Prediction of microscopic residual stresses using genetic programming
Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development which can remain after thermal heat treatments. These stresses can be detrimental for the in-service performance of structural components, whic...
Saved in:
Published in: | Applications in engineering science Vol. 15; p. 100141 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-09-2023
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development which can remain after thermal heat treatments. These stresses can be detrimental for the in-service performance of structural components, which makes their study and understanding important. Residual stress variations are usually determined at a macroscopic scale (commonly, using diffraction methods). However, stress variations at the microscopic scale of the individual crystallites (grains), are also relevant. Contrary to the macroscopic residual stresses, microscopic residual stresses are difficult to quantify using conventional procedures. We propose to use machine learning to find equations that describe microscopic residual stresses. Concretely, we show that we are able to learn equations to reproduce the diffraction profiles from microstructural characteristics using genetic programming. We evaluate the learned equations using real neutron diffraction peaks as a reference, obtaining accurate results for the most frequent grain orientations with runtimes of a few minutes. |
---|---|
AbstractList | Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development which can remain after thermal heat treatments. These stresses can be detrimental for the in-service performance of structural components, which makes their study and understanding important. Residual stress variations are usually determined at a macroscopic scale (commonly, using diffraction methods). However, stress variations at the microscopic scale of the individual crystallites (grains), are also relevant. Contrary to the macroscopic residual stresses, microscopic residual stresses are difficult to quantify using conventional procedures. We propose to use machine learning to find equations that describe microscopic residual stresses. Concretely, we show that we are able to learn equations to reproduce the diffraction profiles from microstructural characteristics using genetic programming. We evaluate the learned equations using real neutron diffraction peaks as a reference, obtaining accurate results for the most frequent grain orientations with runtimes of a few minutes. |
ArticleNumber | 100141 |
Author | Halodova, Patrice Sáez-Maderuelo, Alberto Fernández, Ricardo González-Doncel, Gaspar Hidalgo, J. Ignacio Kronberger, Gabriel Bokuchava, Gizo Millán, Laura |
Author_xml | – sequence: 1 givenname: Laura surname: Millán fullname: Millán, Laura organization: Centro Nacional de Investigaciones Metalúrgicas, CSIC, Madrid, Spain – sequence: 2 givenname: Gabriel orcidid: 0000-0002-3012-3189 surname: Kronberger fullname: Kronberger, Gabriel email: gabriel.kronberger@fh-hagenberg.at organization: Josef Ressel Center for Symbolic Regression, Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper Austria, Hagenberg, 4232, Softwarepark 11, Austria – sequence: 3 givenname: Ricardo surname: Fernández fullname: Fernández, Ricardo organization: Centro Nacional de Investigaciones Metalúrgicas, CSIC, Madrid, Spain – sequence: 4 givenname: Gizo surname: Bokuchava fullname: Bokuchava, Gizo organization: Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia – sequence: 5 givenname: Patrice surname: Halodova fullname: Halodova, Patrice organization: Centrum Výzkumu Řež, Řež, Czech Republic – sequence: 6 givenname: Alberto surname: Sáez-Maderuelo fullname: Sáez-Maderuelo, Alberto organization: Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, Madrid, Spain – sequence: 7 givenname: Gaspar surname: González-Doncel fullname: González-Doncel, Gaspar organization: Centro Nacional de Investigaciones Metalúrgicas, CSIC, Madrid, Spain – sequence: 8 givenname: J. Ignacio surname: Hidalgo fullname: Hidalgo, J. Ignacio organization: Universidad Complutense de Madrid, Madrid, Spain |
