Strain by speckle tracking echocardiography correlates with electroanatomic scar location and burden in ischaemic cardiomyopathy
Abstract Aims Ventricular tachycardia (VT) in ischaemic cardiomyopathy (ICM) originates from scar, identified as low-voltage areas with invasive high-density electroanatomic mapping (EAM). Abnormal myocardial deformation on speckle tracking strain echocardiography can non-invasively identify scar. W...
Saved in:
Published in: | European heart journal cardiovascular imaging Vol. 22; no. 8; pp. 855 - 865 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
01-08-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Abstract
Aims
Ventricular tachycardia (VT) in ischaemic cardiomyopathy (ICM) originates from scar, identified as low-voltage areas with invasive high-density electroanatomic mapping (EAM). Abnormal myocardial deformation on speckle tracking strain echocardiography can non-invasively identify scar. We examined if regional and global longitudinal strain (GLS) can localize and quantify low-voltage scar identified with high-density EAM.
Methods and results
We recruited 60 patients, 40 ICM patients undergoing VT ablation and 20 patients undergoing ablation for other arrhythmias as controls. All patients underwent an echocardiogram prior to high-density left ventricular (LV) EAM. Endocardial bipolar and unipolar scar location and percentage were correlated with regional and multilayer GLS. Controls had normal GLS and normal bipolar and unipolar voltages. There was a strong correlation between endocardial and mid-myocardial longitudinal strain and endocardial bipolar scar percentage for all 17 LV segments (r = 0.76–0.87, P < 0.001) in ICM patients. Additionally, indices of myocardial contraction heterogeneity, myocardial dispersion (MD), and delta contraction duration (DCD) correlated with bipolar scar percentage. Endocardial and mid-myocardial GLS correlated with total LV bipolar scar percentage (r = 0.83; 0.82, P < 0.001 respectively), whereas epicardial GLS correlated with epicardial bipolar scar percentage (r = 0.78, P < 0.001). Endocardial GLS −9.3% or worse had 93% sensitivity and 82% specificity for predicting endocardial bipolar scar >46% of LV surface area.
Conclusions
Multilayer strain analysis demonstrated good linear correlations with low-voltage scar by invasive EAM. Validation studies are needed to establish the utility of strain as a non-invasive tool for quantifying scar location and burden, thereby facilitating mapping and ablation of VT.
Graphical Abstract |
---|---|
AbstractList | AIMSVentricular tachycardia (VT) in ischaemic cardiomyopathy (ICM) originates from scar, identified as low-voltage areas with invasive high-density electroanatomic mapping (EAM). Abnormal myocardial deformation on speckle tracking strain echocardiography can non-invasively identify scar. We examined if regional and global longitudinal strain (GLS) can localize and quantify low-voltage scar identified with high-density EAM. METHODS AND RESULTSWe recruited 60 patients, 40 ICM patients undergoing VT ablation and 20 patients undergoing ablation for other arrhythmias as controls. All patients underwent an echocardiogram prior to high-density left ventricular (LV) EAM. Endocardial bipolar and unipolar scar location and percentage were correlated with regional and multilayer GLS. Controls had normal GLS and normal bipolar and unipolar voltages. There was a strong correlation between endocardial and mid-myocardial longitudinal strain and endocardial bipolar scar percentage for all 17 LV segments (r = 0.76-0.87, P < 0.001) in ICM patients. Additionally, indices of myocardial contraction heterogeneity, myocardial dispersion (MD), and delta contraction duration (DCD) correlated with bipolar scar percentage. Endocardial and mid-myocardial