Prediction of microscopic residual stresses using genetic programming

Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development which can remain after thermal heat treatments. These stresses can be detrimental for the in-service performance of structural components, whic...

Full description

Saved in:
Bibliographic Details
Published in:Applications in engineering science Vol. 15; p. 100141
Main Authors: Millán, Laura, Kronberger, Gabriel, Fernández, Ricardo, Bokuchava, Gizo, Halodova, Patrice, Sáez-Maderuelo, Alberto, González-Doncel, Gaspar, Hidalgo, J. Ignacio
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-09-2023
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development which can remain after thermal heat treatments. These stresses can be detrimental for the in-service performance of structural components, which makes their study and understanding important. Residual stress variations are usually determined at a macroscopic scale (commonly, using diffraction methods). However, stress variations at the microscopic scale of the individual crystallites (grains), are also relevant. Contrary to the macroscopic residual stresses, microscopic residual stresses are difficult to quantify using conventional procedures. We propose to use machine learning to find equations that describe microscopic residual stresses. Concretely, we show that we are able to learn equations to reproduce the diffraction profiles from microstructural characteristics using genetic programming. We evaluate the learned equations using real neutron diffraction peaks as a reference, obtaining accurate results for the most frequent grain orientations with runtimes of a few minutes.
AbstractList Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development which can remain after thermal heat treatments. These stresses can be detrimental for the in-service performance of structural components, which makes their study and understanding important. Residual stress variations are usually determined at a macroscopic scale (commonly, using diffraction methods). However, stress variations at the microscopic scale of the individual crystallites (grains), are also relevant. Contrary to the macroscopic residual stresses, microscopic residual stresses are difficult to quantify using conventional procedures. We propose to use machine learning to find equations that describe microscopic residual stresses. Concretely, we show that we are able to learn equations to reproduce the diffraction profiles from microstructural characteristics using genetic programming. We evaluate the learned equations using real neutron diffraction peaks as a reference, obtaining accurate results for the most frequent grain orientations with runtimes of a few minutes.
ArticleNumber 100141
Author Halodova, Patrice
Sáez-Maderuelo, Alberto
Fernández, Ricardo
González-Doncel, Gaspar
Hidalgo, J. Ignacio
Kronberger, Gabriel
Bokuchava, Gizo
Millán, Laura
Author_xml – sequence: 1
  givenname: Laura
  surname: Millán
  fullname: Millán, Laura
  organization: Centro Nacional de Investigaciones Metalúrgicas, CSIC, Madrid, Spain
– sequence: 2
  givenname: Gabriel
  orcidid: 0000-0002-3012-3189
  surname: Kronberger
  fullname: Kronberger, Gabriel
  email: gabriel.kronberger@fh-hagenberg.at
  organization: Josef Ressel Center for Symbolic Regression, Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper Austria, Hagenberg, 4232, Softwarepark 11, Austria
– sequence: 3
  givenname: Ricardo
  surname: Fernández
  fullname: Fernández, Ricardo
  organization: Centro Nacional de Investigaciones Metalúrgicas, CSIC, Madrid, Spain
– sequence: 4
  givenname: Gizo
  surname: Bokuchava
  fullname: Bokuchava, Gizo
  organization: Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
