page: 302 ident: b0225 article-title: The effects of biomass syngas composition, moisture, tar loading and operating conditions on the combustion of a tar-tolerant HCCI (Homogeneous Charge Compression Ignition) engine publication-title: Energy contributor: fullname: Breuer – volume: 193 start-page: 182 year: 2017 end-page: 198 ident: b0245 article-title: A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine publication-title: Appl Energy contributor: fullname: Reitz – volume: 140 start-page: 98 year: 2017 end-page: 108 ident: b0055 article-title: An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining RCCI and dual-fuel diesel-gasoline publication-title: Energy Convers Manage contributor: fullname: Boronat – year: 2009 ident: b0370 article-title: Synthesis gas combustion: fundamentals and applications publication-title: CRC Press contributor: fullname: Yetter – volume: 49 start-page: 139 year: 2012 end-page: 146 ident: b0215 article-title: Effect of H 2: CO ratio in syngas on the performance of a dual fuel diesel engine operation publication-title: Appl Therm Eng contributor: fullname: Saha – volume: 38 start-page: 64 year: 2014 end-page: 78 ident: b0120 article-title: The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines publication-title: Renew Sustain Energy Rev contributor: fullname: Ghajar – volume: 9 start-page: 623 year: 1999 end-page: 650 ident: b0260 article-title: Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model publication-title: Atomization Sprays contributor: fullname: Reitz – volume: 48 start-page: 635 year: 2015 end-page: 647 ident: b0400 article-title: Recent studies on soot modeling for diesel combustion publication-title: Renew Sustain Energy Rev contributor: fullname: Kim – year: 2014 ident: b0375 article-title: Simulations of diesel-methanol dual-fuel engine combustion with large eddy simulation and Reynolds-averaged Navier-Stokes model publication-title: Int J Engine Res contributor: fullname: Rutland – volume: 90 start-page: 814 year: 2015 end-page: 826 ident: b0025 article-title: Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion publication-title: Energy contributor: fullname: Reitz – volume: 5 start-page: 270 year: 2012 end-page: 285 ident: b0125 article-title: Heavy-duty RCCI operation using natural gas and diesel publication-title: SAE Int J Eng contributor: fullname: Reitz – year: 2014 ident: b0350 article-title: Hydrogen, nitrogen and syngas enriched diesel combustion contributor: fullname: Christodoulou – volume: 10 year: 2017 ident: b0035 article-title: The Effects of charge preparation, fuel stratification, and premixed fuel chemistry on Reactivity Controlled Compression Ignition (RCCI) combustion publication-title: SAE Int J Engines contributor: fullname: Reitz – volume: 126 start-page: 497 year: 2016 end-page: 508 ident: b0060 article-title: A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio publication-title: Energy Convers Manage contributor: fullname: Boronat – year: 2010 ident: b0305 article-title: Combustion physics contributor: fullname: Law – volume: 180 start-page: 245 year: 2016 end-page: 255 ident: b0170 article-title: Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming publication-title: Appl Energy contributor: fullname: Millington – volume: 132 start-page: 40 year: 2017 end-page: 53 ident: b0095 article-title: Investigating the Reactivity Controlled Compression Ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber publication-title: Energy Convers Manage contributor: fullname: Mirsalim – volume: 133 start-page: 122802 year: 2011 ident: b0240 article-title: Effect of load level on the performance of a dual fuel compression ignition engine operating on syngas fuels with varying h2/co content publication-title: J Eng Gas Turbines Power contributor: fullname: Sahoo – volume: 102 start-page: 1462 year: 2016 end-page: 1472 ident: b0105 article-title: Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine publication-title: Appl Therm Eng contributor: fullname: Paykani – ident: 10.1016/j.fuel.2017.07.103_b0130 doi: 10.4271/2015-01-0849 – year: 2013 ident: 10.1016/j.fuel.2017.07.103_b0380 contributor: fullname: Dempsey – ident: 10.1016/j.fuel.2017.07.103_b0405 doi: 10.4271/2005-01-1091 – volume: 126 start-page: 497 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0060 article-title: A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.08.023 contributor: fullname: Benajes – year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0220 article-title: Experimental study on the effect of varying syngas composition on the emissions of dual fuel CI engine operating at various engine speeds contributor: fullname: Mahgoub – year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0090 article-title: Numerical study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine using 3D-CFD coupled with chemical kinetics publication-title: Int J Auto Eng contributor: fullname: Kakaee – volume: 28 start-page: 1239 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0190 article-title: Studying the effect of reformer gas and exhaust gas recirculation on homogeneous charge compression ignition engine operation publication-title: Int J Eng Trans B contributor: fullname: Pourfallah – volume: 140 start-page: 98 year: 2017 ident: 10.1016/j.fuel.2017.07.103_b0055 article-title: An investigation on the particulate number and size distributions over the whole engine map from an optimized combustion strategy combining RCCI and dual-fuel diesel-gasoline publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.02.073 contributor: fullname: Benajes – volume: 3 start-page: 750 year: 2010 ident: 10.1016/j.fuel.2017.07.103_b0390 article-title: Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline publication-title: SAE Int J Eng doi: 10.4271/2010-01-1086 contributor: fullname: Dec – volume: 127 start-page: 324 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0045 article-title: A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.09.026 contributor: fullname: Kavuri – volume: 199 start-page: 430 year: 2017 ident: 10.1016/j.fuel.2017.07.103_b0100 article-title: Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.011 contributor: fullname: Poorghasemi – volume: 106 start-page: 267 year: 1995 ident: 10.1016/j.fuel.2017.07.103_b0275 article-title: Turbulence modeling of internal combustion engines using RNG κ-ε models publication-title: Combust Sci Technol doi: 10.1080/00102209508907782 contributor: fullname: Han – volume: 136 start-page: 142 year: 2017 ident: 10.1016/j.fuel.2017.07.103_b0070 article-title: Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.01.010 contributor: fullname: Benajes – volume: 17 start-page: 811 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0040 article-title: Blending the benefits of Reactivity Controlled Compression Ignition and Gasoline Compression Ignition combustion using an adaptive fuel injection system publication-title: Int J Engine Res doi: 10.1177/1468087415615255 contributor: fullname: Kavuri – volume: 41 start-page: 647 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0325 article-title: Numerical study on combustion and emission in a DISI methanol engine with hydrogen addition publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.11.062 contributor: fullname: Gong – volume: 10 year: 2017 ident: 10.1016/j.fuel.2017.07.103_b0035 article-title: The Effects of charge preparation, fuel stratification, and premixed fuel chemistry on Reactivity Controlled Compression Ignition (RCCI) combustion publication-title: SAE Int J Engines doi: 10.4271/2017-01-0773 contributor: fullname: DelVescovo – volume: 164 start-page: 62 year: 2000 ident: 10.1016/j.fuel.2017.07.103_b0265 article-title: A new droplet collision algorithm publication-title: J Comput Phys doi: 10.1006/jcph.2000.6568 contributor: fullname: Schmidt – volume: 180 start-page: 849 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0005 article-title: Thermodynamic energy and exergy analysis of three different engine