GLS correlated with total LV bipolar scar percentage (r = 0.83; 0.82, P < 0.001 respectively), whereas epicardial GLS correlated with epicardial bipolar scar percentage (r = 0.78, P < 0.001). Endocardial GLS -9.3% or worse had 93% sensitivity and 82% specificity for predicting endocardial bipolar scar >46% of LV surface area. CONCLUSIONSMultilayer strain analysis demonstrated good linear correlations with low-voltage scar by invasive EAM. Validation studies are needed to establish the utility of strain as a non-invasive tool for quantifying scar location and burden, thereby facilitating mapping and ablation of VT. Ventricular tachycardia (VT) in ischaemic cardiomyopathy (ICM) originates from scar, identified as low-voltage areas with invasive high-density electroanatomic mapping (EAM). Abnormal myocardial deformation on speckle tracking strain echocardiography can non-invasively identify scar. We examined if regional and global longitudinal strain (GLS) can localize and quantify low-voltage scar identified with high-density EAM. We recruited 60 patients, 40 ICM patients undergoing VT ablation and 20 patients undergoing ablation for other arrhythmias as controls. All patients underwent an echocardiogram prior to high-density left ventricular (LV) EAM. Endocardial bipolar and unipolar scar location and percentage were correlated with regional and multilayer GLS. Controls had normal GLS and normal bipolar and unipolar voltages. There was a strong correlation between endocardial and mid-myocardial longitudinal strain and endocardial bipolar scar percentage for all 17 LV segments (r = 0.76-0.87, P < 0.001) in ICM patients. Additionally, indices of myocardial contraction heterogeneity, myocardial dispersion (MD), and delta contraction duration (DCD) correlated with bipolar scar percentage. Endocardial and mid-myocardial GLS correlated with total LV bipolar scar percentage (r = 0.83; 0.82, P < 0.001 respectively), whereas epicardial GLS correlated with epicardial bipolar scar percentage (r = 0.78, P < 0.001). Endocardial GLS -9.3% or worse had 93% sensitivity and 82% specificity for predicting endocardial bipolar scar >46% of LV surface area. Multilayer strain analysis demonstrated good linear correlations with low-voltage scar by invasive EAM. Validation studies are needed to establish the utility of strain as a non-invasive tool for quantifying scar location and burden, thereby facilitating mapping and ablation of VT. Abstract Aims Ventricular tachycardia (VT) in ischaemic cardiomyopathy (ICM) originates from scar, identified as low-voltage areas with invasive high-density electroanatomic mapping (EAM). Abnormal myocardial deformation on speckle tracking strain echocardiography can non-invasively identify scar. We examined if regional and global longitudinal strain (GLS) can localize and quantify low-voltage scar identified with high-density EAM. Methods and results We recruited 60 patients, 40 ICM patients undergoing VT ablation and 20 patients undergoing ablation for other arrhythmias as controls. All patients underwent an echocardiogram prior to high-density left ventricular (LV) EAM. Endocardial bipolar and unipolar scar location and percentage were correlated with regional and multilayer GLS. Controls had normal GLS and normal bipolar and unipolar voltages. There was a strong correlation between endocardial and mid-myocardial longitudinal strain and endocardial bipolar scar percentage for all 17 LV segments (r = 0.76–0.87, P < 0.001) in ICM patients. Additionally, indices of myocardial contraction heterogeneity, myocardial dispersion (MD), and delta contraction duration (DCD) correlated with bipolar scar percentage. Endocardial and mid-myocardial GLS correlated with total LV bipolar scar percentage (r = 0.83; 0.82, P < 0.001 respectively), whereas epicardial GLS correlated with epicardial bipolar scar percentage (r = 0.78, P < 0.001). Endocardial GLS −9.3% or worse had 93% sensitivity and 82% specificity for predicting endocardial bipolar scar >46% of LV surface area. Conclusions Multilayer strain analysis demonstrated good linear correlations with low-voltage scar by invasive EAM. Validation studies are needed to establish the utility of strain as a non-invasive tool for quantifying scar location and burden, thereby facilitating mapping and ablation of VT. Graphical Abstract |
