Tridoped Reduced Graphene Oxide as a Metal‐Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells

Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This results from bond polarization caused by the difference in electronegativity between heteroatom dopants and carbon, and/or the presence of defe...

Full description

Saved in:
Bibliographic Details
Published in:Advanced sustainable systems (Online) Vol. 1; no. 5
Main Authors: Van Pham, Chuyen, Klingele, Matthias, Britton, Benjamin, Vuyyuru, Koteswara Rao, Unmuessig, Tobias, Holdcroft, Steven, Fischer, Anna, Thiele, Simon
Format: Journal Article
Language:English
Published: 01-05-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This results from bond polarization caused by the difference in electronegativity between heteroatom dopants and carbon, and/or the presence of defects within the graphene lattice. In this work, fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is designed to combine these catalytically active sites. F,N,S‐rGO can be inexpensively synthesized by a facile and scalable route involving pyrolysis at 600 °C of sulfur‐doped rGO in the presence of Nafion and dimethyl formamide (DMF). The pyrolysis of Nafion and DMF provides F• and N• radicals which serve as doping agents. Rotating disk electrode investigations reveal the ORR catalytic activities of F,N,S‐rGO in both acidic and alkaline media, which are consistent with the real performances of the respective polymer electrolyte fuel cells (PEFCs). Maximum power densities of 14 and 46 mW cm−2 are obtained for the acidic and alkaline PEFCs, respectively, using F,N,S‐rGO as ORR catalysts. To the best of knowledge, this is the first report on the synthesis of F,N,S tridoped rGO and on its ORR activity in both acidic and alkaline PEFCs. Novel fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is synthesized via a scalable and facile process and used as metal‐free oxygen reduction reaction (ORR) catalyst in polymer electrolyte fuel cells (PEFCs). F,N,S‐rGO demonstrates higher ORR activity in alkaline than in acidic electrolyte under both rotating disk electrode measurements and full PEFCs.
AbstractList Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This results from bond polarization caused by the difference in electronegativity between heteroatom dopants and carbon, and/or the presence of defects within the graphene lattice. In this work, fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is designed to combine these catalytically active sites. F,N,S‐rGO can be inexpensively synthesized by a facile and scalable route involving pyrolysis at 600 °C of sulfur‐doped rGO in the presence of Nafion and dimethyl formamide (DMF). The pyrolysis of Nafion and DMF provides F • and N • radicals which serve as doping agents. Rotating disk electrode investigations reveal the ORR catalytic activities of F,N,S‐rGO in both acidic and alkaline media, which are consistent with the real performances of the respective polymer electrolyte fuel cells (PEFCs). Maximum power densities of 14 and 46 mW cm −2 are obtained for the acidic and alkaline PEFCs, respectively, using F,N,S‐rGO as ORR catalysts. To the best of knowledge, this is the first report on the synthesis of F,N,S tridoped rGO and on its ORR activity in both acidic and alkaline PEFCs.
Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This results from bond polarization caused by the difference in electronegativity between heteroatom dopants and carbon, and/or the presence of defects within the graphene lattice. In this work, fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is designed to combine these catalytically active sites. F,N,S‐rGO can be inexpensively synthesized by a facile and scalable route involving pyrolysis at 600 °C of sulfur‐doped rGO in the presence of Nafion and dimethyl formamide (DMF). The pyrolysis of Nafion and DMF provides F• and N• radicals which serve as doping agents. Rotating disk electrode investigations reveal the ORR catalytic activities of F,N,S‐rGO in both acidic and alkaline media, which are consistent with the real performances of the respective polymer electrolyte fuel cells (PEFCs). Maximum power densities of 14 and 46 mW cm−2 are obtained for the acidic and alkaline PEFCs, respectively, using F,N,S‐rGO as ORR catalysts. To the best of knowledge, this is the first report on the synthesis of F,N,S tridoped rGO and on its ORR activity in both acidic and alkaline PEFCs. Novel fluorine, nitrogen, and sulfur tridoped reduced graphene oxide (F,N,S‐rGO) is synthesized via a scalable and facile process and used as metal‐free oxygen reduction reaction (ORR) catalyst in polymer electrolyte fuel cells (PEFCs). F,N,S‐rGO demonstrates higher ORR activity in alkaline than in acidic electrolyte under both rotating disk electrode measurements and full PEFCs.