– sequence: 5
  givenname: Patrice
  surname: Halodova
  fullname: Halodova, Patrice
  organization: Centrum Výzkumu Řež, Řež, Czech Republic
– sequence: 6
  givenname: Alberto
  surname: Sáez-Maderuelo
  fullname: Sáez-Maderuelo, Alberto
  organization: Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, Madrid, Spain
– sequence: 7
  givenname: Gaspar
  surname: González-Doncel
  fullname: González-Doncel, Gaspar
  organization: Centro Nacional de Investigaciones Metalúrgicas, CSIC, Madrid, Spain
– sequence: 8
  givenname: J. Ignacio
  surname: Hidalgo
  fullname: Hidalgo, J. Ignacio
  organization: Universidad Complutense de Madrid, Madrid, Spain
BookMark eNp9kFFLwzAQx4NMcM59Ax_6BTYvTZo2L4KMqYOBPuhzSNNLSdmaknSC397Mivjk0x3_437c_a7JrPc9EnJLYU2BirturYfhgHGdQ85SBJTTCzLPhRArLkU1-9NfkWWMHQDkFaWM0TnZvgZsnBmd7zNvs6MzwUfjB2eygNE1J33I4pjaiDE7Rde3WYs9jmk-BN8GfTym7IZcWn2IuPypC_L-uH3bPK_2L0-7zcN-ZZgoxxUXFS2LvJZQWI4gQWpZSMpqxrnIGRhRMolSQ1ECt1KWnFombCVEQ-sCJVuQ3cRtvO7UENxRh0_ltVPfgQ-t0iHddkAFZQ61QGtzTBhmJTcNVhwqXpe6NJhYfGKdP44B7S-PgjqbVZ2azKqzWTWZTWv30xqmPz8cBhWNw94kiwHNmA5x_wO-ABUAhBw
Cites_doi 10.1007/s11661-015-3073-3
10.1007/s00170-003-1649-3
10.1016/j.matdes.2017.10.013
10.1134/S1027451021040145
10.1081/AMP-120022023
10.1016/j.msea.2010.10.039
10.1016/j.asoc.2015.11.004
10.1016/j.ijsolstr.2016.05.010
10.1126/sciadv.aay2631
10.1016/j.actamat.2014.04.035
10.1016/j.commatsci.2005.11.007
10.1126/sciadv.aav6971
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.apples.2023.100141
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-4968
ExternalDocumentID oai_doaj_org_article_0720b6eff2e7413f94cde84084b7a7ce
10_1016_j_apples_2023_100141
S266649682300016X
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
0R~
0SF
AALRI
AAYXX
ADVLN
AFJKZ
AITUG
CITATION
ID FETCH-LOGICAL-c367t-4681752b905f4e0909a95913b3446230c6739e9a05704f99741f36f866d1b5e93
IEDL.DBID DOA
ISSN 2666-4968
IngestDate Tue Oct 22 15:10:59 EDT 2024
Thu Sep 26 18:41:42 EDT 2024
Sat Sep 30 17:10:51 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Symbolic regression
Material science
Microstructure
Neutron diffraction
Residual stress
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-4681752b905f4e0909a95913b3446230c6739e9a05704f99741f36f866d1b5e93
ORCID 0000-0002-3012-3189
OpenAccessLink https://doaj.org/article/0720b6eff2e7413f94cde84084b7a7ce
ParticipantIDs doaj_primary_oai_doaj_org_article_0720b6eff2e7413f94cde84084b7a7ce
crossref_primary_10_1016_j_apples_2023_100141
elsevier_sciencedirect_doi_10_1016_j_apples_2023_100141
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Applications in engineering science
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sahoo, Lampert, Martius (b24) 2018; Vol. 80
Millán, Bokuchava, Fernández, Papushkin, González-Doncel (b19) 2020
Millán, Kronberger, Hidalgo, Fernández, Garnica, González-Doncel (b21) 2021
Guimerà, Reichardt, Aguilar-Mogas, Massucci, Miranda, Pallarès, Sales-Pardo (b11) 2020; 6
Piringer, Bloder, Kronberger (b23) 2022
Fernández, Ferreira-Barragáns, Ibáñez, González-Doncel (b8) 2018; 137
Affenzeller, Winkler, Wagner, Beham (b1) 2009
Kabliman, Kolody, Kronsteiner, Kommenda, Kronberger (b15) 2021; 6
Cioffi, Hidalgo, Fernández, Pirling, Fernández, Gesto, Orench, Rey, González-Doncel (b7) 2014; 74
Kronberger, Kabliman, Kronsteiner, Kommenda (b17) 2022; 9
Asadzadeh, Gänser, Mücke (b2) 2021; 6
Brezocnik, Gusel (b4) 2004; 23
Brezocnik, Kovacic (b5) 2003; 18
Hauk (b13) 1997
Mundhenk, Landajuela, Glatt, Santiago, faissol, Petersen (b22) 2021; Vol. 34
Gloaguen, Oum, Legrand, Fajoui, Moya, Pirling, Kockelmann (b10) 2015; 46
Kronberger, Kommenda, Promberger, Nickel (b18) 2018
Yunus, Alsoufi (b26) 2018; 2018
Millán, Bokuchava, Hidalgo, Fernández, Kronberger, Halodova, Sáez, Papushkin, Garnica, Lanchares (b20) 2021; 15