Author | Kumar, Saurabh Thomas, Liza Trivedi, Siddharth J Stefani, Luke D Campbell, Timothy |
Author_xml | – sequence: 1 givenname: Siddharth J orcidid: 0000-0002-2877-0803 surname: Trivedi fullname: Trivedi, Siddharth J organization: Department of Cardiology, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia – sequence: 2 givenname: Timothy surname: Campbell fullname: Campbell, Timothy organization: Department of Cardiology, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia – sequence: 3 givenname: Luke D surname: Stefani fullname: Stefani, Luke D organization: Department of Cardiology, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia – sequence: 4 givenname: Liza surname: Thomas fullname: Thomas, Liza organization: Department of Cardiology, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia – sequence: 5 givenname: Saurabh surname: Kumar fullname: Kumar, Saurabh email: saurabh.kumar@sydney.edu.au organization: Department of Cardiology, Westmead Hospital, Hawkesbury Road, Westmead, NSW 2145, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33585879$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PxDAMhiN0CA64kRVlZCmkaXptR4T4kpAYgLnKh3vN0SYlSYW68dMJ3HGMeLFlP35tvUdoZqwBhE5TcpGSKruEdi315Rq4IDTdQ3NKWJFQltLZribsEC28X5MYOVsymh6gwyzLy7wsqjn6fA6Oa4PFhP0A8q0DHBvyTZsVBtlayZ3SduX40E5YWueg4wE8_tChxdCBDM5yw4PttcQ-0riLO0Fbg7lRWIxOgcHxgPay5fBNbST7yQ48tNMJ2m9452Gxzcfo9fbm5fo-eXy6e7i-ekxktsxDIoGUNCdUKllRQVRTVKIESkTT0FQ1GSsIUSWnTFBVZnFQUKFAZZwpAqVS2TE63-gOzr6P4EPdx5eg67gBO_qasrLKq4rlNKLJBpXOeu-gqQene-6mOiX1t-_1j-_11vfIn22lR9GD2tG_Lv_dtuPwj9YXhJCTew |
CitedBy_id | crossref_primary_10_1093_ehjci_jeac210 crossref_primary_10_1093_ehjci_jeac273 crossref_primary_10_3390_diagnostics12092109 crossref_primary_10_1016_j_ijcha_2022_100962 crossref_primary_10_2478_pjmpe_2023_0021 crossref_primary_10_1111_echo_15744 crossref_primary_10_1002_jmri_28478 crossref_primary_10_1016_j_hroo_2022_02_002 crossref_primary_10_1016_j_hroo_2022_06_006 crossref_primary_10_1007_s12350_021_02864_8 crossref_primary_10_1007_s00392_024_02435_0 crossref_primary_10_1093_ehjci_jeab093 |
Cites_doi | 10.1093/ehjci/jew005 10.1016/j.ahj.2010.06.041 10.1016/j.hlc.2019.03.012 10.1016/j.jcmg.2019.07.026 10.1016/j.jacc.2005.10.040 10.1016/j.ahj.2009.09.010 10.1093/ehjci/jeu184 10.1016/j.jacc.2006.07.050 10.1093/eurheartj/ehp112 10.1161/01.CIR.88.3.915 10.1016/j.jcmg.2019.03.025 10.1016/j.hrthm.2010.12.038 10.1093/ehjci/jeaa187 10.1161/hc3101.093764 10.1161/CIRCEP.115.003841 10.1161/CIRCEP.110.958744 10.1161/CIRCEP.110.959957 10.1161/CIRCEP.120.008748 10.1016/j.jcmg.2009.11.012 10.1161/CIRCEP.112.970699 10.1161/01.CIR.100.16.1744 10.1093/ehjci/jev014 10.1093/eurheartj/ehy168 10.1136/hrt.2010.210906 10.1161/01.CIR.0000074280.62478.E1 10.1161/01.CIR.101.11.1288 10.1161/CIRCEP.116.003901 10.1016/j.echo.2011.03.007 10.1093/ehjci/jes229 |
ContentType | Journal Article |
Copyright | Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com. 2021 Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com. 2021 – notice: Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1093/ehjci/jeab021 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2047-2412 |
EndPage | 865 |
ExternalDocumentID | 10_1093_ehjci_jeab021 33585879 10.1093/ehjci/jeab021 |
Genre | Journal Article |