BookMark | eNp9kFFLwzAQx4NMcM59Ax_6BTYvTZo2L4KMqYOBPuhzSNNLSdmaknSC397Mivjk0x3_437c_a7JrPc9EnJLYU2BirturYfhgHGdQ85SBJTTCzLPhRArLkU1-9NfkWWMHQDkFaWM0TnZvgZsnBmd7zNvs6MzwUfjB2eygNE1J33I4pjaiDE7Rde3WYs9jmk-BN8GfTym7IZcWn2IuPypC_L-uH3bPK_2L0-7zcN-ZZgoxxUXFS2LvJZQWI4gQWpZSMpqxrnIGRhRMolSQ1ECt1KWnFombCVEQ-sCJVuQ3cRtvO7UENxRh0_ltVPfgQ-t0iHddkAFZQ61QGtzTBhmJTcNVhwqXpe6NJhYfGKdP44B7S-PgjqbVZ2azKqzWTWZTWv30xqmPz8cBhWNw94kiwHNmA5x_wO-ABUAhBw |
Cites_doi | 10.1007/s11661-015-3073-3 10.1007/s00170-003-1649-3 10.1016/j.matdes.2017.10.013 10.1134/S1027451021040145 10.1081/AMP-120022023 10.1016/j.msea.2010.10.039 10.1016/j.asoc.2015.11.004 10.1016/j.ijsolstr.2016.05.010 10.1126/sciadv.aay2631 10.1016/j.actamat.2014.04.035 10.1016/j.commatsci.2005.11.007 10.1126/sciadv.aav6971 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.apples.2023.100141 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2666-4968 |
ExternalDocumentID | oai_doaj_org_article_0720b6eff2e7413f94cde84084b7a7ce 10_1016_j_apples_2023_100141 S266649682300016X |
GroupedDBID | 6I. AAEDW AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 0R~ 0SF AALRI AAYXX ADVLN AFJKZ AITUG CITATION |
ID | FETCH-LOGICAL-c367t-4681752b905f4e0909a95913b3446230c6739e9a05704f99741f36f866d1b5e93 |
IEDL.DBID | DOA |
ISSN | 2666-4968 |
IngestDate | Tue Oct 22 15:10:59 EDT 2024 Thu Sep 26 18:41:42 EDT 2024 Sat Sep 30 17:10:51 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Symbolic regression Material science Microstructure Neutron diffraction Residual stress Machine learning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-4681752b905f4e0909a95913b3446230c6739e9a05704f99741f36f866d1b5e93 |
ORCID | 0000-0002-3012-3189 |
OpenAccessLink | https://doaj.org/article/0720b6eff2e7413f94cde84084b7a7ce |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0720b6eff2e7413f94cde84084b7a7ce crossref_primary_10_1016_j_apples_2023_100141 elsevier_sciencedirect_doi_10_1016_j_apples_2023_100141 |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Applications in engineering science |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Sahoo, Lampert, Martius (b24) 2018; Vol. 80 Millán, Bokuchava, Fernández, Papushkin, González-Doncel (b19) 2020 Millán, Kronberger, Hidalgo, Fernández, Garnica, González-Doncel (b21) 2021 Guimerà, Reichardt, Aguilar-Mogas, Massucci, Miranda, Pallarès, Sales-Pardo (b11) 2020; 6 Piringer, Bloder, Kronberger (b23) 2022 Fernández, Ferreira-Barragáns, Ibáñez, González-Doncel (b8) 2018; 137 Affenzeller, Winkler, Wagner, Beham (b1) 2009 Kabliman, Kolody, Kronsteiner, Kommenda, Kronberger (b15) 2021; 6 Cioffi, Hidalgo, Fernández, Pirling, Fernández, Gesto, Orench, Rey, González-Doncel (b7) 2014; 74 Kronberger, Kabliman, Kronsteiner, Kommenda (b17) 2022; 9 Asadzadeh, Gänser, Mücke (b2) 2021; 6 Brezocnik, Gusel (b4) 2004; 23 Brezocnik, Kovacic (b5) 2003; 18 Hauk (b13) 1997 Mundhenk, Landajuela, Glatt, Santiago, faissol, Petersen (b22) 2021; Vol. 34 Gloaguen, Oum, Legrand, Fajoui, Moya, Pirling, Kockelmann (b10) 2015; 46 Kronberger, Kommenda, Promberger, Nickel (b18) 2018 Yunus, Alsoufi (b26) 2018; 2018 Millán, Bokuchava, Hidalgo, Fernández, Kronberger, Halodova, Sáez, Papushkin, Garnica, Lanchares (b20) 2021; 15 Udrescu, Tegmark (b25) 2020; 6 Bokuchava, Gorshkova, Fernández, González-Doncel, Bruno (b3) 2019; 71 Gusel, Brezocnik (b12) 2006; 37 Chatterjee, Venkataraman, Garbaciak, Rotella, Sangid, Beaudoin, Kenesei, Park, Pilchak (b6) 2016; 94 Hidalgo, Fernández, Colmenar, Cioffi, Risco-Martín, González-Doncel (b14) 2016; 40 Koza (b16) 1992 Ganguly, Edwards, Fitzpatrick (b9) 2011; 528 Gloaguen (10.1016/j.apples.2023.100141_b10) 2015; 46 Fernández (10.1016/j.apples.2023.100141_b8) 2018; 137 Sahoo (10.1016/j.apples.2023.100141_b24) 2018; Vol. 80 Kronberger (10.1016/j.apples.2023.100141_b18) 2018 Millán (10.1016/j.apples.2023.100141_b21) 2021 Piringer (10.1016/j.apples.2023.100141_b23) 2022 Cioffi (10.1016/j.apples.2023.100141_b7) 2014; 74 Yunus (10.1016/j.apples.2023.100141_b26) 2018; 2018 Brezocnik (10.1016/j.apples.2023.100141_b4) 2004; 23 Brezocnik (10.1016/j.apples.2023.100141_b5) 2003; 18 Guimerà (10.1016/j.apples.2023.100141_b11) 2020; 6 Bokuchava (10.1016/j.apples.2023.100141_b3) 2019; 71 Chatterjee (10.1016/j.apples.2023.100141_b6) 2016; 94 Millán (10.1016/j.apples.2023.100141_b19) 2020 Udrescu (10.1016/j.apples.2023.100141_b25) 2020; 6 Hauk (10.1016/j.apples.2023.100141_b13) 1997 Hidalgo (10.1016/j.apples.2023.100141_b14) 2016; 40 Millán (10.1016/j.apples.2023.100141_b20) 2021; 15 Affenzeller (10.1016/j.apples.2023.100141_b1) 2009 Ganguly (10.1016/j.apples.2023.100141_b9) 2011; 528 Kronberger (10.1016/j.apples.2023.100141_b17) 2022; 9 Gusel (10.1016/j.apples.2023.100141_b12) 2006; 37 Kabliman (10.1016/j.apples.2023.100141_b15) 2021; 6 Koza (10.1016/j.apples.2023.100141_b16) 1992 Mundhenk (10.1016/j.apples.2023.100141_b22) 2021; Vol. 34 Asadzadeh (10.1016/j.apples.2023.100141_b2) 2021; 6 |
References_xml | – volume: 6 year: 2020 ident: b25 article-title: AI feynman: A physics-inspired method for symbolic regression publication-title: Sci. Adv. contributor: fullname: Tegmark – volume: 94 start-page: 35 year: 2016 end-page: 49 ident: b6 article-title: Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM) publication-title: Int. J. Solids Struct. contributor: fullname: Pilchak – volume: 37 start-page: 476 year: 2006 end-page: 482 ident: b12 article-title: Modeling of impact toughness of cold formed material by genetic programming publication-title: Comput. Mater. Sci. contributor: fullname: Brezocnik – start-page: 1278 year: 2018 end-page: 1285 ident: b18 article-title: Predicting friction system performance with symbolic regression and genetic programming with factor variables publication-title: Proceedings of the Genetic and Evolutionary Computation Conference contributor: fullname: Nickel – volume: 137 start-page: 117 year: 2018 end-page: 127 ident: b8 article-title: A multi-scale analysis of the residual stresses developed in a single-phase alloy cylinder after quenching publication-title: Mater. Des. contributor: fullname: González-Doncel – year: 1997 ident: b13 article-title: Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation – Application – Assessment contributor: fullname: Hauk – volume: 6 year: 2021 ident: b2 article-title: Symbolic regression based hybrid semiparametric modelling of processes: An example case of a bending process publication-title: Appl. Eng. Sci. contributor: fullname: Mücke – volume: 18 start-page: 475 year: 2003 end-page: 491 ident: b5 article-title: Integrated genetic programming and genetic algorithm approach to predict surface roughness publication-title: Mater. Manuf. Process. contributor: fullname: Kovacic – volume: 6 year: 2021 ident: b15 article-title: Application of symbolic regression for constitutive modeling of plastic deformation publication-title: Appl. Eng. Sci. contributor: fullname: Kronberger – volume: 40 start-page: 429 year: 2016 end-page: 438 ident: b14 article-title: Using evolutionary algorithms to determine the residual stress profile across welds of age-hardenable aluminum alloys publication-title: Appl. Soft Comput. contributor: fullname: González-Doncel – volume: 74 start-page: 189 year: 2014 end-page: 199 ident: b7 article-title: Analysis of the unstressed lattice spacing, publication-title: Acta Mater. contributor: fullname: González-Doncel – volume: 528 start-page: 1226 year: 2011 end-page: 1232 ident: b9 article-title: Problems in using a comb sample as a stress-free reference for the determination of welding residual stress by diffraction publication-title: Mater. Sci. Eng. A contributor: fullname: Fitzpatrick – volume: 15 start-page: 763 year: 2021 end-page: 767 ident: b20 article-title: Study of microscopic residual stresses in an extruded aluminium alloy sample after thermal treatment publication-title: J. Surf. Investig.: X-ray, Synchrotron and Neutron Techniques contributor: fullname: Lanchares – year: 2009 ident: b1 publication-title: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications contributor: fullname: Beham – volume: 71 start-page: 502 year: 2019 ident: b3 article-title: Characterization of precipitation in 2000 series aluminium alloys using neutron diffraction, sans and sem methods publication-title: Romanian Rep. Phys. contributor: fullname: Bruno – volume: 6 year: 2020 ident: b11 article-title: A Bayesian machine scientist to aid in the solution of challenging scientific problems publication-title: Sci. Adv. contributor: fullname: Sales-Pardo – volume: 46 start-page: 5038 year: 2015 end-page: 5046 ident: b10 article-title: Intergranular strain evolution in titanium during tensile loading: neutron diffraction and polycrystalline model publication-title: Metall. Mater. Trans. A contributor: fullname: Kockelmann – start-page: 421 year: 2021 end-page: 436 ident: b21 article-title: Estimation of grain-level residual stresses in a quenched cylindrical sample of aluminum alloy AA5083 using genetic programming publication-title: International Conference on the Applications of Evolutionary Computation (Part of EvoStar) contributor: fullname: González-Doncel – volume: 23 start-page: 467 year: 2004 end-page: 474 ident: b4 article-title: Predicting stress distribution in cold-formed material with genetic programming publication-title: Int. J. Adv. Manuf. Technol. contributor: fullname: Gusel – volume: 9 year: 2022 ident: b17 article-title: Extending a physics-based constitutive model using genetic programming publication-title: Appl. Eng. Sci. contributor: fullname: Kommenda – start-page: 327 year: 2022 end-page: 330 ident: b23 article-title: Steel phase kinetics modeling using symbolic regression publication-title: 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Hagenberg / Linz, Austria contributor: fullname: Kronberger – volume: Vol. 34 start-page: 24912 year: 2021 end-page: 24923 ident: b22 article-title: Symbolic regression via deep reinforcement learning enhanced genetic programming seeding publication-title: Advances in Neural Information Processing Systems contributor: fullname: Petersen – volume: 2018 year: 2018 ident: b26 article-title: Mathematical modelling of a friction stir welding process to predict the joint strength of two dissimilar aluminium alloys using experimental data and genetic programming publication-title: Model. Simul. Eng. contributor: fullname: Alsoufi – year: 1992 ident: b16 article-title: Genetic Programming – On the Programming of Computers by Means of Natural Selection contributor: fullname: Koza – year: 2020 ident: b19 article-title: Further insights on the stress equilibrium method to investigate macroscopic residual stress fields: case of aluminum alloys cylinders publication-title: J. Alloys Compd. contributor: fullname: González-Doncel – volume: Vol. 80 start-page: 4442 year: 2018 end-page: 4450 ident: b24 article-title: Learning equations for extrapolation and control publication-title: Proceedings of the 35th International Conference on Machine Learning contributor: fullname: Martius – volume: 46 start-page: 5038 issue: 11 year: 2015 ident: 10.1016/j.apples.2023.100141_b10 article-title: Intergranular strain evolution in titanium during tensile loading: neutron diffraction and polycrystalline model publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-015-3073-3 contributor: fullname: Gloaguen – volume: Vol. 34 start-page: 24912 year: 2021 ident: 10.1016/j.apples.2023.100141_b22 article-title: Symbolic regression via deep reinforcement learning enhanced genetic programming seeding contributor: fullname: Mundhenk – year: 2020 ident: 10.1016/j.apples.2023.100141_b19 article-title: Further insights on the stress equilibrium method to investigate macroscopic residual stress fields: case of aluminum alloys cylinders publication-title: J. Alloys Compd. contributor: fullname: Millán – volume: 23 start-page: 467 issue: 7 year: 2004 ident: 10.1016/j.apples.2023.100141_b4 article-title: Predicting stress distribution in cold-formed material with genetic programming publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-003-1649-3 contributor: fullname: Brezocnik – volume: 137 start-page: 117 year: 2018 ident: 10.1016/j.apples.2023.100141_b8 article-title: A multi-scale analysis of the residual stresses developed in a single-phase alloy cylinder after quenching publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.10.013 contributor: fullname: Fernández – volume: 15 start-page: 763 issue: 4 year: 2021 ident: 10.1016/j.apples.2023.100141_b20 article-title: Study of microscopic residual stresses in an extruded aluminium alloy sample after thermal treatment publication-title: J. Surf. Investig.: X-ray, Synchrotron and Neutron Techniques doi: 10.1134/S1027451021040145 contributor: fullname: Millán – year: 2009 ident: 10.1016/j.apples.2023.100141_b1 contributor: fullname: Affenzeller – volume: 18 start-page: 475 issue: 3 year: 2003 ident: 10.1016/j.apples.2023.100141_b5 article-title: Integrated genetic programming and genetic algorithm approach to predict surface roughness publication-title: Mater. Manuf. Process. doi: 10.1081/AMP-120022023 contributor: fullname: Brezocnik – start-page: 1278 year: 2018 ident: 10.1016/j.apples.2023.100141_b18 article-title: Predicting friction system performance with symbolic regression and genetic programming with factor variables contributor: fullname: Kronberger – start-page: 327 year: 2022 ident: 10.1016/j.apples.2023.100141_b23 article-title: Steel phase kinetics modeling using symbolic regression contributor: fullname: Piringer – volume: 9 year: 2022 ident: 10.1016/j.apples.2023.100141_b17 article-title: Extending a physics-based constitutive model using genetic programming publication-title: Appl. Eng. Sci. contributor: fullname: Kronberger – year: 1992 ident: 10.1016/j.apples.2023.100141_b16 contributor: fullname: Koza – volume: Vol. 80 start-page: 4442 year: 2018 ident: 10.1016/j.apples.2023.100141_b24 article-title: Learning equations for extrapolation and control contributor: fullname: Sahoo – volume: 528 start-page: 1226 issue: 3 year: 2011 ident: 10.1016/j.apples.2023.100141_b9 article-title: Problems in using a comb sample as a stress-free reference for the determination of welding residual stress by diffraction publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.10.039 contributor: fullname: Ganguly – start-page: 421 year: 2021 ident: 10.1016/j.apples.2023.100141_b21 article-title: Estimation of grain-level residual stresses in a quenched cylindrical sample of aluminum alloy AA5083 using genetic programming contributor: fullname: Millán – volume: 40 start-page: 429 year: 2016 ident: 10.1016/j.apples.2023.100141_b14 article-title: Using evolutionary algorithms to determine the residual stress profile across welds of age-hardenable aluminum alloys publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.11.004 contributor: fullname: Hidalgo – volume: 94 start-page: 35 year: 2016 ident: 10.1016/j.apples.2023.100141_b6 article-title: Study of grain-level deformation and residual stresses in Ti-7Al under combined bending and tension using high energy diffraction microscopy (HEDM) publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.05.010 contributor: fullname: Chatterjee – volume: 2018 year: 2018 ident: 10.1016/j.apples.2023.100141_b26 article-title: Mathematical modelling of a friction stir welding process to predict the joint strength of two dissimilar aluminium alloys using experimental data and genetic programming