Udrescu, Tegmark (b25) 2020; 6
Bokuchava, Gorshkova, Fernández, González-Doncel, Bruno (b3) 2019; 71
Gusel, Brezocnik (b12) 2006; 37
Chatterjee, Venkataraman, Garbaciak, Rotella, Sangid, Beaudoin, Kenesei, Park, Pilchak (b6) 2016; 94
Hidalgo, Fernández, Colmenar, Cioffi, Risco-Martín, González-Doncel (b14) 2016; 40
Koza (b16) 1992
Ganguly, Edwards, Fitzpatrick (b9) 2011; 528
Gloaguen (10.1016/j.apples.2023.100141_b10) 2015; 46
Fernández (10.1016/j.apples.2023.100141_b8) 2018; 137
Sahoo (10.1016/j.apples.2023.100141_b24) 2018; Vol. 80
Kronberger (10.1016/j.apples.2023.100141_b18) 2018
Millán (10.1016/j.apples.2023.100141_b21) 2021
Piringer (10.1016/j.apples.2023.100141_b23) 2022
Cioffi (10.1016/j.apples.2023.100141_b7) 2014; 74
Yunus (10.1016/j.apples.2023.100141_b26) 2018; 2018
Brezocnik (10.1016/j.apples.2023.100141_b4) 2004; 23
Brezocnik (10.1016/j.apples.2023.100141_b5) 2003; 18
Guimerà (10.1016/j.apples.2023.100141_b11) 2020; 6
Bokuchava (10.1016/j.apples.2023.100141_b3) 2019; 71
Chatterjee (10.1016/j.apples.2023.100141_b6) 2016; 94
Millán (10.1016/j.apples.2023.100141_b19) 2020
Udrescu (10.1016/j.apples.2023.100141_b25) 2020; 6
Hauk (10.1016/j.apples.2023.100141_b13) 1997
Hidalgo (10.1016/j.apples.2023.100141_b14) 2016; 40
Millán (10.1016/j.apples.2023.100141_b20) 2021; 15
Affenzeller (10.1016/j.apples.2023.100141_b1) 2009
Ganguly (10.1016/j.apples.2023.100141_b9) 2011; 528
Kronberger (10.1016/j.apples.2023.100141_b17) 2022; 9
Gusel (10.1016/j.apples.2023.100141_b12) 2006; 37
Kabliman (10.1016/j.apples.2023.100141_b15) 2021; 6
Koza (10.1016/j.apples.2023.100141_b16) 1992
Mundhenk (10.1016/j.apples.2023.100141_b22) 2021; Vol. 34
Asadzadeh (10.1016/j.apples.2023.100141_b2) 2021; 6
References_xml – volume: 6
  year: 2020
  ident: b25
  article-title: AI feynman: A physics-inspired method for symbolic regression
  publication-title: Sci. Adv.
  contributor:
    fullname: Tegmark
– volume: 94
  start-page: 35
  year: 2016
  end-page: 49
  ident: b6
  article-title: Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM)
  publication-title: Int. J. Solids Struct.
  contributor:
    fullname: Pilchak
– volume: 37
  start-page: 476
  year: 2006
  end-page: 482
  ident: b12
  article-title: Modeling of impact toughness of cold formed material by genetic programming
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Brezocnik
– start-page: 1278
  year: 2018
  end-page: 1285
  ident: b18
  article-title: Predicting friction system performance with symbolic regression and genetic programming with factor variables
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
  contributor:
    fullname: Nickel
– volume: 137
  start-page: 117
  year: 2018
  end-page: 127
  ident: b8
  article-title: A multi-scale analysis of the residual stresses developed in a single-phase alloy cylinder after quenching
  publication-title: Mater. Des.
  contributor:
    fullname: González-Doncel
– year: 1997
  ident: b13
  article-title: Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation – Application – Assessment
  contributor:
    fullname: Hauk
– volume: 6
  year: 2021
  ident: b2
  article-title: Symbolic regression based hybrid semiparametric modelling of processes: An example case of a bending process
  publication-title: Appl. Eng. Sci.
  contributor:
    fullname: Mücke
– volume: 18
  start-page: 475
  year: 2003
  end-page: 491
  ident: b5
  article-title: Integrated genetic programming and genetic algorithm approach to predict surface roughness
  publication-title: Mater. Manuf. Process.
  contributor:
    fullname: Kovacic
– volume: 6
  year: 2021
  ident: b15
  article-title: Application of symbolic regression for constitutive modeling of plastic deformation
  publication-title: Appl. Eng. Sci.