GroupedDBID | --- .2P .ZR 08P 0R~ 48X 53G 5WD AABZA AACZT AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWTL ABEUO ABIXL ABKDP ABNHQ ABNKS ABPTD ABQLI ABQNK ABWST ABXVV ABZBJ ACGFS ACUFI ACYHN ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AFXEN AGINJ AGQXC AGSYK AGUTN AIJHB AJEEA ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT ATGXG AVWKF AXUDD BAYMD BCRHZ BHONS BTRTY BVRKM C45 CDBKE DAKXR DILTD D~K EBD EBS EE~ EJD EMOBN ENERS F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KSI KSN M49 MHKGH NGC NOMLY NOYVH NU- O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF PAFKI PEELM Q1. Q5Y RD5 ROX RUSNO RXO SV3 TCURE TEORI TJX X7H YAYTL YKOAZ YXANX ~91 NPM AAYXX ABEJV CITATION 7X8 |
ID | FETCH-LOGICAL-c365t-ce082502cdc92b0df79b8e20bff21df34700d8a24b2d83e2072bded3a4d0e8dd3 |
ISSN | 2047-2404 |
IngestDate | Fri Oct 25 21:25:15 EDT 2024 Thu Nov 21 20:40:51 EST 2024 Wed Oct 16 00:44:19 EDT 2024 Wed Aug 28 03:18:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Mechanical dispersion Voltage mapping Ventricular tachycardia Ischaemic cardiomyopathy Strain echocardiography Global longitudinal strain Speckle tracking |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2021. For permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c365t-ce082502cdc92b0df79b8e20bff21df34700d8a24b2d83e2072bded3a4d0e8dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2877-0803 |
OpenAccessLink | https://academic.oup.com/ehjcimaging/article-pdf/22/8/855/39199617/jeab021.pdf |
PMID | 33585879 |
PQID | 2489599452 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2489599452 crossref_primary_10_1093_ehjci_jeab021 pubmed_primary_33585879 oup_primary_10_1093_ehjci_jeab021 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | European heart journal cardiovascular imaging |
PublicationTitleAlternate | Eur Heart J Cardiovasc Imaging |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Callans (2021072018494399200_jeab021-B14) 1999; 100 Ng (2021072018494399200_jeab021-B20) 2009; 158 Altiok (2021072018494399200_jeab021-B21) 2013; 14 Leshem (2021072018494399200_jeab021-B26) 2017; 3 Yamashita (2021072018494399200_jeab021-B30) 2016; 9 de Bakker (2021072018494399200_jeab021-B1) 1993; 88 Tschabrunn (2021072018494399200_jeab021-B27) 2016; 9 Glashan (2021072018494399200_jeab021-B32) 2018; 39 Voigt (2021072018494399200_jeab021-B10) 2015; 16 Bertini (2021072018494399200_jeab021-B24) 2010; 160 Josephson (2021072018494399200_jeab021-B31) 2015; 1 Dickfeld (2021072018494399200_jeab021-B15) 2011; 4 Shimoni (2021072018494399200_jeab021-B18) 2011; 24 Haugaa (2021072018494399200_jeab021-B5) 2010; 3 Abou (2021072018494399200_jeab021-B8) 2020 Kawakami (2021072018494399200_jeab021-B6) 2020; 13 Becker (2021072018494399200_jeab021-B23) 2009; 30 Sasaki (2021072018494399200_jeab021-B16) 2012; 5 Trivedi (2021072018494399200_jeab021-B3) 2019; 28 Anderson (2021072018494399200_jeab021-B11) 2020; 6 Tedrow (2021072018494399200_jeab021-B29) 2011; 8 Amundsen (2021072018494399200_jeab021-B17) 2006; 47 Becker (2021072018494399200_jeab021-B22) 2011; 97 Haland (2021072018494399200_jeab021-B4) 2016; 17 Marchlinski (2021072018494399200_jeab021-B12) 2000; 101 Soejima (2021072018494399200_jeab021-B2) 2001; 104 Trivedi (2021072018494399200_jeab021-B25) 2020; 13 Lang (2021072018494399200_jeab021-B9) 2015; 16 Hutchinson (2021072018494399200_jeab021-B13) 2011; 4 Reddy (2021072018494399200_jeab021-B28) 2003; 107 Perry (2021072018494399200_jeab021-B7) 2020; 13 Chan (2021072018494399200_jeab021-B19) 2006; 48 |