combustion regimes publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.038 contributor: fullname: Li – volume: 193 start-page: 182 year: 2017 ident: 10.1016/j.fuel.2017.07.103_b0245 article-title: A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.02.023 contributor: fullname: Rahnama – year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0375 article-title: Simulations of diesel-methanol dual-fuel engine combustion with large eddy simulation and Reynolds-averaged Navier-Stokes model publication-title: Int J Engine Res doi: 10.1177/1468087413516119 contributor: fullname: Xu – volume: 159 start-page: 952 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0065 article-title: The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map publication-title: Fuel doi: 10.1016/j.fuel.2015.07.064 contributor: fullname: Benajes – year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0250 contributor: fullname: Richards – year: 1988 ident: 10.1016/j.fuel.2017.07.103_b0290 contributor: fullname: Heywood – volume: 9 start-page: 623 year: 1999 ident: 10.1016/j.fuel.2017.07.103_b0260 article-title: Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model publication-title: Atomization Sprays doi: 10.1615/AtomizSpr.v9.i6.40 contributor: fullname: Beale – year: 2012 ident: 10.1016/j.fuel.2017.07.103_b0385 contributor: fullname: Splitter – ident: 10.1016/j.fuel.2017.07.103_b0365 doi: 10.4271/2005-01-1731 – volume: 43 start-page: 177 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0085 article-title: CFD study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine publication-title: Periodica Polytech Transp Eng doi: 10.3311/PPtr.7756 contributor: fullname: Kakaee – volume: 2 start-page: 24 year: 2009 ident: 10.1016/j.fuel.2017.07.103_b0340 article-title: Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending publication-title: SAE Int J Eng doi: 10.4271/2009-01-2647 contributor: fullname: Kokjohn – volume: 190 start-page: 281 year: 2017 ident: 10.1016/j.fuel.2017.07.103_b0335 article-title: The influence of varying hydrogen-methane-diesel mixture ratio on the combustion characteristics and emissions of a direct injection diesel engine publication-title: Fuel doi: 10.1016/j.fuel.2016.11.010 contributor: fullname: Mansor – year: 2010 ident: 10.1016/j.fuel.2017.07.103_b0305 contributor: fullname: Law – volume: 186 start-page: 210 year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0030 article-title: Comparison of low temperature combustion strategies for advanced compression ignition engines with a focus on controllability publication-title: Combust Sci Technol doi: 10.1080/00102202.2013.858137 contributor: fullname: Dempsey – year: 1999 ident: 10.1016/j.fuel.2017.07.103_b0285 contributor: fullname: Smith – volume: 16 start-page: 5511 year: 2012 ident: 10.1016/j.fuel.2017.07.103_b0150 article-title: An overview of hydrogen as a vehicle fuel publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.06.012 contributor: fullname: Fayaz – volume: 35 start-page: 229 year: 1980 ident: 10.1016/j.fuel.2017.07.103_b0255 article-title: A particle-fluid numerical model for liquid sprays publication-title: J Comput Phys doi: 10.1016/0021-9991(80)90087-X contributor: fullname: Dukowicz – year: 2010 ident: 10.1016/j.fuel.2017.07.103_b0175 contributor: fullname: Bika – volume: 133 start-page: 122802 year: 2011 ident: 10.1016/j.fuel.2017.07.103_b0240 article-title: Effect of load level on the performance of a dual fuel compression ignition engine operating on syngas fuels with varying h2/co content publication-title: J Eng Gas Turbines Power doi: 10.1115/1.4003956 contributor: fullname: Sahoo – volume: 5 start-page: 270 year: 2012 ident: 10.1016/j.fuel.2017.07.103_b0125 article-title: Heavy-duty RCCI operation using natural gas and diesel publication-title: SAE Int J Eng doi: 10.4271/2012-01-0379 contributor: fullname: Nieman – volume: 179 start-page: 463 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0210 