Author Holdcroft, Steven
Van Pham, Chuyen
Fischer, Anna
Unmuessig, Tobias
Vuyyuru, Koteswara Rao
Britton, Benjamin
Klingele, Matthias
Thiele, Simon
Author_xml – sequence: 1
  givenname: Chuyen
  surname: Van Pham
  fullname: Van Pham, Chuyen
  organization: University of Freiburg
– sequence: 2
  givenname: Matthias
  surname: Klingele
  fullname: Klingele, Matthias
  organization: University of Freiburg
– sequence: 3
  givenname: Benjamin
  surname: Britton
  fullname: Britton, Benjamin
  organization: Simon Fraser University
– sequence: 4
  givenname: Koteswara Rao
  surname: Vuyyuru
  fullname: Vuyyuru, Koteswara Rao
  organization: FMF ‐ Freiburg Materials Research Center
– sequence: 5
  givenname: Tobias
  surname: Unmuessig
  fullname: Unmuessig, Tobias
  organization: FMF ‐ Freiburg Materials Research Center
– sequence: 6
  givenname: Steven
  surname: Holdcroft
  fullname: Holdcroft, Steven
  organization: Simon Fraser University
– sequence: 7
  givenname: Anna
  surname: Fischer
  fullname: Fischer, Anna
  organization: FMF ‐ Freiburg Materials Research Center
– sequence: 8
  givenname: Simon
  surname: Thiele
  fullname: Thiele, Simon
  email: simon.thiele@imtek.uni-freiburg.de
  organization: University of Freiburg
BookMark eNqFUEtOwzAUtBBIlNIta18gxXZSx1lG_YFUVATtOnLsFzC4SWWnguw4Antux0lIFATsWM2MNDNPb87QcVmVgNAFJWNKCLuU2h_GjFBOCAnFERqwkPMgjgQ__sNP0cj7p87CGCGTcIA-Ns7oag8a34E-qBaXTu4foQS8fjUasPRY4huopf18e184ADyVrWh8jYvKtabmAco-XJuqY7InM9hVpa-drNtSU-JUGW0UlqXGqX2W1rQnbivb7MDhuQVVu1bUgBcHsHgK1vpzdFJI62H0jUO0Xcw306tgtV5eT9NVoNq_RCDyWKtJwoSOQCgthQDNIgE5UJ0QSkDwSNOca8Z1mOc8iqM8FkWuJOGJntBwiMZ9r3KV9w6KbO_MTromoyTr1s26dbOfddtA0gdejIXmH3eWzu63v9kvVPWEBw
CitedBy_id crossref_primary_10_1016_j_cattod_2023_114129
crossref_primary_10_1016_j_ijhydene_2023_11_185
crossref_primary_10_1002_advs_201902126
crossref_primary_10_1007_s41918_018_0003_2
crossref_primary_10_1021_acsami_9b18790
crossref_primary_10_1039_C9NJ06289K
crossref_primary_10_1016_j_carbon_2024_119291
crossref_primary_10_1039_C9RA03720A
crossref_primary_10_1002_anie_202218269
crossref_primary_10_1016_j_apcatb_2022_121733
crossref_primary_10_1002_cssc_202400248
crossref_primary_10_1016_j_pmatsci_2020_100717
crossref_primary_10_1021_acsanm_0c01722
crossref_primary_10_1002_slct_202000322
crossref_primary_10_1039_D0SE00271B
crossref_primary_10_1016_j_cej_2021_131025
crossref_primary_10_1021_acscentsci_8b00714
crossref_primary_10_1016_j_matpr_2022_10_293
crossref_primary_10_1134_S1023193522070114
crossref_primary_10_1002_celc_201800719
crossref_primary_10_1021_acsaem_0c00381
crossref_primary_10_1016_j_cej_2021_132102
crossref_primary_10_1016_S1872_5805_22_60590_0
crossref_primary_10_1021_acscatal_0c03511
crossref_primary_10_1149_1945_7111_acfc2a
crossref_primary_10_1016_j_nanoen_2018_10_005
crossref_primary_10_1016_j_mtsust_2023_100506
crossref_primary_10_1002_smtd_201700209
crossref_primary_10_1016_j_carbon_2019_09_029
crossref_primary_10_1002_adsu_202000134
crossref_primary_10_1016_j_ceja_2021_100153
crossref_primary_10_1016_j_apsusc_2022_152922
crossref_primary_10_1088_1361_648X_ac0382
crossref_primary_10_1016_j_jelechem_2021_115058