References_xml | – volume: 17 start-page: 613 year: 2016 ident: 2021072018494399200_jeab021-B4 article-title: Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jew005 contributor: fullname: Haland – volume: 160 start-page: 729 year: 2010 ident: 2021072018494399200_jeab021-B24 article-title: Longitudinal mechanics of the periinfarct zone and ventricular tachycardia inducibility in patients with chronic ischemic cardiomyopathy publication-title: Am Heart J doi: 10.1016/j.ahj.2010.06.041 contributor: fullname: Bertini – volume: 28 start-page: 1320 year: 2019 ident: 2021072018494399200_jeab021-B3 article-title: Echocardiographic strain in clinical practice publication-title: Heart Lung Circ doi: 10.1016/j.hlc.2019.03.012 contributor: fullname: Trivedi – volume: 1 start-page: 341 year: 2015 ident: 2021072018494399200_jeab021-B31 article-title: Substrate mapping for ventricular tachycardia: assumptions and misconceptions publication-title: J Am Coll Cardiol Clin Electrophysiol contributor: fullname: Josephson – volume: 13 start-page: 604 year: 2020 ident: 2021072018494399200_jeab021-B7 article-title: Advanced echocardiographic imaging for prediction of SCD in moderate and severe LV systolic function publication-title: J Am Coll Cardiol Cardiovasc Imaging doi: 10.1016/j.jcmg.2019.07.026 contributor: fullname: Perry – volume: 47 start-page: 789 year: 2006 ident: 2021072018494399200_jeab021-B17 article-title: Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2005.10.040 contributor: fullname: Amundsen – volume: 158 start-page: 836 year: 2009 ident: 2021072018494399200_jeab021-B20 article-title: Incremental value of 2-dimensional speckle tracking strain imaging to wall motion analysis for detection of coronary artery disease in patients undergoing dobutamine stress echocardiography publication-title: Am Heart J doi: 10.1016/j.ahj.2009.09.010 contributor: fullname: Ng – volume: 16 start-page: 1 year: 2015 ident: 2021072018494399200_jeab021-B10 article-title: Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jeu184 contributor: fullname: Voigt – volume: 48 start-page: 2026 year: 2006 ident: 2021072018494399200_jeab021-B19 article-title: Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2006.07.050 contributor: fullname: Chan – volume: 30 start-page: 1467 year: 2009 ident: 2021072018494399200_jeab021-B23 article-title: Impact of infarct transmurality on layer-specific impairment of myocardial function: a myocardial deformation imaging study publication-title: Eur Heart J doi: 10.1093/eurheartj/ehp112 contributor: fullname: Becker – volume: 88 start-page: 915 year: 1993 ident: 2021072018494399200_jeab021-B1 article-title: Slow conduction in the infarcted human heart. ‘Zigzag’ course of activation publication-title: Circulation doi: 10.1161/01.CIR.88.3.915 contributor: fullname: de Bakker – volume: 13 start-page: 562 year: 2020 ident: 2021072018494399200_jeab021-B6 article-title: Prediction of ventricular arrhythmias with left ventricular mechanical dispersion: a systematic review and meta-analysis publication-title: J Am Coll Cardiol Cardiovasc Imaging doi: 10.1016/j.jcmg.2019.03.025 contributor: fullname: Kawakami – volume: 8 start-page: 791 year: 2011 ident: 2021072018494399200_jeab021-B29 article-title: Recording and interpreting unipolar electrograms to guide catheter ablation publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2010.12.038 contributor: fullname: Tedrow – year: 2020 ident: 2021072018494399200_jeab021-B8 article-title: Left ventricular mechanical dispersion in ischaemic cardiomyopathy: association with myocardial scar burden and prognostic implications publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jeaa187 contributor: fullname: Abou – volume: 104 start-page: 664 year: 2001 ident: 2021072018494399200_jeab021-B2 article-title: Catheter ablation in patients with multiple and unstable ventricular tachycardias after myocardial infarction: short ablation lines guided by reentry circuit isthmuses and sinus rhythm mapping publication-title: Circulation doi: 10.1161/hc3101.093764 contributor: fullname: Soejima – volume: 