Improved Matching Algorithm with Anchor Argument for Rotate Target Detection
Convolutional neural networks (CNNs) have been widely used in the task of object detection in remote sensing. Remote sensing targets can have arbitrary angles, and many anchor-base methods use a lot of anchors with different angles which cause efficiency and precision problems. To solve the problem...
Saved in:
Published in: | Applied sciences Vol. 12; no. 22; p. 11534 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-11-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Convolutional neural networks (CNNs) have been widely used in the task of object detection in remote sensing. Remote sensing targets can have arbitrary angles, and many anchor-base methods use a lot of anchors with different angles which cause efficiency and precision problems. To solve the problem caused by too many anchors, this paper presents a novel matching algorithm in the matching stage of the rotating anchor and object, which determines a more accurate rotating region of interests (RRoIs) for target regression using the copies set for each oriented anchor. It makes use of the high recall rate brought by a large number of anchor boxes with different angles and avoids the computation brought by a large number of anchor boxes. We use the remote sensing datasets DOTA and HRSC2016 with rotation bounding boxes to evaluate our improved algorithm on Rotation RetinaNet and compare it with it. For the targets of high aspect ratios, such as large vehicles and ships, our method is superior to Rotation RetinaNet and achieves a better performance. |
---|---|
AbstractList | Convolutional neural networks (CNNs) have been widely used in the task of object detection in remote sensing. Remote sensing targets can have arbitrary angles, and many anchor-base methods use a lot of anchors with different angles which cause efficiency and precision problems. To solve the problem caused by too many anchors, this paper presents a novel matching algorithm in the matching stage of the rotating anchor and object, which determines a more accurate rotating region of interests (RRoIs) for target regression using the copies set for each oriented anchor. It makes use of the high recall rate brought by a large number of anchor boxes with different angles and avoids the computation brought by a large number of anchor boxes. We use the remote sensing datasets DOTA and HRSC2016 with rotation bounding boxes to evaluate our improved algorithm on Rotation RetinaNet and compare it with it. For the targets of high aspect ratios, such as large vehicles and ships, our method is superior to Rotation RetinaNet and achieves a better performance. |
Author | Chen, Bowen Li, Yunsong Wu, Xianyun Wang, Kangkang |
Author_xml | – sequence: 1 givenname: Kangkang surname: Wang fullname: Wang, Kangkang – sequence: 2 givenname: Bowen surname: Chen fullname: Chen, Bowen – sequence: 3 givenname: Xianyun orcidid: 0000-0002-4450-3801 surname: Wu fullname: Wu, Xianyun – sequence: 4 givenname: Yunsong surname: Li fullname: Li, Yunsong |
BookMark | eNpNUMtOwzAQtFCRKNAbHxCJKwG_YsfHqLwqFSGh3i3HWaepmrg4Loi_x1CEuofd2dVoZjXnaDL4ARC6IviWMYXvzG5HKKWEFIyfoCnFUuSMEzk5wmdoNo4bnEoRVhI8RctFvwv-A5rsxUS77oY2q7atD11c99ln6lk12LUPWRXafQ9DzFxa3nw0EbKVCS3E7B4i2Nj54RKdOrMdYfY3L9Dq8WE1f86Xr0-LebXMLRMy5oJhaFzhAADXrKk5FbWUitPCMieJYoVqVFEaEAZkaWpTciEkU04UUhSOXaDFQbbxZqN3oetN-NLedPr34EOrTYid3YIuFQNgILiVlDtRGgO0oIYqbKXktEla1wetlML7HsaoN34fhvS9psmSU6wETqybA8sGP44B3L8rwfonfX2cPvsGC8Z39Q |
CitedBy_id | crossref_primary_10_1016_j_compag_2023_108232 crossref_primary_10_1038_s41598_024_51865_3 |
Cites_doi | 10.1609/aaai.v31i1.11196 10.1609/aaai.v35i3.16336 10.1109/CVPR.2019.00296 10.1109/ACCESS.2019.2956569 10.1109/TMM.2018.2818020 10.1109/TPAMI.2016.2577031 10.1016/j.ymssp.2022.109422 10.3390/agriculture12060793 10.1109/TIP.2018.2825107 10.1016/j.ins.2022.08.115 10.1109/CVPR46437.2021.01558 10.1109/JSTARS.2021.3059451 10.1109/CVPR.2018.00619 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app122211534 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_893ee3e64c724f68aae252a290c7742d 10_3390_app122211534 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARAPS ARCSS ATCPS BBNVY BCNDV BENPR BHPHI BKSAR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ HCIFZ IAO ITC K6- K6V K7- KB. KC. KQ8 L6V LK5 LK8 M0K M7P M7R M7S MODMG M~E N95 OK1 P62 PATMY PCBAR PDBOC PIMPY PROAC PYCSY RIG TUS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c367t-630edf5feee0b3db426b779425c3f719359d958ae6ae78aba8466739f65765f3 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Nov 13 08:22:41 EST 2024 Mon Nov 04 11:26:08 EST 2024 Wed Aug 14 12:34:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-630edf5feee0b3db426b779425c3f719359d958ae6ae78aba8466739f65765f3 |