crossref_primary_10_1002_adma_201801526
crossref_primary_10_1016_j_carbon_2020_03_011
crossref_primary_10_1149_2_1591912jes
crossref_primary_10_1007_s10904_020_01834_w
crossref_primary_10_1016_j_ijhydene_2021_09_133
crossref_primary_10_1002_adma_201804672
crossref_primary_10_1002_adma_201805121
crossref_primary_10_1002_smtd_201800049
crossref_primary_10_1088_1361_6528_aae18e
crossref_primary_10_1002_admi_201800184
crossref_primary_10_1002_ange_202218269
crossref_primary_10_1002_aenm_202100695
crossref_primary_10_14233_ajchem_2021_23346
crossref_primary_10_1039_C8NJ00708J
crossref_primary_10_1002_adma_201804799
crossref_primary_10_1007_s40820_020_00579_y
crossref_primary_10_1002_celc_202000011
Cites_doi 10.1038/nmat1849
10.1021/jp410501u
10.1038/srep09859
10.1002/app.38785
10.1002/adma.201302753
10.1002/1521-4095(200006)12:12<901::AID-ADMA901>3.0.CO;2-B
10.1038/nchem.686
10.1039/C5NR01793A
10.1016/j.cej.2013.07.007
10.1126/science.1164601
10.1039/C6EE00656F
10.1016/0304-5102(86)87045-6
10.1038/srep01810
10.1038/srep05639
10.1021/nn901850u
10.1016/j.jpowsour.2009.06.073
10.1016/j.jcat.2011.06.015
10.1039/C6TA00073H
10.1016/j.nanoen.2015.11.027
10.1039/b821622n
10.1126/science.1168049
10.1007/s00396-004-1164-6
10.1002/anie.201109257
10.1002/adma.201104971
10.1002/adma.201500821
10.1126/science.1135941
10.1039/c1cp21915d
10.1021/nn1006368
10.1002/adfm.201200186
10.1038/35104620
10.1039/C4NR04783D
10.1021/acscatal.5b00991
10.1039/c2ee22238h
10.1002/anie.201206720
10.1038/nmat2156
10.1039/C3CS60401B
10.1021/nn203393d
10.1016/j.apcatb.2004.06.021
10.1016/j.polymdegradstab.2012.03.016
10.1021/ja500432h
10.1126/sciadv.1400129
10.1038/srep02505
10.1038/ncomms1067
10.1002/fuce.201600113
10.1038/nature06016
10.1016/j.jpowsour.2013.02.057
10.1016/S0013-4686(99)00389-8
10.1038/35104599
10.1126/science.aad0832
10.1063/1.4870297
10.1021/cs400374k
10.1016/j.carbon.2015.05.002
10.1016/j.carbon.2009.12.063
10.1016/j.elecom.2008.05.032
10.1002/smll.201303892
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/adsu.201600038
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2366-7486
EndPage n/a
ExternalDocumentID 10_1002_adsu_201600038
ADSU201600038
Genre article
GrantInformation_xml – fundername: EDELKAT project
  funderid: 03X5524
– fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID 0R~
1OC
33P
AAHHS
AANLZ
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c3668-8b7dc5928d4e8cda88ed248ebe1d9010e864d1b6d26d3bb6474b78fbca069d513
IEDL.DBID 33P
ISSN 2366-7486
IngestDate Thu Nov 21 21:30:32 EST 2024
Sat Aug 24 01:04:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3668-8b7dc5928d4e8cda88ed248ebe1d9010e864d1b6d26d3bb6474b78fbca069d513
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adsu.201600038
PageCount 10
ParticipantIDs crossref_primary_10_1002_adsu_201600038
wiley_primary_10_1002_adsu_201600038_ADSU201600038
PublicationCentury 2000
PublicationDate May 2017
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationTitle Advanced sustainable systems (Online)
PublicationYear 2017
References 2013; 3
2013; 25
2000; 45
2004; 283
2013; 129
1986; 38
2008; 7
2009; 194
2011; 13
2014; 136