  contributor:
    fullname: Kronberger
– volume: 40
  start-page: 429
  year: 2016
  end-page: 438
  ident: b14
  article-title: Using evolutionary algorithms to determine the residual stress profile across welds of age-hardenable aluminum alloys
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: González-Doncel
– volume: 74
  start-page: 189
  year: 2014
  end-page: 199
  ident: b7
  article-title: Analysis of the unstressed lattice spacing,
  publication-title: Acta Mater.
  contributor:
    fullname: González-Doncel
– volume: 528
  start-page: 1226
  year: 2011
  end-page: 1232
  ident: b9
  article-title: Problems in using a comb sample as a stress-free reference for the determination of welding residual stress by diffraction
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Fitzpatrick
– volume: 15
  start-page: 763
  year: 2021
  end-page: 767
  ident: b20
  article-title: Study of microscopic residual stresses in an extruded aluminium alloy sample after thermal treatment
  publication-title: J. Surf. Investig.: X-ray, Synchrotron and Neutron Techniques
  contributor:
    fullname: Lanchares
– year: 2009
  ident: b1
  publication-title: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications
  contributor:
    fullname: Beham
– volume: 71
  start-page: 502
  year: 2019
  ident: b3
  article-title: Characterization of precipitation in 2000 series aluminium alloys using neutron diffraction, sans and sem methods
  publication-title: Romanian Rep. Phys.
  contributor:
    fullname: Bruno
– volume: 6
  year: 2020
  ident: b11
  article-title: A Bayesian machine scientist to aid in the solution of challenging scientific problems
  publication-title: Sci. Adv.
  contributor:
    fullname: Sales-Pardo
– volume: 46
  start-page: 5038
  year: 2015
  end-page: 5046
  ident: b10
  article-title: Intergranular strain evolution in titanium during tensile loading: neutron diffraction and polycrystalline model
  publication-title: Metall. Mater. Trans. A
  contributor:
    fullname: Kockelmann
– start-page: 421
  year: 2021
  end-page: 436
  ident: b21
  article-title: Estimation of grain-level residual stresses in a quenched cylindrical sample of aluminum alloy AA5083 using genetic programming
  publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar)
  contributor:
    fullname: González-Doncel
– volume: 23
  start-page: 467
  year: 2004
  end-page: 474
  ident: b4
  article-title: Predicting stress distribution in cold-formed material with genetic programming
  publication-title: Int. J. Adv. Manuf. Technol.
  contributor:
    fullname: Gusel
– volume: 9
  year: 2022
  ident: b17
  article-title: Extending a physics-based constitutive model using genetic programming
  publication-title: Appl. Eng. Sci.
  contributor:
    fullname: Kommenda
– start-page: 327
  year: 2022
  end-page: 330
  ident: b23
  article-title: Steel phase kinetics modeling using symbolic regression
  publication-title: 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Hagenberg / Linz, Austria
  contributor:
    fullname: Kronberger
– volume: Vol. 34
  start-page: 24912
  year: 2021
  end-page: 24923
  ident: b22
  article-title: Symbolic regression via deep reinforcement learning enhanced genetic programming seeding
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Petersen
– volume: 2018
  year: 2018
  ident: b26
  article-title: Mathematical modelling of a friction stir welding process to predict the joint strength of two dissimilar aluminium alloys using experimental data and genetic programming
  publication-title: Model. Simul. Eng.
  contributor:
    fullname: Alsoufi
– year: 1992
  ident: b16
  article-title: Genetic Programming – On the Programming of Computers by Means of Natural Selection
  contributor:
    fullname: Koza
– year: 2020
  ident: b19
  article-title: Further insights on the stress equilibrium method to investigate macroscopic residual stress fields: case of aluminum alloys cylinders
  publication-title: J. Alloys Compd.
  contributor:
    fullname: González-Doncel
– volume: Vol. 80
  start-page: 4442
  year: 2018
  end-page: 4450
  ident: b24
  article-title: Learning equations for extrapolation and control
  publication-title: Proceedings of the 35th International Conference on Machine Learning
  contributor:
    fullname: Martius
– volume: 46
  start-page: 5038
  issue: 11
  year: 2015
  ident: 10.1016/j.apples.2023.100141_b10
  article-title: Intergranular strain evolution in titanium during tensile loading: neutron diffraction and polycrystalline model
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-015-3073-3
  contributor:
    fullname: Gloaguen
– volume: Vol. 34
  start-page: 24912
  year: 2021
  ident: 10.1016/j.apples.2023.100141_b22
  article-title: Symbolic regression via deep reinforcement learning enhanced genetic programming seeding
  contributor:
    fullname: Mundhenk
– year: 2020
  ident: 10.1016/j.apples.2023.100141_b19
  article-title: Further insights on the stress equilibrium method to investigate macroscopic residual stress fields: case of aluminum alloys cylinders
  publication-title: J. Alloys Compd.