ORCID | 0000-0002-4450-3801 |
OpenAccessLink | https://doaj.org/article/893ee3e64c724f68aae252a290c7742d |
PQID | 2739420960 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_893ee3e64c724f68aae252a290c7742d proquest_journals_2739420960 crossref_primary_10_3390_app122211534 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liao (ref_6) 2018; 27 ref_14 ref_10 Chen (ref_15) 2021; 14 Ren (ref_1) 2016; 39 Ren (ref_17) 2023; 184 ref_2 Lu (ref_12) 2020; 19 ref_9 ref_8 Lu (ref_11) 2020; 19 Deng (ref_16) 2022; 612 ref_5 Ma (ref_3) 2018; 20 ref_4 ref_7 Wang (ref_13) 2019; 7 |
References_xml | – ident: ref_7 doi: 10.1609/aaai.v31i1.11196 – volume: 19 start-page: 7000105 year: 2020 ident: ref_11 article-title: Robust Infrared Small Target Detection via Multidirectional Derivative-Based Weighted Contrast Measure publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Lu – ident: ref_2 – ident: ref_5 doi: 10.1609/aaai.v35i3.16336 – volume: 19 start-page: 7000405 year: 2020 ident: ref_12 article-title: Infrared Small Target Detection Based on Local Hypergraph Dissimilarity Measure publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Lu – ident: ref_9 doi: 10.1109/CVPR.2019.00296 – ident: ref_10 – volume: 7 start-page: 173855 year: 2019 ident: ref_13 article-title: SARD: Towards Scale-Aware Rotated Object Detection in Aerial Imagery publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956569 contributor: fullname: Wang – volume: 20 start-page: 3111 year: 2018 ident: ref_3 article-title: Arbitrary-oriented scene text detection via rotation proposals publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2818020 contributor: fullname: Ma – volume: 39 start-page: 1137 year: 2016 ident: ref_1 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 contributor: fullname: Ren – volume: 184 start-page: 109422 year: 2023 ident: ref_17 article-title: Data-driven simultaneous identification of the 6DOF dynamic model and wave load for a ship in waves publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109422 contributor: fullname: Ren – ident: ref_14 doi: 10.3390/agriculture12060793 – volume: 27 start-page: 3676 year: 2018 ident: ref_6 article-title: Textboxes++: A single-shot oriented scene text detector publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2825107 contributor: fullname: Liao – volume: 612 start-page: 576 year: 2022 ident: ref_16 article-title: Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.08.115 contributor: fullname: Deng – ident: ref_4 doi: 10.1109/CVPR46437.2021.01558 – volume: 14 start-page: 2781 year: 2021 ident: ref_15 article-title: A Hyperspectral Image Classification Method Using Multifeature Vectors and Optimized KELM publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3059451 contributor: fullname: Chen – ident: ref_8 doi: 10.1109/CVPR.2018.00619 |
SSID | ssj0000913810 |
Score | 2.2951882 |
Snippet | Convolutional neural networks (CNNs) have been widely used in the task of object detection in remote sensing. Remote sensing targets can have arbitrary angles,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 11534 |
SubjectTerms | Algorithms anchor argument Boxes Localization Neural networks object detection Proposals Remote sensing remote sensing images Rotation Satellites Ships |
Title | Improved Matching Algorithm with Anchor Argument for Rotate Target Detection |
URI | https://www.proquest.com/docview/2739420960 https://doaj.org/article/893ee3e64c724f68aae252a290c7742d |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED1BJxgQLSAKBXkACYYIx07sZCy0FQMwQAe2yEnOZYC06sf_5-ykVREDC2sUOcldfPfe-fwMcMWtsUVoVZDkhgeRRRsQbRZBRKnLGlNwZfzRCW_65T0ZDJ1MzuaoL9cTVssD14a7o3yKKFFFhRaRVYkxKGJhRMoLQi6i9NGXJ1tkysfgNHTSVXWnuyRe79aDQ8qFBIBk9CMHean-X5HYp5fRIRw0uJD16_dpww5WHdjfUgvsQLuZhwt204hF3x7BU10VwJI9U1B15STW_5xMifJ_fDFXZGX9iiLcnEaerFwlkBFKZa9ThzHZ2LeBswEufUNWdQzj0XD88Bg0JyQEhVR6GSjJsbSxRUSeyzKndJtrmmEiLqTVodt1W6ZxYlAZ1InJDaENpWVqFdGM2MoTaFXTCk-BUeBKUfCSo8KIxjA2iUROjtIFgQZrunC9Nlk2q3UwMuIPzrTZtmm7cO_subnHqVf7C-TTrPFp9pdPu9BbeyNrptQiI5xFH-YY19l_POMc9oTbyeC3FfagtZyv8AJ2F-Xq0v9K3xpazN0 |
link.rule.ids | 315,782,786,866,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Matching+Algorithm+with+Anchor+Argument+for+Rotate+Target+Detection&rft.jtitle=Applied+sciences&rft.au=Wang%2C+Kangkang&rft.au=Bowen%2C+Chen&rft.au=Wu%2C+Xianyun&rft.au=Li%2C+Yunsong&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=22&rft.spage=11534&rft_id=info:doi/10.3390%2Fapp122211534&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |