Tridoped Reduced Graphene Oxide as a Metal‐Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells
Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This results from bond polarization caused by the difference in electronegativity between heteroatom dopants and carbon, and/or the presence of defe...
Saved in:
Published in: | Advanced sustainable systems (Online) Vol. 1; no. 5 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-05-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This results from bond polarization caused by the difference in electronegativity between heteroatom dopants and carbon, and/or the presence of defects within the graphene lattice. In this work, fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is designed to combine these catalytically active sites. F,N,S‐rGO can be inexpensively synthesized by a facile and scalable route involving pyrolysis at 600 °C of sulfur‐doped rGO in the presence of Nafion and dimethyl formamide (DMF). The pyrolysis of Nafion and DMF provides F• and N• radicals which serve as doping agents. Rotating disk electrode investigations reveal the ORR catalytic activities of F,N,S‐rGO in both acidic and alkaline media, which are consistent with the real performances of the respective polymer electrolyte fuel cells (PEFCs). Maximum power densities of 14 and 46 mW cm−2 are obtained for the acidic and alkaline PEFCs, respectively, using F,N,S‐rGO as ORR catalysts. To the best of knowledge, this is the first report on the synthesis of F,N,S tridoped rGO and on its ORR activity in both acidic and alkaline PEFCs.
Novel fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is synthesized via a scalable and facile process and used as metal‐free oxygen reduction reaction (ORR) catalyst in polymer electrolyte fuel cells (PEFCs). F,N,S‐rGO demonstrates higher ORR activity in alkaline than in acidic electrolyte under both rotating disk electrode measurements and full PEFCs. |
---|---|
AbstractList | Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This results from bond polarization caused by the difference in electronegativity between heteroatom dopants and carbon, and/or the presence of defects within the graphene lattice. In this work, fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is designed to combine these catalytically active sites. F,N,S‐rGO can be inexpensively synthesized by a facile and scalable route involving pyrolysis at 600 °C of sulfur‐doped rGO in the presence of Nafion and dimethyl formamide (DMF). The pyrolysis of Nafion and DMF provides F
•
and N
•
radicals which serve as doping agents. Rotating disk electrode investigations reveal the ORR catalytic activities of F,N,S‐rGO in both acidic and alkaline media, which are consistent with the real performances of the respective polymer electrolyte fuel cells (PEFCs). Maximum power densities of 14 and 46 mW cm
−2
are obtained for the acidic and alkaline PEFCs, respectively, using F,N,S‐rGO as ORR catalysts. To the best of knowledge, this is the first report on the synthesis of F,N,S tridoped rGO and on its ORR activity in both acidic and alkaline PEFCs. Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This results from bond polarization caused by the difference in electronegativity between heteroatom dopants and carbon, and/or the presence of defects within the graphene lattice. In this work, fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is designed to combine these catalytically active sites. F,N,S‐rGO can be inexpensively synthesized by a facile and scalable route involving pyrolysis at 600 °C of sulfur‐doped rGO in the presence of Nafion and dimethyl formamide (DMF). The pyrolysis of Nafion and DMF provides F• and N• radicals which serve as doping agents. Rotating disk electrode investigations reveal the ORR catalytic activities of F,N,S‐rGO in both acidic and alkaline media, which are consistent with the real performances of the respective polymer electrolyte fuel cells (PEFCs). Maximum power densities of 14 and 46 mW cm−2 are obtained for the acidic and alkaline PEFCs, respectively, using F,N,S‐rGO as ORR catalysts. To the best of knowledge, this is the first report on the synthesis of F,N,S tridoped rGO and on its ORR activity in both acidic and alkaline PEFCs. Novel fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is synthesized via a scalable and facile process and used as metal‐free oxygen reduction reaction (ORR) catalyst in polymer electrolyte fuel cells (PEFCs). F,N,S‐rGO demonstrates higher ORR activity in alkaline than in acidic electrolyte under both rotating disk electrode measurements and full PEFCs. |
Author | Holdcroft, Steven Van Pham, Chuyen Fischer, Anna Unmuessig, Tobias Vuyyuru, Koteswara Rao Britton, Benjamin Klingele, Matthias Thiele, Simon |
Author_xml | – sequence: 1 givenname: Chuyen surname: Van Pham fullname: Van Pham, Chuyen organization: University of Freiburg – sequence: 2 givenname: Matthias surname: Klingele fullname: Klingele, Matthias organization: University of Freiburg – sequence: 3 givenname: Benjamin surname: Britton fullname: Britton, Benjamin organization: Simon Fraser University – sequence: 4 givenname: Koteswara Rao surname: Vuyyuru fullname: Vuyyuru, Koteswara Rao organization: FMF ‐ Freiburg Materials Research Center – sequence: 5 givenname: Tobias surname: Unmuessig fullname: Unmuessig, Tobias organization: FMF ‐ Freiburg Materials Research Center – sequence: 6 givenname: Steven surname: Holdcroft fullname: Holdcroft, Steven organization: Simon Fraser University – sequence: 7 givenname: Anna surname: Fischer fullname: Fischer, Anna organization: FMF ‐ Freiburg Materials Research Center – sequence: 8 givenname: Simon surname: Thiele fullname: Thiele, Simon email: simon.thiele@imtek.uni-freiburg.de organization: University of Freiburg |
BookMark | eNqFUEtOwzAUtBBIlNIta18gxXZSx1lG_YFUVATtOnLsFzC4SWWnguw4Antux0lIFATsWM2MNDNPb87QcVmVgNAFJWNKCLuU2h_GjFBOCAnFERqwkPMgjgQ__sNP0cj7p87CGCGTcIA-Ns7oag8a34E-qBaXTu4foQS8fjUasPRY4huopf18e184ADyVrWh8jYvKtabmAco-XJuqY7InM9hVpa-drNtSU-JUGW0UlqXGqX2W1rQnbivb7MDhuQVVu1bUgBcHsHgK1vpzdFJI62H0jUO0Xcw306tgtV5eT9NVoNq_RCDyWKtJwoSOQCgthQDNIgE5UJ0QSkDwSNOca8Z1mOc8iqM8FkWuJOGJntBwiMZ9r3KV9w6KbO_MTromoyTr1s26dbOfddtA0gdejIXmH3eWzu63v9kvVPWEBw |
CitedBy_id | crossref_primary_10_1016_j_cattod_2023_114129 crossref_primary_10_1016_j_ijhydene_2023_11_185 crossref_primary_10_1002_advs_201902126 crossref_primary_10_1007_s41918_018_0003_2 crossref_primary_10_1021_acsami_9b18790 crossref_primary_10_1039_C9NJ06289K crossref_primary_10_1016_j_carbon_2024_119291 crossref_primary_10_1039_C9RA03720A crossref_primary_10_1002_anie_202218269 crossref_primary_10_1016_j_apcatb_2022_121733 crossref_primary_10_1002_cssc_202400248 crossref_primary_10_1016_j_pmatsci_2020_100717 crossref_primary_10_1021_acsanm_0c01722 crossref_primary_10_1002_slct_202000322 crossref_primary_10_1039_D0SE00271B crossref_primary_10_1016_j_cej_2021_131025 crossref_primary_10_1021_acscentsci_8b00714 crossref_primary_10_1016_j_matpr_2022_10_293 crossref_primary_10_1134_S1023193522070114 crossref_primary_10_1002_celc_201800719 crossref_primary_10_1021_acsaem_0c00381 crossref_primary_10_1016_j_cej_2021_132102 crossref_primary_10_1016_S1872_5805_22_60590_0 crossref_primary_10_1021_acscatal_0c03511 crossref_primary_10_1149_1945_7111_acfc2a crossref_primary_10_1016_j_nanoen_2018_10_005 crossref_primary_10_1016_j_mtsust_2023_100506 crossref_primary_10_1002_smtd_201700209 crossref_primary_10_1016_j_carbon_2019_09_029 crossref_primary_10_1002_adsu_202000134 crossref_primary_10_1016_j_ceja_2021_100153 crossref_primary_10_1016_j_apsusc_2022_152922 crossref_primary_10_1088_1361_648X_ac0382 crossref_primary_10_1016_j_jelechem_2021_115058 crossref_primary_10_1002_adma_201801526 crossref_primary_10_1016_j_carbon_2020_03_011 crossref_primary_10_1149_2_1591912jes crossref_primary_10_1007_s10904_020_01834_w crossref_primary_10_1016_j_ijhydene_2021_09_133 crossref_primary_10_1002_adma_201804672 crossref_primary_10_1002_adma_201805121 crossref_primary_10_1002_smtd_201800049 crossref_primary_10_1088_1361_6528_aae18e crossref_primary_10_1002_admi_201800184 crossref_primary_10_1002_ange_202218269 crossref_primary_10_1002_aenm_202100695 crossref_primary_10_14233_ajchem_2021_23346 crossref_primary_10_1039_C8NJ00708J crossref_primary_10_1002_adma_201804799 crossref_primary_10_1007_s40820_020_00579_y crossref_primary_10_1002_celc_202000011 |
Cites_doi | 10.1038/nmat1849 10.1021/jp410501u 10.1038/srep09859 10.1002/app.38785 10.1002/adma.201302753 10.1002/1521-4095(200006)12:12<901::AID-ADMA901>3.0.CO;2-B 10.1038/nchem.686 10.1039/C5NR01793A 10.1016/j.cej.2013.07.007 10.1126/science.1164601 10.1039/C6EE00656F 10.1016/0304-5102(86)87045-6 10.1038/srep01810 10.1038/srep05639 10.1021/nn901850u 10.1016/j.jpowsour.2009.06.073 10.1016/j.jcat.2011.06.015 10.1039/C6TA00073H 10.1016/j.nanoen.2015.11.027 10.1039/b821622n 10.1126/science.1168049 10.1007/s00396-004-1164-6 10.1002/anie.201109257 10.1002/adma.201104971 10.1002/adma.201500821 10.1126/science.1135941 10.1039/c1cp21915d 10.1021/nn1006368 10.1002/adfm.201200186 10.1038/35104620 10.1039/C4NR04783D 10.1021/acscatal.5b00991 10.1039/c2ee22238h 10.1002/anie.201206720 10.1038/nmat2156 10.1039/C3CS60401B 10.1021/nn203393d 10.1016/j.apcatb.2004.06.021 10.1016/j.polymdegradstab.2012.03.016 10.1021/ja500432h 10.1126/sciadv.1400129 10.1038/srep02505 10.1038/ncomms1067 10.1002/fuce.201600113 10.1038/nature06016 10.1016/j.jpowsour.2013.02.057 10.1016/S0013-4686(99)00389-8 10.1038/35104599 10.1126/science.aad0832 10.1063/1.4870297 10.1021/cs400374k 10.1016/j.carbon.2015.05.002 10.1016/j.carbon.2009.12.063 10.1016/j.elecom.2008.05.032 10.1002/smll.201303892 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/adsu.201600038 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2366-7486 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adsu_201600038 ADSU201600038 |
Genre | article |
GrantInformation_xml | – fundername: EDELKAT project funderid: 03X5524 – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | 0R~ 1OC 33P AAHHS AANLZ AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS BFHJK BMXJE DCZOG EBS EJD HGLYW LATKE LEEKS LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-c3668-8b7dc5928d4e8cda88ed248ebe1d9010e864d1b6d26d3bb6474b78fbca069d513 |
IEDL.DBID | 33P |
ISSN | 2366-7486 |
IngestDate | Thu Nov 21 21:30:32 EST 2024 Sat Aug 24 01:04:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3668-8b7dc5928d4e8cda88ed248ebe1d9010e864d1b6d26d3bb6474b78fbca069d513 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adsu.201600038 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1002_adsu_201600038 wiley_primary_10_1002_adsu_201600038_ADSU201600038 |
PublicationCentury | 2000 |
PublicationDate | May 2017 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationTitle | Advanced sustainable systems (Online) |
PublicationYear | 2017 |
References | 2013; 3 2013; 25 2000; 45 2004; 283 2013; 129 1986; 38 2008; 7 2009; 194 2011; 13 2014; 136 2012; 97 2012; 51 2014; 4 2010; 1 2000; 12 2013; 236 2007; 6 2013; 231 2012; 24 2010; 2 2011; 282 2010; 4 2012; 22 2014; 6 2009; 323 2016; 351 2001; 414 2014; 118 2015; 1 2007; 448 2015; 5 2016; 19 2015; 93 2015; 11 2008; 10 2004 2016; 16 2015; 7 2014; 43 2016; 4 2015; 27 2010; 48 2007; 315 2015 2012; 6 2009; 2 2012; 5 2008; 130 2005; 56 2014; 104 2016; 9 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Socrates G. (e_1_2_8_54_1) 2004 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Jeong H.‐K. (e_1_2_8_40_1) 2008; 130 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 3 start-page: 1726 year: 2013 publication-title: ACS Catal. – volume: 118 start-page: 3545 year: 2014 publication-title: J. Phys. Chem. C – volume: 10 start-page: 1144 year: 2008 publication-title: Electrochem. Commun. – volume: 414 start-page: 345 year: 2001 publication-title: Nature – volume: 97 start-page: 1010 year: 2012 publication-title: Polym. Degrad. Stab. – volume: 13 start-page: 15384 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 104 start-page: 132102 year: 2014 publication-title: Appl. Phys. Lett. – volume: 1 start-page: e1400129 year: 2015 publication-title: Sci. Adv. – volume: 6 start-page: 13740 year: 2014 publication-title: Nanoscale – volume: 3 start-page: 1810 year: 2013 publication-title: Sci. Rep. – volume: 3 start-page: 2505 year: 2013 publication-title: Sci. Rep. – volume: 11 start-page: 352 year: 2015 publication-title: Small – volume: 129 start-page: 1586 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 4 start-page: 5639 year: 2014 publication-title: Sci. Rep. – volume: 4 start-page: 1321 year: 2010 publication-title: ACS Nano – volume: 231 start-page: 146 year: 2013 publication-title: Chem. Eng. J. – volume: 16 start-page: 522 year: 2016 publication-title: Fuel Cells – volume: 448 start-page: 457 year: 2007 publication-title: Nature – volume: 283 start-page: 235 year: 2004 publication-title: Colloid Polym. Sci. – volume: 1 start-page: 73 year: 2010 publication-title: Nat. Commun. – volume: 51 start-page: 11496 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 136 start-page: 4394 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9859 year: 2015 publication-title: Sci. Rep. – volume: 236 start-page: 238 year: 2013 publication-title: J. Power Sources – year: 2004 – volume: 6 start-page: 205 year: 2012 publication-title: ACS Nano – volume: 7 start-page: 333 year: 2008 publication-title: Nat. Mater. – volume: 282 start-page: 183 year: 2011 publication-title: J. Catal. – volume: 7 start-page: 10584 year: 2015 publication-title: Nanoscale – volume: 4 start-page: 4806 year: 2010 publication-title: ACS Nano – volume: 4 start-page: 6014 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2130 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 start-page: 865 year: 2009 publication-title: Energy Environ. Sci. – year: 2015 – volume: 194 start-page: 588 year: 2009 publication-title: J. Power Sources – volume: 27 start-page: 5372 year: 2015 publication-title: Adv. Mater. – volume: 315 start-page: 493 year: 2007 publication-title: Science – volume: 38 start-page: 5 year: 1986 publication-title: J. Mol. Catal. – volume: 2 start-page: 581 year: 2010 publication-title: Nat. Chem. – volume: 19 start-page: 373 year: 2016 publication-title: Nano Energy – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 25 start-page: 6138 year: 2013 publication-title: Adv. Mater. – volume: 43 start-page: 2841 year: 2014 publication-title: Chem. Soc. Rev. – volume: 56 start-page: 9 year: 2005 publication-title: Appl. Catal., B – volume: 93 start-page: 130 year: 2015 publication-title: Carbon – volume: 48 start-page: 1686 year: 2010 publication-title: Carbon – volume: 45 start-page: 1655 year: 2000 publication-title: Electrochim. Acta – volume: 12 start-page: 901 year: 2000 publication-title: Adv. Mater. – volume: 5 start-page: 5207 year: 2015 publication-title: ACS Catal. – volume: 24 start-page: 4203 year: 2012 publication-title: Adv. Mater. – volume: 130 start-page: 1362 year: 2008 publication-title: J. Am. Ceram. Soc. – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 51 start-page: 4209 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 414 start-page: 332 year: 2001 publication-title: Nature – volume: 5 start-page: 8848 year: 2012 publication-title: Energy Environ. Sci. – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 22 start-page: 3634 year: 2012 publication-title: Adv. Funct. Mater. – volume: 323 start-page: 757 year: 2009 publication-title: Science – ident: e_1_2_8_16_1 doi: 10.1038/nmat1849 – ident: e_1_2_8_63_1 doi: 10.1021/jp410501u – ident: e_1_2_8_29_1 doi: 10.1038/srep09859 – ident: e_1_2_8_28_1 doi: 10.1002/app.38785 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201302753 – ident: e_1_2_8_51_1 doi: 10.1002/1521-4095(200006)12:12<901::AID-ADMA901>3.0.CO;2-B – ident: e_1_2_8_52_1 doi: 10.1038/nchem.686 – ident: e_1_2_8_22_1 doi: 10.1039/C5NR01793A – ident: e_1_2_8_30_1 doi: 10.1016/j.cej.2013.07.007 – ident: e_1_2_8_34_1 doi: 10.1126/science.1164601 – ident: e_1_2_8_58_1 doi: 10.1039/C6EE00656F – volume-title: Infrared and Raman Characteristic Group Frequencies: Tables and Charts year: 2004 ident: e_1_2_8_54_1 contributor: fullname: Socrates G. – ident: e_1_2_8_56_1 doi: 10.1016/0304-5102(86)87045-6 – ident: e_1_2_8_59_1 doi: 10.1038/srep01810 – ident: e_1_2_8_24_1 doi: 10.1021/jp410501u – ident: e_1_2_8_32_1 doi: 10.1038/srep05639 – ident: e_1_2_8_44_1 doi: 10.1021/nn901850u – ident: e_1_2_8_7_1 doi: 10.1016/j.jpowsour.2009.06.073 – ident: e_1_2_8_60_1 doi: 10.1016/j.jcat.2011.06.015 – ident: e_1_2_8_50_1 doi: 10.1039/C6TA00073H – ident: e_1_2_8_20_1 doi: 10.1016/j.nanoen.2015.11.027 – ident: e_1_2_8_35_1 doi: 10.1021/jp410501u – ident: e_1_2_8_4_1 doi: 10.1039/b821622n – ident: e_1_2_8_15_1 doi: 10.1126/science.1168049 – ident: e_1_2_8_55_1 doi: 10.1007/s00396-004-1164-6 – ident: e_1_2_8_21_1 doi: 10.1002/anie.201109257 – ident: e_1_2_8_10_1 doi: 10.1002/adma.201104971 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201500821 – ident: e_1_2_8_2_1 doi: 10.1126/science.1135941 – ident: e_1_2_8_9_1 doi: 10.1039/c1cp21915d – volume: 130 start-page: 1362 year: 2008 ident: e_1_2_8_40_1 publication-title: J. Am. Ceram. Soc. contributor: fullname: Jeong H.‐K. – ident: e_1_2_8_53_1 doi: 10.1021/nn1006368 – ident: e_1_2_8_39_1 doi: 10.1002/adfm.201200186 – ident: e_1_2_8_3_1 doi: 10.1038/35104620 – ident: e_1_2_8_62_1 doi: 10.1039/C4NR04783D – ident: e_1_2_8_17_1 doi: 10.1021/acscatal.5b00991 – ident: e_1_2_8_11_1 doi: 10.1039/c2ee22238h – ident: e_1_2_8_26_1 doi: 10.1002/anie.201206720 – ident: e_1_2_8_5_1 doi: 10.1038/nmat2156 – ident: e_1_2_8_41_1 doi: 10.1038/nchem.686 – ident: e_1_2_8_13_1 doi: 10.1039/C3CS60401B – ident: e_1_2_8_33_1 – ident: e_1_2_8_61_1 doi: 10.1021/nn203393d – ident: e_1_2_8_8_1 doi: 10.1016/j.apcatb.2004.06.021 – ident: e_1_2_8_23_1 doi: 10.1021/nn203393d – ident: e_1_2_8_31_1 doi: 10.1016/j.polymdegradstab.2012.03.016 – ident: e_1_2_8_19_1 doi: 10.1021/ja500432h – ident: e_1_2_8_57_1 doi: 10.1126/sciadv.1400129 – ident: e_1_2_8_46_1 doi: 10.1038/srep02505 – ident: e_1_2_8_18_1 doi: 10.1021/nn901850u – ident: e_1_2_8_42_1 doi: 10.1038/ncomms1067 – ident: e_1_2_8_27_1 doi: 10.1002/fuce.201600113 – ident: e_1_2_8_36_1 doi: 10.1038/nature06016 – ident: e_1_2_8_12_1 doi: 10.1016/j.jpowsour.2013.02.057 – ident: e_1_2_8_47_1 doi: 10.1016/S0013-4686(99)00389-8 – ident: e_1_2_8_1_1 doi: 10.1038/35104599 – ident: e_1_2_8_49_1 doi: 10.1126/science.aad0832 – ident: e_1_2_8_25_1 doi: 10.1063/1.4870297 – ident: e_1_2_8_43_1 doi: 10.1021/cs400374k – ident: e_1_2_8_45_1 doi: 10.1016/j.carbon.2015.05.002 – ident: e_1_2_8_37_1 doi: 10.1016/j.carbon.2009.12.063 – ident: e_1_2_8_6_1 doi: 10.1016/j.elecom.2008.05.032 – ident: e_1_2_8_48_1 doi: 10.1002/smll.201303892 |
SSID | ssj0003220053 |
Score | 2.294662 |
Snippet | Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | fuel cells metal‐free catalysts oxygen reduction reaction tridoped graphene |
Title | Tridoped Reduced Graphene Oxide as a Metal‐Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadsu.201600038 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKp15aoEVQHpoDUk8Ru07iOMfVPuiFh3hIvUW2ZyJFhCza7ErdGz-BO_-OX4InWUI5VSqnxIodOZ7P9szE840QR9LmMcXSBSp0vSCyLgnS1BfJaIylIuls47q4Ss5-69GYaXK6KP6WH6JzuPHMaNZrnuDG1sdvpKEGvRUpmSCN_275RdibCk0MR3jROVk8WhllTYI5pZg3U70SN_bk8fs3vNuY_lZUm51m8vXjfdwQX1ZaJgxaWGyKT1Rtie3xW1Cbf7ia1fU38XQ9K3B6TwiXTOTqrydMY-1XQTj_UyCBqcHAKflWzw-PkxkRDNnrs6zn4HVeX2npYdg2Zjn7uzZcAkZ0x_on01EgFBUMXIGFA1MhDMpbwx8IF9NyeUczGLcJecrlnGCyoBKGVJb1d3EzGV8PfwWrpA2B80OsA20TdHEqNUakHRqtCWWkPVb6yEdBSKsI-1ahVBhaq6IksonOrTM9lWLcD7fFejWtaEcAGpmHOYNGmSgyoU04C3mS5gla5-22XfHzVWLZfcvNkbUszDLjkc-6kd8VshHTP6plg9HVTVf68T-N9sRnyRt_cyRyX6zPZws6EGs1Lg4baL4AMs3nUw |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYKPbSX0hcqpY85VOopYtdJHOcY7aNUBYrKIvUW2Z6JFBGyaLMrdW_8BO78O35JPcnuUk6Vqp4SK3bkeL6xxxPPN0J8kraIKZYuUKHrBZF1SZCmvkhGYywVSWdb18VZcvJTD0dMk5OtY2E6foiNw401o52vWcHZIX1wzxpq0G8jJTOk8e-tLfE4Uh6NHMURnm7cLB6vjLM2xZxSzJyp1tSNPXnw8BUPlqY_TdV2rRnv_IdePhfPVoYmZB0yXohHVL8Uu6P7uDb_cKXYzStxO5mVOL0ihB_M5eqvX5jJ2k-E8P1XiQSmAQPH5FvdXd-MZ0QwYMfPspmDN3t9paVHYteYRe3vuogJGNIlm6DMSIFQ1pC5EksHpkbIqgvDXwin02p5STMYdTl5quWcYLygCgZUVc1rcT4eTQaHwSpvQ-D8GOtA2wRdnEqNEWmHRmtCGWkPlz7yaRDSKsK-VSgVhtaqKIlsogvrTE-lGPfDXbFdT2t6IwCNLMKCcaNMFJnQJpyIPEmLBK3zW7c98Xktsvyqo-fIOyJmmfPI55uR3xOyldNfquXZ8Ox8U3r7L40-iieHk-Oj_Ojrybd98VSyHdCekHwntuezBb0XWw0uPrQ4_Q3Uh-t7 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZokRCX8lvRlp85IHGKuuskjnNc7W4AAWVFW4lbZHsmUkSaXW12JfbGI_TO2_VJ6km2KT0hwSmxYkeO5xt7PPF8I8RbaYuYYukCFbpBEFmXBGnqi2Q0xlKRdLZ1XZwmJ9_1ZMo0OX0Uf8cP0TvcWDPa-ZoVfIHF8S1pqEG_i5RMkMZ_t3bE_cjb4syeH4az3svi4cowazPMKcXEmeqGuXEgj---4s7K9Kel2i412aP_7-Rjsbc1M2HU4eKJuEf1U7E_vY1q8w-3at08E7_PliXOF4TwjZlc_fU981j7aRC-_iyRwDRg4Av5Vle_LrMlEYzZ7bNpVuCNXl9p43HYNWZB-7suXgImdMEGKPNRIJQ1jFyJpQNTI4yqH4Y_EGbzanNBS5h2GXmqzYogW1MFY6qq5rk4z6Zn4w_BNmtD4PwQ60DbBF2cSo0RaYdGa0IZaQ-WIfJZENIqwqFVKBWG1qooiWyiC-vMQKUYD8N9sVvPa3ohAI0swoJRo0wUmdAmnIY8SYsErfMbtwPx7kZi-aIj58g7GmaZ88jn_cgfCNmK6S_V8tHk9LwvHf5LozfiwWyS5Z8_nnw6Eg8lGwHt8ciXYne1XNMrsdPg-nWL0msKdeoh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tridoped+Reduced+Graphene+Oxide+as+a+Metal%E2%80%90Free+Catalyst+for+Oxygen+Reduction+Reaction+Demonstrated+in+Acidic+and+Alkaline+Polymer+Electrolyte+Fuel+Cells&rft.jtitle=Advanced+sustainable+systems+%28Online%29&rft.au=Van+Pham%2C+Chuyen&rft.au=Klingele%2C+Matthias&rft.au=Britton%2C+Benjamin&rft.au=Vuyyuru%2C+Koteswara+Rao&rft.date=2017-05-01&rft.issn=2366-7486&rft.eissn=2366-7486&rft.volume=1&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadsu.201600038&rft.externalDBID=10.1002%252Fadsu.201600038&rft.externalDocID=ADSU201600038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-7486&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-7486&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-7486&client=summon |