publication-title: Model. Simul. Eng. contributor: fullname: Yunus – volume: 6 year: 2021 ident: 10.1016/j.apples.2023.100141_b2 article-title: Symbolic regression based hybrid semiparametric modelling of processes: An example case of a bending process publication-title: Appl. Eng. Sci. contributor: fullname: Asadzadeh – volume: 6 year: 2021 ident: 10.1016/j.apples.2023.100141_b15 article-title: Application of symbolic regression for constitutive modeling of plastic deformation publication-title: Appl. Eng. Sci. contributor: fullname: Kabliman – year: 1997 ident: 10.1016/j.apples.2023.100141_b13 contributor: fullname: Hauk – volume: 6 issue: 16 year: 2020 ident: 10.1016/j.apples.2023.100141_b25 article-title: AI feynman: A physics-inspired method for symbolic regression publication-title: Sci. Adv. doi: 10.1126/sciadv.aay2631 contributor: fullname: Udrescu – volume: 74 start-page: 189 year: 2014 ident: 10.1016/j.apples.2023.100141_b7 article-title: Analysis of the unstressed lattice spacing, d0, for the determination of the residual stress in a friction stir welded plate of an age-hardenable aluminum alloy–use of equilibrium conditions and a genetic algorithm publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.04.035 contributor: fullname: Cioffi – volume: 37 start-page: 476 issue: 4 year: 2006 ident: 10.1016/j.apples.2023.100141_b12 article-title: Modeling of impact toughness of cold formed material by genetic programming publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.11.007 contributor: fullname: Gusel – volume: 6 issue: 5 year: 2020 ident: 10.1016/j.apples.2023.100141_b11 article-title: A Bayesian machine scientist to aid in the solution of challenging scientific problems publication-title: Sci. Adv. doi: 10.1126/sciadv.aav6971 contributor: fullname: Guimerà – volume: 71 start-page: 502 year: 2019 ident: 10.1016/j.apples.2023.100141_b3 article-title: Characterization of precipitation in 2000 series aluminium alloys using neutron diffraction, sans and sem methods publication-title: Romanian Rep. Phys. contributor: fullname: Bokuchava |
SSID | ssj0002811331 |
Score | 2.282511 |
Snippet | Metallurgical manufacturing processes commonly used in the industry (rolling, extrusion, shaping, machining, etc.) usually cause residual stress development... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 100141 |
SubjectTerms | Machine learning Material science Microstructure Neutron diffraction Residual stress Symbolic regression |
Title | Prediction of microscopic residual stresses using genetic programming |
URI | https://dx.doi.org/10.1016/j.apples.2023.100141 https://doaj.org/article/0720b6eff2e7413f94cde84084b7a7ce |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05SwQxGA26lRbiietFCttgJsnkKD12sRJBBbswuWQXdlf2-P_mmJGx0cY2DMnwEvK-L3nfCwDXdSOkVSQgTJRFzNCApKMGeUUaTGyVQu50dPEint7lwyjZ5Hw_9ZU0YcUeuAB3gwXBhvsQiI_kR4Ni1vmYlUhmRCOsz7svlr1kapqPjKqqPEYYCYgjprjs6uayuCvdDvvk1k1odiFi1Q9eyvb9PXrqUc54H-y1sSK8Lf94ALb8_BDs9hwEj8DoeZluWhK6cBHgLMnrUqHJxMKYR-dCK1jKQfwKJo37B4wrJhUuwlaZNYttx-BtPHq9f0TtywjIUi7WiHEZaZ8YhevAPFZYNapWFTU0ZncxqbBcUOVVE4MxzIKKOUMVKA-Sc1eZ2it6AgbzxdyfAiiMY9hx4o2q46ZpjBTeCyOEczzGYmYIUIeL_iwGGLpThk11wVEnHHXBcQjuEnjf3yb76twQJ1W3k6r_mtQhEB30uo0ECsPHria_Dn_2H8Ofg53UZZGSXYDBernxl2B75TZXeZl9Af131Hc |
link.rule.ids | 315,782,786,866,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+microscopic+residual+stresses+using+genetic+programming&rft.jtitle=Applications+in+engineering+science&rft.au=Mill%C3%A1n%2C+Laura&rft.au=Kronberger%2C+Gabriel&rft.au=Fern%C3%A1ndez%2C+Ricardo&rft.au=Bokuchava%2C+Gizo&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=2666-4968&rft.eissn=2666-4968&rft.volume=15&rft_id=info:doi/10.1016%2Fj.apples.2023.100141&rft.externalDocID=S266649682300016X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-4968&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-4968&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-4968&client=summon |