2012; 97
2012; 51
2014; 4
2010; 1
2000; 12
2013; 236
2007; 6
2013; 231
2012; 24
2010; 2
2011; 282
2010; 4
2012; 22
2014; 6
2009; 323
2016; 351
2001; 414
2014; 118
2015; 1
2007; 448
2015; 5
2016; 19
2015; 93
2015; 11
2008; 10
2004
2016; 16
2015; 7
2014; 43
2016; 4
2015; 27
2010; 48
2007; 315
2015
2012; 6
2009; 2
2012; 5
2008; 130
2005; 56
2014; 104
2016; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Socrates G. (e_1_2_8_54_1) 2004
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Jeong H.‐K. (e_1_2_8_40_1) 2008; 130
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 3
  start-page: 1726
  year: 2013
  publication-title: ACS Catal.
– volume: 118
  start-page: 3545
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 1144
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 414
  start-page: 345
  year: 2001
  publication-title: Nature
– volume: 97
  start-page: 1010
  year: 2012
  publication-title: Polym. Degrad. Stab.
– volume: 13
  start-page: 15384
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 104
  start-page: 132102
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: e1400129
  year: 2015
  publication-title: Sci. Adv.
– volume: 6
  start-page: 13740
  year: 2014
  publication-title: Nanoscale
– volume: 3
  start-page: 1810
  year: 2013
  publication-title: Sci. Rep.
– volume: 3
  start-page: 2505
  year: 2013
  publication-title: Sci. Rep.
– volume: 11
  start-page: 352
  year: 2015
  publication-title: Small
– volume: 129
  start-page: 1586
  year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 4
  start-page: 5639
  year: 2014
  publication-title: Sci. Rep.
– volume: 4
  start-page: 1321
  year: 2010
  publication-title: ACS Nano
– volume: 231
  start-page: 146
  year: 2013
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 522
  year: 2016
  publication-title: Fuel Cells
– volume: 448
  start-page: 457
  year: 2007
  publication-title: Nature
– volume: 283
  start-page: 235
  year: 2004
  publication-title: Colloid Polym. Sci.
– volume: 1
  start-page: 73
  year: 2010
  publication-title: Nat. Commun.
– volume: 51
  start-page: 11496
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 136
  start-page: 4394
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9859
  year: 2015
  publication-title: Sci. Rep.
– volume: 236
  start-page: 238
  year: 2013
  publication-title: J. Power Sources
– year: 2004
– volume: 6
  start-page: 205
  year: 2012
  publication-title: ACS Nano
– volume: 7
  start-page: 333
  year: 2008
  publication-title: Nat. Mater.
– volume: 282
  start-page: 183
  year: 2011
  publication-title: J. Catal.
– volume: 7
  start-page: 10584
  year: 2015
  publication-title: Nanoscale
– volume: 4
  start-page: 4806
  year: 2010
  publication-title: ACS Nano
– volume: 4
  start-page: 6014
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2130
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 865
  year: 2009
  publication-title: Energy Environ. Sci.
– year: 2015
– volume: 194
  start-page: 588
  year: 2009
  publication-title: J. Power Sources
– volume: 27
  start-page: 5372
  year: 2015
  publication-title: Adv. Mater.
– volume: 315
  start-page: 493
  year: 2007
  publication-title: Science
– volume: 38
  start-page: 5
  year: 1986
  publication-title: J. Mol. Catal.
– volume: 2
  start-page: 581
  year: 2010
  publication-title: Nat. Chem.
– volume: 19
  start-page: 373
  year: 2016
  publication-title: Nano Energy
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 25
  start-page: 6138
  year: 2013
  publication-title: Adv. Mater.
– volume: 43
  start-page: 2841
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 9
  year: 2005
  publication-title: Appl. Catal., B
– volume: 93
  start-page: 130
  year: 2015
  publication-title: Carbon
– volume: 48
  start-page: 1686
  year: 2010
  publication-title: Carbon
– volume: 45
  start-page: 1655
  year: 2000
  publication-title: Electrochim. Acta
– volume: 12
  start-page: 901
  year: 2000
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5207
  year: 2015
  publication-title: ACS Catal.
– volume: 24
  start-page: 4203
  year: 2012
  publication-title: Adv. Mater.
– volume: 130
  start-page: 1362
  year: 2008
  publication-title: J. Am. Ceram. Soc.
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 51
  start-page: 4209
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 414
  start-page: 332
  year: 2001
  publication-title: Nature
– volume: 5
  start-page: 8848
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 22
  start-page: 3634
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 323
  start-page: 757
  year: 2009
  publication-title: Science
– ident: e_1_2_8_16_1
  doi: 10.1038/nmat1849
– ident: e_1_2_8_63_1
  doi: 10.1021/jp410501u
– ident: e_1_2_8_29_1
  doi: 10.1038/srep09859
– ident: e_1_2_8_28_1
  doi: 10.1002/app.38785
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201302753
– ident: e_1_2_8_51_1
  doi: 10.1002/1521-4095(200006)12:12<901::AID-ADMA901>3.0.CO;2-B
– ident: e_1_2_8_52_1
  doi: 10.1038/nchem.686
– ident: e_1_2_8_22_1
  doi: 10.1039/C5NR01793A
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cej.2013.07.007
– ident: e_1_2_8_34_1
  doi: 10.1126/science.1164601
– ident: e_1_2_8_58_1
  doi: 10.1039/C6EE00656F
– volume-title: Infrared and Raman Characteristic Group Frequencies: Tables and Charts
  year: 2004
  ident: e_1_2_8_54_1
  contributor:
    fullname: Socrates G.
– ident: e_1_2_8_56_1
  doi: 10.1016/0304-5102(86)87045-6
– ident: e_1_2_8_59_1
  doi: 10.1038/srep01810
– ident: e_1_2_8_24_1
  doi: 10.1021/jp410501u
– ident: e_1_2_8_32_1
  doi: 10.1038/srep05639
– ident: e_1_2_8_44_1
  doi: 10.1021/nn901850u
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jpowsour.2009.06.073
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jcat.2011.06.015
– ident: e_1_2_8_50_1
  doi: 10.1039/C6TA00073H
– ident: e_1_2_8_20_1
  doi: 10.1016/j.nanoen.2015.11.027
– ident: e_1_2_8_35_1
  doi: 10.1021/jp410501u
– ident: e_1_2_8_4_1
  doi: 10.1039/b821622n
– ident: e_1_2_8_15_1
  doi: 10.1126/science.1168049
– ident: e_1_2_8_55_1
  doi: 10.1007/s00396-004-1164-6
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201109257
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.201104971
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201500821
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1135941
– ident: e_1_2_8_9_1
  doi: 10.1039/c1cp21915d
– volume: 130
  start-page: 1362
  year: 2008
  ident: e_1_2_8_40_1
  publication-title: J. Am. Ceram. Soc.
  contributor:
    fullname: Jeong H.‐K.