9 start-page: 1 year: 2016 ident: 2021072018494399200_jeab021-B27 article-title: High-resolution mapping of ventricular scar: comparison between single and multielectrode catheters publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.115.003841 contributor: fullname: Tschabrunn – volume: 4 start-page: 172 year: 2011 ident: 2021072018494399200_jeab021-B15 article-title: MRI-guided ventricular tachycardia ablation publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.110.958744 contributor: fullname: Dickfeld – volume: 4 start-page: 49 year: 2011 ident: 2021072018494399200_jeab021-B13 article-title: Endocardial unipolar voltage mapping to detect epicardial ventricular tachycardia substrate in patients with nonischemic left ventricular cardiomyopathy publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.110.959957 contributor: fullname: Hutchinson – volume: 3 start-page: 220 year: 2017 ident: 2021072018494399200_jeab021-B26 article-title: High-resolution mapping of ventricular scar: evaluation of a novel integrated multielectrode mapping and ablation catheter publication-title: J Am Coll Cardiol Clin Electrophysiol contributor: fullname: Leshem – volume: 13 year: 2020 ident: 2021072018494399200_jeab021-B25 article-title: Speckle-tracking strain echocardiography in the assessment of myocardial mechanics in patients with idiopathic ventricular arrhythmias publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.120.008748 contributor: fullname: Trivedi – volume: 3 start-page: 247 year: 2010 ident: 2021072018494399200_jeab021-B5 article-title: Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia publication-title: J Am Coll Cardiol Cardiovasc Imaging doi: 10.1016/j.jcmg.2009.11.012 contributor: fullname: Haugaa – volume: 5 start-page: 1081 year: 2012 ident: 2021072018494399200_jeab021-B16 article-title: Myocardial structural associations with local electrograms publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.112.970699 contributor: fullname: Sasaki – volume: 6 start-page: 56 year: 2020 ident: 2021072018494399200_jeab021-B11 article-title: Focal ventricular tachycardias in structural heart disease: prevalence, characteristics, and clinical outcomes after catheter ablation publication-title: J Am Coll Cardiol Clin Electrophysiol contributor: fullname: Anderson – volume: 100 start-page: 1744 year: 1999 ident: 2021072018494399200_jeab021-B14 article-title: Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction: correlation with intracardiac echocardiography and pathological analysis publication-title: Circulation doi: 10.1161/01.CIR.100.16.1744 contributor: fullname: Callans – volume: 16 start-page: 233 year: 2015 ident: 2021072018494399200_jeab021-B9 article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jev014 contributor: fullname: Lang – volume: 39 start-page: 2867 year: 2018 ident: 2021072018494399200_jeab021-B32 article-title: Whole human heart histology to validate electroanatomical voltage mapping in patients with non-ischaemic cardiomyopathy and ventricular tachycardia publication-title: Eur Heart J doi: 10.1093/eurheartj/ehy168 contributor: fullname: Glashan – volume: 97 start-page: 748 year: 2011 ident: 2021072018494399200_jeab021-B22 article-title: Layer-specific analysis of myocardial function for accurate prediction of reversible ischaemic dysfunction in intermediate viability defined by contrast-enhanced MRI publication-title: Heart doi: 10.1136/hrt.2010.210906 contributor: fullname: Becker – volume: 107 start-page: 3236 year: 2003 ident: 2021072018494399200_jeab021-B28 article-title: Combined epicardial and endocardial electroanatomic mapping in a porcine model of healed myocardial infarction publication-title: Circulation doi: 10.1161/01.CIR.0000074280.62478.E1 contributor: fullname: Reddy – volume: 101 start-page: 1288 year: 2000 ident: 2021072018494399200_jeab021-B12 article-title: Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy publication-title: Circulation doi: 10.1161/01.CIR.101.11.1288 contributor: fullname: Marchlinski – volume: 9 start-page: e003901 year: 2016 ident: 2021072018494399200_jeab021-B30 article-title: Impact of new technologies and approaches for post-myocardial infarction ventricular tachycardia ablation during long-term follow-up publication-title: Circ Arrhythm Electrophysiol doi: 10.1161/CIRCEP.116.003901 contributor: fullname: Yamashita – volume: 24 start-page: 748 year: 2011 ident: 2021072018494399200_jeab021-B18 article-title: Differential effects of coronary artery stenosis on myocardial function: the value of myocardial strain analysis for the detection of coronary artery disease publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2011.03.007 contributor: fullname: Shimoni – volume: 14 start-page: 570 year: 2013 ident: 2021072018494399200_jeab021-B21 article-title: Layer-specific analysis of myocardial deformation for assessment of infarct transmurality: comparison of strain-encoded cardiovascular magnetic resonance with 2D speckle tracking echocardiography publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jes229 contributor: fullname: Altiok |
SSID | ssj0000546421 |
Score | 2.412013 |
Snippet | Abstract
Aims
Ventricular tachycardia (VT) in ischaemic cardiomyopathy (ICM) originates from scar, identified as low-voltage areas with invasive high-density... Ventricular tachycardia (VT) in ischaemic cardiomyopathy (ICM) originates from scar, identified as low-voltage areas with invasive high-density electroanatomic... AIMSVentricular tachycardia (VT) in ischaemic cardiomyopathy (ICM) originates from scar, identified as low-voltage areas with invasive high-density... |
SourceID | proquest crossref pubmed oup |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 855 |
Title | Strain by speckle tracking echocardiography correlates with electroanatomic scar location and burden in ischaemic cardiomyopathy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33585879 https://search.proquest.com/docview/2489599452 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6TUJcEN90fMhIiEsV5tpp4hwHFO0AXDqm3SLHdrSNLUVrethO_Om8Zztu2gkYBy5R61ovit-vL8_P770fIW-krlmaqzqpcqOStGAsUfm4TjL4WussU9rFOw5m-ddj-XGaTgeDrgHzauy_ahrGQNdYOfsP2o5CYQA-g87hClqH6630PnOkD-hVYhHl93OLLBAaA-IjC6ZOu_xT36Z6pJGa4xy9TR-PDZw4qoGdOObML2D2CN92bZe0XLmqBwySnC4w3x5neZEXV3NkN147JY6hfqTNbmOXCr2RA3vhmJJiDOESDLBxSQazU2NOFB4sxWh2_6wk4CwGiVpbe4aq0WfMOYm5zD4JykcgrlU_zsHHMcuu_VP95MpcctdzIvVkxu9sf2y8Zu857-Fa9oy39A2DOz_Ac1jceMX49lv25EwjFs6sqpiv8d7o2_3buVtkh4NVBKO8s__--OgohgTBe8ayY6RD7J4ldIUFOXtOyl6QseZFrVVm3tggOUfp8D65F3Y4dN9D8wEZ2OYhufMl5HA8Ij89Qml1RQNCaYdQuolQukIoRYTSDYRSRCjtEEoBodQjlMINIkLpOkIfk2-fpocfDpLAA5JokU3aRFuMYzCujS54xUydF5W0nFV1zcemFmnOmJGKpxU3UsAPOa-MNUKlhllpjHhCtpt5Y58ROrEGFtDAnl0JMExZIVVhDAOvn6lM5PWQvO3Wtfzh272UPk1DlE4BZVDAkLyGVf_rnE4nJRhtPIlTjZ0vFyVPZTEpinTCh-SpV1YUJQTs4GVe7N7iDs_J3dVf5QXZbi-X9iXZWpjlqwCuX4Nry2k |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+by+speckle+tracking+echocardiography+correlates+with+electroanatomic+scar+location+and+burden+in+ischaemic+cardiomyopathy&rft.jtitle=European+heart+journal+cardiovascular+imaging&rft.au=Trivedi%2C+Siddharth+J&rft.au=Campbell%2C+Timothy&rft.au=Stefani%2C+Luke+D&rft.au=Thomas%2C+Liza&rft.date=2021-08-01&rft.pub=Oxford+University+Press&rft.issn=2047-2404&rft.eissn=2047-2412&rft.volume=22&rft.issue=8&rft.spage=855&rft.epage=865&rft_id=info:doi/10.1093%2Fehjci%2Fjeab021&rft.externalDocID=10.1093%2Fehjci%2Fjeab021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-2404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-2404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-2404&client=summon |