  contributor:
    fullname: Millán
– volume: 23
  start-page: 467
  issue: 7
  year: 2004
  ident: 10.1016/j.apples.2023.100141_b4
  article-title: Predicting stress distribution in cold-formed material with genetic programming
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-003-1649-3
  contributor:
    fullname: Brezocnik
– volume: 137
  start-page: 117
  year: 2018
  ident: 10.1016/j.apples.2023.100141_b8
  article-title: A multi-scale analysis of the residual stresses developed in a single-phase alloy cylinder after quenching
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.10.013
  contributor:
    fullname: Fernández
– volume: 15
  start-page: 763
  issue: 4
  year: 2021
  ident: 10.1016/j.apples.2023.100141_b20
  article-title: Study of microscopic residual stresses in an extruded aluminium alloy sample after thermal treatment
  publication-title: J. Surf. Investig.: X-ray, Synchrotron and Neutron Techniques
  doi: 10.1134/S1027451021040145
  contributor:
    fullname: Millán
– year: 2009
  ident: 10.1016/j.apples.2023.100141_b1
  contributor:
    fullname: Affenzeller
– volume: 18
  start-page: 475
  issue: 3
  year: 2003
  ident: 10.1016/j.apples.2023.100141_b5
  article-title: Integrated genetic programming and genetic algorithm approach to predict surface roughness
  publication-title: Mater. Manuf. Process.
  doi: 10.1081/AMP-120022023
  contributor:
    fullname: Brezocnik
– start-page: 1278
  year: 2018
  ident: 10.1016/j.apples.2023.100141_b18
  article-title: Predicting friction system performance with symbolic regression and genetic programming with factor variables
  contributor:
    fullname: Kronberger
– start-page: 327
  year: 2022
  ident: 10.1016/j.apples.2023.100141_b23
  article-title: Steel phase kinetics modeling using symbolic regression
  contributor:
    fullname: Piringer
– volume: 9
  year: 2022
  ident: 10.1016/j.apples.2023.100141_b17
  article-title: Extending a physics-based constitutive model using genetic programming
  publication-title: Appl. Eng. Sci.
  contributor:
    fullname: Kronberger
– year: 1992
  ident: 10.1016/j.apples.2023.100141_b16
  contributor:
    fullname: Koza
– volume: Vol. 80
  start-page: 4442
  year: 2018
  ident: 10.1016/j.apples.2023.100141_b24
  article-title: Learning equations for extrapolation and control
  contributor:
    fullname: Sahoo
– volume: 528
  start-page: 1226
  issue: 3
  year: 2011
  ident: 10.1016/j.apples.2023.100141_b9
  article-title: Problems in using a comb sample as a stress-free reference for the determination of welding residual stress by diffraction
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.10.039
  contributor:
    fullname: Ganguly
– start-page: 421
  year: 2021
  ident: 10.1016/j.apples.2023.100141_b21
  article-title: Estimation of grain-level residual stresses in a quenched cylindrical sample of aluminum alloy AA5083 using genetic programming
  contributor:
    fullname: Millán
– volume: 40
  start-page: 429
  year: 2016
  ident: 10.1016/j.apples.2023.100141_b14
  article-title: Using evolutionary algorithms to determine the residual stress profile across welds of age-hardenable aluminum alloys
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.11.004
  contributor:
    fullname: Hidalgo
– volume: 94
  start-page: 35
  year: 2016
  ident: 10.1016/j.apples.2023.100141_b6
  article-title: Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM)
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.05.010
  contributor:
    fullname: Chatterjee
– volume: 2018
  year: 2018
  ident: 10.1016/j.apples.2023.100141_b26
  article-title: Mathematical modelling of a friction stir welding process to predict the joint strength of two dissimilar aluminium alloys using experimental data and genetic programming
  publication-title: Model. Simul. Eng.
  contributor:
    fullname: Yunus
– volume: 6
  year: 2021
  ident: 10.1016/j.apples.2023.100141_b2
  article-title: Symbolic regression based hybrid semiparametric modelling of processes: An example case of a bending process
  publication-title: Appl. Eng. Sci.
  contributor:
    fullname: Asadzadeh
– volume: 6
  year: 2021
  ident: 10.1016/j.apples.2023.100141_b15
  article-title: Application of symbolic regression for constitutive modeling of plastic deformation
  publication-title: Appl. Eng. Sci.
  contributor:
    fullname: Kabliman
– year: 1997
  ident: 10.1016/j.apples.2023.100141_b13
  contributor:
    fullname: Hauk
– volume: 6
  issue: 16
  year: 2020
  ident: 10.1016/j.apples.2023.100141_b25
  article-title: AI feynman: A physics-inspired method for symbolic regression
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay2631
  contributor:
    fullname: Udrescu
– volume: 74
  start-page: 189
  year: 2014
  ident: 10.1016/j.apples.2023.100141_b7
  article-title: Analysis of the unstressed lattice spacing, d0, for the determination of the residual stress in a friction stir welded plate of an age-hardenable aluminum alloy–use of equilibrium conditions and a genetic algorithm
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.04.035
  contributor:
    fullname: Cioffi
– volume: 37
  start-page: 476
  issue: 4
  year: 2006
  ident: 10.1016/j.apples.2023.100141_b12
  article-title: Modeling of impact toughness of cold formed material by genetic programming
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.11.007
  contributor:
    fullname: Gusel
– volume: 6
  issue: 5
  year: 2020
  ident: 10.1016/j.apples.2023.100141_b11
  article-title: A Bayesian machine scientist to aid in the solution of challenging scientific problems
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav6971
  contributor:
    fullname: Guimerà
– volume: 71
  start-page: 502
  year: 2019
  ident: 10.1016/j.apples.2023.100141_b3
  article-title: Characterization of precipitation in 2000 series aluminium alloys using neutron diffraction, sans and sem methods
  publication-title: Romanian Rep. Phys.
  contributor:
    fullname: Bokuchava
SSID ssj0002811331
Score 2.282511
Snippet Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 100141
SubjectTerms Machine learning
Material science
Microstructure
Neutron diffraction
Residual stress
Symbolic regression
Title Prediction of microscopic residual stresses using genetic programming
URI https://dx.doi.org/10.1016/j.apples.2023.100141
https://doaj.org/article/0720b6eff2e7413f94cde84084b7a7ce
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05SwQxGA26lRbiietFCttgJsnkKD12sRJBBbswuWQXdlf2-P_mmJGx0cY2DMnwEvK-L3nfCwDXdSOkVSQgTJRFzNCApKMGeUUaTGyVQu50dPEint7lwyjZ5Hw_9ZU0YcUeuAB3gwXBhvsQiI_kR4Ni1vmYlUhmRCOsz7svlr1kapqPjKqqPEYYCYgjprjs6uayuCvdDvvk1k1odiFi1Q9eyvb9PXrqUc54H-y1sSK8Lf94ALb8_BDs9hwEj8DoeZluWhK6cBHgLMnrUqHJxMKYR-dCK1jKQfwKJo37B4wrJhUuwlaZNYttx-BtPHq9f0TtywjIUi7WiHEZaZ8YhevAPFZYNapWFTU0ZncxqbBcUOVVE4MxzIKKOUMVKA-Sc1eZ2it6AgbzxdyfAiiMY9hx4o2q46ZpjBTeCyOEczzGYmYIUIeL_iwGGLpThk11wVEnHHXBcQjuEnjf3yb76twQJ1W3k6r_mtQhEB30uo0ECsPHria_Dn_2H8Ofg53UZZGSXYDBernxl2B75TZXeZl9Af131Hc
link.rule.ids 315,782,786,866,2108,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+microscopic+residual+stresses+using+genetic+programming&rft.jtitle=Applications+in+engineering+science&rft.au=Mill%C3%A1n%2C+Laura&rft.au=Kronberger%2C+Gabriel&rft.au=Fern%C3%A1ndez%2C+Ricardo&rft.au=Bokuchava%2C+Gizo&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=2666-4968&rft.eissn=2666-4968&rft.volume=15&rft_id=info:doi/10.1016%2Fj.apples.2023.100141&rft.externalDocID=S266649682300016X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-4968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-4968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-4968&client=summon