– ident: e_1_2_8_53_1
  doi: 10.1021/nn1006368
– ident: e_1_2_8_39_1
  doi: 10.1002/adfm.201200186
– ident: e_1_2_8_3_1
  doi: 10.1038/35104620
– ident: e_1_2_8_62_1
  doi: 10.1039/C4NR04783D
– ident: e_1_2_8_17_1
  doi: 10.1021/acscatal.5b00991
– ident: e_1_2_8_11_1
  doi: 10.1039/c2ee22238h
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.201206720
– ident: e_1_2_8_5_1
  doi: 10.1038/nmat2156
– ident: e_1_2_8_41_1
  doi: 10.1038/nchem.686
– ident: e_1_2_8_13_1
  doi: 10.1039/C3CS60401B
– ident: e_1_2_8_33_1
– ident: e_1_2_8_61_1
  doi: 10.1021/nn203393d
– ident: e_1_2_8_8_1
  doi: 10.1016/j.apcatb.2004.06.021
– ident: e_1_2_8_23_1
  doi: 10.1021/nn203393d
– ident: e_1_2_8_31_1
  doi: 10.1016/j.polymdegradstab.2012.03.016
– ident: e_1_2_8_19_1
  doi: 10.1021/ja500432h
– ident: e_1_2_8_57_1
  doi: 10.1126/sciadv.1400129
– ident: e_1_2_8_46_1
  doi: 10.1038/srep02505
– ident: e_1_2_8_18_1
  doi: 10.1021/nn901850u
– ident: e_1_2_8_42_1
  doi: 10.1038/ncomms1067
– ident: e_1_2_8_27_1
  doi: 10.1002/fuce.201600113
– ident: e_1_2_8_36_1
  doi: 10.1038/nature06016
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jpowsour.2013.02.057
– ident: e_1_2_8_47_1
  doi: 10.1016/S0013-4686(99)00389-8
– ident: e_1_2_8_1_1
  doi: 10.1038/35104599
– ident: e_1_2_8_49_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_8_25_1
  doi: 10.1063/1.4870297
– ident: e_1_2_8_43_1
  doi: 10.1021/cs400374k
– ident: e_1_2_8_45_1
  doi: 10.1016/j.carbon.2015.05.002
– ident: e_1_2_8_37_1
  doi: 10.1016/j.carbon.2009.12.063
– ident: e_1_2_8_6_1
  doi: 10.1016/j.elecom.2008.05.032
– ident: e_1_2_8_48_1
  doi: 10.1002/smll.201303892
SSID ssj0003220053
Score 2.294662
Snippet Recently, it has been demonstrated that doping of graphene by elements such as N, S, or F creates active sites for the oxygen reduction reaction (ORR). This...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms fuel cells
metal‐free catalysts
oxygen reduction reaction
tridoped graphene
Title Tridoped Reduced Graphene Oxide as a Metal‐Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadsu.201600038
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYKp15aoEVQHpoDUk8Ru07iOMfVPuiFh3hIvUW2ZyJFhCza7ErdGz-BO_-OX4InWUI5VSqnxIodOZ7P9szE840QR9LmMcXSBSp0vSCyLgnS1BfJaIylIuls47q4Ss5-69GYaXK6KP6WH6JzuPHMaNZrnuDG1sdvpKEGvRUpmSCN_275RdibCk0MR3jROVk8WhllTYI5pZg3U70SN_bk8fs3vNuY_lZUm51m8vXjfdwQX1ZaJgxaWGyKT1Rtie3xW1Cbf7ia1fU38XQ9K3B6TwiXTOTqrydMY-1XQTj_UyCBqcHAKflWzw-PkxkRDNnrs6zn4HVeX2npYdg2Zjn7uzZcAkZ0x_on01EgFBUMXIGFA1MhDMpbwx8IF9NyeUczGLcJecrlnGCyoBKGVJb1d3EzGV8PfwWrpA2B80OsA20TdHEqNUakHRqtCWWkPVb6yEdBSKsI-1ahVBhaq6IksonOrTM9lWLcD7fFejWtaEcAGpmHOYNGmSgyoU04C3mS5gla5-22XfHzVWLZfcvNkbUszDLjkc-6kd8VshHTP6plg9HVTVf68T-N9sRnyRt_cyRyX6zPZws6EGs1Lg4baL4AMs3nUw