article-title: Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.150 contributor: fullname: Neshat – volume: 175 start-page: 389 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0015 article-title: A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.04.095 contributor: fullname: Wang – volume: 63 start-page: 66 year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0020 article-title: An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.10.052 contributor: fullname: Benajes – volume: 195 start-page: 503 year: 2017 ident: 10.1016/j.fuel.2017.07.103_b0200 article-title: High efficiency dual-fuel combustion through thermochemical recovery and diesel reforming publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.078 contributor: fullname: Chuahy – volume: 46 start-page: 12 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0115 article-title: Review of high efficiency and clean Reactivity Controlled Compression Ignition (RCCI) combustion in internal combustion engines publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2014.05.003 contributor: fullname: Reitz – volume: 157 start-page: 13 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0205 article-title: High temperature thermochemical processing of biomass and methane for high conversion and selectivity to H 2-enriched syngas publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.07.072 contributor: fullname: Palumbo – volume: 39 start-page: 21297 year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0155 article-title: Experimental investigation on NG dual fuel engine improvement by hydrogen enrichment publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.10.068 contributor: fullname: Lounici – volume: 180 start-page: 245 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0170 article-title: Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.100 contributor: fullname: Bogarra – volume: 173 start-page: 210 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0180 article-title: Hydrogen and syngas production by superadiabatic combustion–a review publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.04.018 contributor: fullname: Mujeebu – volume: 49 start-page: 139 year: 2012 ident: 10.1016/j.fuel.2017.07.103_b0215 article-title: Effect of H 2: CO ratio in syngas on the performance of a dual fuel diesel engine operation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.08.021 contributor: fullname: Sahoo – ident: 10.1016/j.fuel.2017.07.103_b0395 doi: 10.4271/2002-01-2859 – volume: 101 start-page: 40 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0080 article-title: Evaluation of the necessity of exhaust gas recirculation employment for a methanol/diesel Reactivity Controlled Compression Ignition engine operated at medium loads publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.05.041 contributor: fullname: Li – volume: 12 start-page: 209 year: 2011 ident: 10.1016/j.fuel.2017.07.103_b0345 article-title: Fuel Reactivity Controlled Compression Ignition (RCCI): a pathway to controlled high-efficiency clean combustion publication-title: Int J Engine Res doi: 10.1177/1468087411401548 contributor: fullname: Kokjohn – ident: 10.1016/j.fuel.2017.07.103_b0295 doi: 10.4271/760129 – year: 2012 ident: 10.1016/j.fuel.2017.07.103_b0310 contributor: fullname: Lewis – volume: 37 start-page: 8688 year: 2012 ident: 10.1016/j.fuel.2017.07.103_b0160 article-title: Numerical study of hydrogen addition to DME/CH4 dual fuel RCCI engine publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.055 contributor: fullname: Liu – ident: 10.1016/j.fuel.2017.07.103_b0330 – volume: 102 start-page: 1462 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0105 article-title: Effects of piston bowl geometry on combustion and emissions characteristics of a natural gas/diesel RCCI engine publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.03.162 contributor: fullname: Kakaee – volume: 36 start-page: 11985 year: 2011 ident: 10.1016/j.fuel.2017.07.103_b0235 article-title: Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.04.192 contributor: fullname: Azimov – year: 2008 ident: 10.1016/j.fuel.2017.07.103_b0355 contributor: fullname: Speight – volume: 48 start-page: 635 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0400 article-title: Recent studies on soot modeling for diesel combustion publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.04.019 contributor: fullname: Omidvarborna – ident: 10.1016/j.fuel.2017.07.103_b0280 doi: 10.4271/2012-01-0135 – ident: 10.1016/j.fuel.2017.07.103_b0300 doi: 10.4271/820088 – volume: 90 start-page: 814 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0025 article-title: Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion publication-title: Energy doi: 10.1016/j.energy.2015.07.112 contributor: fullname: Paykani – volume: 8 start-page: 329 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0050 article-title: Isobutanol as both low reactivity and high reactivity fuels with addition of di-tert butyl peroxide (DTBP) in RCCI combustion publication-title: SAE Int J Fuels Lubricants doi: 10.4271/2015-01-0839 contributor: fullname: DelVescovo – volume: 103 start-page: 1019 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0075 article-title: An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.07.047 contributor: fullname: Benajes – volume: 37 start-page: 9402 year: 2012 ident: 10.1016/j.fuel.2017.07.103_b0230 article-title: Homogeneous charge compression ignition engine operating on synthesis gas publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.03.014 contributor: fullname: Bika – ident: 10.1016/j.fuel.2017.07.103_b0145 doi: 10.31224/osf.io/94s8d – year: 2009 ident: 10.1016/j.fuel.2017.07.103_b0370 article-title: Synthesis gas combustion: fundamentals and applications publication-title: CRC Press contributor: fullname: Lieuwen – ident: 10.1016/j.fuel.2017.07.103_b0195 doi: 10.4271/2014-32-0002 – volume: 87 start-page: 289 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0225 article-title: The effects of biomass syngas composition, moisture, tar loading and operating conditions on the combustion of a tar-tolerant HCCI (Homogeneous Charge Compression Ignition) engine publication-title: Energy doi: 10.1016/j.energy.2015.04.076 contributor: fullname: Bhaduri – volume: 1 start-page: 1 year: 2013 ident: 10.1016/j.fuel.2017.07.103_b0010 article-title: Directions in internal combustion engine research publication-title: Combust Flame doi: 10.1016/j.combustflame.2012.11.002 contributor: fullname: Reitz – ident: 10.1016/j.fuel.2017.07.103_b0270 doi: 10.4271/930072 – year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0185 article-title: The engine reformer: syngas production in an engine for compact gas-to-liquids synthesis publication-title: Can J Chem Eng doi: 10.1002/cjce.22443 contributor: fullname: Lim – volume: 40 start-page: 12824 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0165 article-title: Hydrogen-EGR synergy as a promising pathway to meet the PM–NO x–BSFC trade-off contingencies of the diesel engine: a comprehensive review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.07.098 contributor: fullname: Banerjee – volume: 120 start-page: 186 year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0320 article-title: Numerical investigation on the combustion and emission characteristics of a hydrogen assisted biodiesel combustion in a diesel engine publication-title: Fuel doi: 10.1016/j.fuel.2013.12.021 contributor: fullname: An – volume: 89 start-page: 581 year: 2010 ident: 10.1016/j.fuel.2017.07.103_b0315 article-title: Numerical simulation of syngas combustion with a multi-spark ignition system in a diesel engine adapted to work at the Otto cycle publication-title: Fuel doi: 10.1016/j.fuel.2009.06.030 contributor: fullname: Gamiño – year: 2004 ident: 10.1016/j.fuel.2017.07.103_b0360 contributor: fullname: Topinka – volume: 132 start-page: 40 year: 2017 ident: 10.1016/j.fuel.2017.07.103_b0095 article-title: Investigating the Reactivity Controlled