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYKPbSX0hcqpY85VOopYtdJHOcY7aNUBYrKIvUW2Z6JFBGyaLMrdW_8BO78O35JPcnuUk6Vqp4SK3bkeL6xxxPPN0J8kraIKZYuUKHrBZF1SZCmvkhGYywVSWdb18VZcvJTD0dMk5OtY2E6foiNw401o52vWcHZIX1wzxpq0G8jJTOk8e-tLfE4Uh6NHMURnm7cLB6vjLM2xZxSzJyp1tSNPXnw8BUPlqY_TdV2rRnv_IdePhfPVoYmZB0yXohHVL8Uu6P7uDb_cKXYzStxO5mVOL0ihB_M5eqvX5jJ2k-E8P1XiQSmAQPH5FvdXd-MZ0QwYMfPspmDN3t9paVHYteYRe3vuogJGNIlm6DMSIFQ1pC5EksHpkbIqgvDXwin02p5STMYdTl5quWcYLygCgZUVc1rcT4eTQaHwSpvQ-D8GOtA2wRdnEqNEWmHRmtCGWkPlz7yaRDSKsK-VSgVhtaqKIlsogvrTE-lGPfDXbFdT2t6IwCNLMKCcaNMFJnQJpyIPEmLBK3zW7c98Xktsvyqo-fIOyJmmfPI55uR3xOyldNfquXZ8Ox8U3r7L40-iieHk-Oj_Ojrybd98VSyHdCekHwntuezBb0XWw0uPrQ4_Q3Uh-t7
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZokRCX8lvRlp85IHGKuuskjnNc7W4AAWVFW4lbZHsmUkSaXW12JfbGI_TO2_VJ6km2KT0hwSmxYkeO5xt7PPF8I8RbaYuYYukCFbpBEFmXBGnqi2Q0xlKRdLZ1XZwmJ9_1ZMo0OX0Uf8cP0TvcWDPa-ZoVfIHF8S1pqEG_i5RMkMZ_t3bE_cjb4syeH4az3svi4cowazPMKcXEmeqGuXEgj---4s7K9Kel2i412aP_7-Rjsbc1M2HU4eKJuEf1U7E_vY1q8w-3at08E7_PliXOF4TwjZlc_fU981j7aRC-_iyRwDRg4Av5Vle_LrMlEYzZ7bNpVuCNXl9p43HYNWZB-7suXgImdMEGKPNRIJQ1jFyJpQNTI4yqH4Y_EGbzanNBS5h2GXmqzYogW1MFY6qq5rk4z6Zn4w_BNmtD4PwQ60DbBF2cSo0RaYdGa0IZaQ-WIfJZENIqwqFVKBWG1qooiWyiC-vMQKUYD8N9sVvPa3ohAI0swoJRo0wUmdAmnIY8SYsErfMbtwPx7kZi-aIj58g7GmaZ88jn_cgfCNmK6S_V8tHk9LwvHf5LozfiwWyS5Z8_nnw6Eg8lGwHt8ciXYne1XNMrsdPg-nWL0msKdeoh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tridoped+Reduced+Graphene+Oxide+as+a+Metal%E2%80%90Free+Catalyst+for+Oxygen+Reduction+Reaction+Demonstrated+in+Acidic+and+Alkaline+Polymer+Electrolyte+Fuel+Cells&rft.jtitle=Advanced+sustainable+systems+%28Online%29&rft.au=Van+Pham%2C+Chuyen&rft.au=Klingele%2C+Matthias&rft.au=Britton%2C+Benjamin&rft.au=Vuyyuru%2C+Koteswara+Rao&rft.date=2017-05-01&rft.issn=2366-7486&rft.eissn=2366-7486&rft.volume=1&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadsu.201600038&rft.externalDBID=10.1002%252Fadsu.201600038&rft.externalDocID=ADSU201600038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-7486&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-7486&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-7486&client=summon