Compression Ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.11.019 contributor: fullname: Salahi – ident: 10.1016/j.fuel.2017.07.103_b0135 doi: 10.4271/2014-01-1318 – volume: 38 start-page: 64 year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0120 article-title: The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.05.080 contributor: fullname: Kakaee – volume: 90 start-page: 1508 year: 2011 ident: 10.1016/j.fuel.2017.07.103_b0410 article-title: A parametric study on natural gas fueled HCCI combustion engine using a multi-zone combustion model publication-title: Fuel doi: 10.1016/j.fuel.2010.12.026 contributor: fullname: Nobakht – volume: 17 start-page: 481 year: 2016 ident: 10.1016/j.fuel.2017.07.103_b0110 article-title: Progress and recent trends in reactivity-controlled compression ignition engines publication-title: Int J Engine Res doi: 10.1177/1468087415593013 contributor: fullname: Paykani – year: 2014 ident: 10.1016/j.fuel.2017.07.103_b0350 contributor: fullname: Christodoulou – volume: 8 start-page: 846 year: 2015 ident: 10.1016/j.fuel.2017.07.103_b0140 article-title: Combustion simulation of dual fuel CNG engine using direct injection of natural gas and diesel publication-title: SAE Int J Eng doi: 10.4271/2015-01-0851 contributor: fullname: Zoldak |
SSID | ssj0007854 |
Score | 2.4856272 |
Snippet | •Shortened ignition delay and advanced CA50 were obtained with higher CO content.•RI and PRR were increased significantly with increasing CO fraction in the... In natural gas/diesel Reactivity Controlled Compression Ignition (RCCI) engines, the large reactivity gradient between the two fuels is beneficial in achieving... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 742 |
SubjectTerms | Burning Burning rate Catalysis Combustion Combustion efficiency Combustion products Composition Composition effects Compression Delay Diesel Diesel engines Efficiency Emissions Exhaust emissions Exhaust gases Exhaust pipes Gas composition Gasoline Heating Hydrogen storage Ignition Loads (forces) Low load Natural gas Natural gas industry Numerical analysis Peak pressure Pressure Reactivity Reactivity controlled compression ignition (RCCI) Reformer gas Synthetic fuels Temperature |
Title | A numerical study of the effects of reformer gas composition on the combustion and emission characteristics of a natural gas/diesel RCCI engine enriched with reformer gas |
URI | https://dx.doi.org/10.1016/j.fuel.2017.07.103 https://www.proquest.com/docview/1969929900 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6l7QUOiKeAFrQHbpaL7bWz66NJE7UcUJUWlJu1ttd9pQ5KmkP_Un8lM_uwnSAQICFFjrPy7lqeLzOz629mCPkQlZiGbMh8UQTCj-tQ-mDXh35RovPKiqTQ4WLHZ_zLTByN4_Fg4ApddG3_VdLQBrLGyNm_kHY7KDTAOcgcjiB1OP6R3DOvWZu3MHOTO9axAHrMDbCK4KqqpXchV5pUbplb9s0BNhVY5csylbEkHG6qYZTwRnZnHVupU4PCZBcYGjZBUqKae9PR6MRTOtchfC2Rb2pp7v25-57xZA3dcM8C63Qbxn27RzGVl4281W7uKTyD-9aUnMr7G1OUystur1qcf4LuhWGOf5OXjrMP46grXb7Wmy7mtXd02N_yADO6SR9pY3E64pPW7QAxTCVjLJtR54Izn4cmHbHT91GQ9jQ2N8m9rPHn5tKf7IrZ4rg-rOFZIB-QY8bXMGCdFW25jWd4I3gfISjPdBjPdsheBFoQlPBedjKefW4dBS4SkyTc3riN6TL0w-2ZfuU3bXkQ2i06f0qe2PUMzQwQn5GBap6Tx70sly_IQ0ZbSFINSbqoKeCMWkjiTwcLCrCgPUhS-OClHSQpQJI6SNItSOJQklpI4lgfDSApApIaQFIHSIqA3Jj5Jfk6GZ-Pjn1bIsQv2ZDf-aIqk7DmLA6UgoUJBn7zIhUVLCQixTirRc2rsgB5iCJOQqVUCWvuUsW1FEUqK_aK7DaLRr0mNE5LGEEmLJIsroVMWVAlXFV6UQR-9hviOQHk300mmNxRJK9zFFeO4soDDm1wdeJklFtf1vioOUDqt_0OnEBzq1VWOaawStFvDN7-47D75FH3Rzogu3fLtXpHdlbV-r1F5Q9CCM-A |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+of+the+effects+of+reformer+gas+composition+on+the+combustion+and+emission+characteristics+of+a+natural+gas%2Fdiesel+RCCI+engine+enriched+with+reformer+gas&rft.jtitle=Fuel+%28Guildford%29&rft.au=Rahnama%2C+Pourya&rft.au=Paykani%2C+Amin&rft.au=Bordbar%2C+Vahid&rft.au=Reitz%2C+Rolf+D.&rft.date=2017-12-01&rft.pub=Elsevier+Ltd&rft.issn=0016-2361&rft.eissn=1873-7153&rft.volume=209&rft.spage=742&rft.epage=753&rft_id=info:doi/10.1016%2Fj.fuel.2017.07.103&rft.externalDocID=S001623611730964X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |