Status Identification in Support of Fishing Effort Estimation for Tuna Longliners in Waters near the Marshall Islands Based on AIS Data

Visualising the fishing behaviour of vessels and quantifying the spatial distribution of fishing effort is the scientific basis for assessing and managing fisheries resources. The information on the dynamics of fishing vessel voyages provided by the automatic identification system (AIS) of vessels s...

Full description

Saved in:
Bibliographic Details
Published in:Fishes Vol. 9; no. 2; p. 66
Main Authors: Lu, Zhengwei, Song, Liming, Jiang, Keji
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Visualising the fishing behaviour of vessels and quantifying the spatial distribution of fishing effort is the scientific basis for assessing and managing fisheries resources. The information on the dynamics of fishing vessel voyages provided by the automatic identification system (AIS) of vessels serves as high-precision fishery data and provides a means of quantifying fishing effort with high spatial and temporal resolution in the tuna longline fishery. Based on the AIS data of five tuna longliners operating in the waters near the Marshall Islands from 2020 to 2021, this study used three methods, namely the threshold screening method, the construction of a BP neural network and the support vector machine (SVM) to identify the fishing and non-fishing status of the tuna longliners, respectively. This study investigates the status identification and fishing effort estimation of the tuna longliner (VESSEL A) in 2021 based on the constructed optimal model, and spatial correlation analyses are performed between the fishing effort estimated in hours based on AIS data and in hooks based on fishing logbook data, by month. The results showed (1) the recognition accuracy of the threshold screening method is 89.9%, the recognition accuracy of the BP neural network classification model is 95.11%, the kappa coefficient is 0.51, the recognition accuracy of the SVM classification model is 95.74% and the kappa coefficient is 0.52; (2) in comparison, the SVM classification model performs better than the other two status identification methods for tuna longliners; and (3) the correlation coefficients between the two types of effort of VESSEL A were greater than 0.79 on all fishing months, indicating that there was no significant difference in the spatial and temporal distribution between the two types of effort. This study suggests that the SVM model can be used to identify the status and estimate the fishing effort of longliners.
AbstractList Visualising the fishing behaviour of vessels and quantifying the spatial distribution of fishing effort is the scientific basis for assessing and managing fisheries resources. The information on the dynamics of fishing vessel voyages provided by the automatic identification system (AIS) of vessels serves as high-precision fishery data and provides a means of quantifying fishing effort with high spatial and temporal resolution in the tuna longline fishery. Based on the AIS data of five tuna longliners operating in the waters near the Marshall Islands from 2020 to 2021, this study used three methods, namely the threshold screening method, the construction of a BP neural network and the support vector machine (SVM) to identify the fishing and non-fishing status of the tuna longliners, respectively. This study investigates the status identification and fishing effort estimation of the tuna longliner (VESSEL A) in 2021 based on the constructed optimal model, and spatial correlation analyses are performed between the fishing effort estimated in hours based on AIS data and in hooks based on fishing logbook data, by month. The results showed (1) the recognition accuracy of the threshold screening method is 89.9%, the recognition accuracy of the BP neural network classification model is 95.11%, the kappa coefficient is 0.51, the recognition accuracy of the SVM classification model is 95.74% and the kappa coefficient is 0.52; (2) in comparison, the SVM classification model performs better than the other two status identification methods for tuna longliners; and (3) the correlation coefficients between the two types of effort of VESSEL A were greater than 0.79 on all fishing months, indicating that there was no significant difference in the spatial and temporal distribution between the two types of effort. This study suggests that the SVM model can be used to identify the status and estimate the fishing effort of longliners.
Audience Academic
Author Jiang, Keji
Song, Liming
Lu, Zhengwei
Author_xml – sequence: 1
  givenname: Zhengwei
  surname: Lu
  fullname: Lu, Zhengwei
– sequence: 2
  givenname: Liming
  orcidid: 0000-0001-5402-0443
  surname: Song
  fullname: Song, Liming
– sequence: 3
  givenname: Keji
  surname: Jiang
  fullname: Jiang, Keji
BookMark eNpVkUtv1DAUhSNUJErpkr0l1imOHb-WQ5lCpEEspohldOPHjEepPdjOor-Av42HIATywvcenfPp2vd1cxVisE3ztsN3lCr83vl8tFlhgjHnL5pr0ne4pVLKq3_qV81tzieMcaeUYlJdNz_3BcqS0WBsKN55DcXHgHxA--V8jqmg6NBDZftwQFvnLso2F_-0-mqPHpcAaBfDYfbBpnzJfodyqYKFhMrRoi-Q8hHmGQ15hmAy-gDZGlQBm2GPPkKBN81LB3O2t3_um-bbw_bx_nO7-_ppuN_sWk05K-3EXC-J7CXF4GxHBMdGaE0FBqw6x6wmCjiehCSGCmMY0z2frONGU2yYoDfNsHJNhNN4TvUh6XmM4MffQkyHEVLxerYj06JjjjBMOenr5ynBpXBT34MjUvGpst6trHOKPxaby3iKSwp1_JEoirnqMKPVdbe6DlChPrhYEuh6jH3yui7R-apvhOwxrSlZA-0a0CnmnKz7O2aHx8uux_92TX8BOBSeEQ
Cites_doi 10.1016/j.icesjms.2005.04.005
10.1007/s11160-007-9051-0
10.1016/j.fishres.2009.08.006
10.1016/j.fishres.2016.04.005
10.1126/science.aao5646
10.1139/cjfas-2013-0552
10.1016/j.icesjms.2004.12.002
10.5343/bms.2015.1034
10.1139/f03-152
10.1016/j.fishres.2014.08.021
10.1139/cjfas-2016-0460
10.1139/f2011-114
10.1093/icesjms/fsq010
10.1007/s11802-019-3717-9
10.1371/journal.pone.0130746
10.1016/j.fishres.2008.01.015
10.1016/j.fishres.2004.08.026
10.1093/icesjms/fst099
10.1016/j.oceaneng.2021.109256
10.1007/s12562-014-0770-6
10.3390/fishes8100516
10.1093/icesjms/fsq137
10.1016/j.oceaneng.2018.03.085
10.4038/sljas.v28i1.7604
10.1371/journal.pone.0001111
10.1016/j.marpol.2018.02.012
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M7P
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/fishes9020066
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
Biological Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest One Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2410-3888
ExternalDocumentID oai_doaj_org_article_5c715f250362488897687fb44af2896b
A784039308
10_3390_fishes9020066
GeographicLocations Marshall Islands
GeographicLocations_xml – name: Marshall Islands
GroupedDBID 8CJ
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
LK8
M7P
MODMG
M~E
OK1
PCBAR
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c365t-b5f48284830afe12760d7cc370a091f5ec29a60b782d37dd55c46bef6dc30d573
IEDL.DBID DOA
ISSN 2410-3888
IngestDate Tue Oct 22 15:16:40 EDT 2024
Fri Nov 08 20:46:07 EST 2024
Tue Nov 12 23:48:23 EST 2024
Thu Nov 21 22:16:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-b5f48284830afe12760d7cc370a091f5ec29a60b782d37dd55c46bef6dc30d573
ORCID 0000-0001-5402-0443
OpenAccessLink https://doaj.org/article/5c715f250362488897687fb44af2896b
PQID 2930691053
PQPubID 2055413
ParticipantIDs doaj_primary_oai_doaj_org_article_5c715f250362488897687fb44af2896b
proquest_journals_2930691053
gale_infotracacademiconefile_A784039308
crossref_primary_10_3390_fishes9020066
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fishes
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Robards (ref_31) 2016; 92
Mullowney (ref_5) 2009; 100
Murray (ref_14) 2013; 70
Yang (ref_38) 2015; 31
ref_30
Yang (ref_18) 2020; 36
ref_19
ref_39
Walters (ref_6) 2003; 60
Yang (ref_17) 2020; 27
Huang (ref_34) 2019; 18
Mao (ref_37) 2016; 38
Bez (ref_12) 2011; 68
Kroodsma (ref_16) 2018; 359
Li (ref_27) 2015; 161
Yadav (ref_4) 2020; 49
Zhang (ref_33) 2018; 159
Campbell (ref_40) 2014; 70
Bordalo (ref_22) 2007; 34
Song (ref_23) 2012; 21
Guo (ref_32) 2021; 234
ref_25
ref_24
ref_20
Chang (ref_28) 2014; 71
Yang (ref_35) 2022; 29
Yuan (ref_21) 2018; 40
Wang (ref_26) 2021; 2
Fonseca (ref_2) 2008; 92
Okamura (ref_3) 2018; 75
Gerritsen (ref_11) 2011; 68
ref_29
Walker (ref_13) 2010; 65
ref_9
Murawski (ref_10) 2005; 62
Shono (ref_36) 2014; 80
Russo (ref_1) 2016; 181
James (ref_15) 2018; 91
Ward (ref_41) 2007; 17
Gunawardane (ref_42) 2023; 28
Janette (ref_7) 2010; 67
Bertrand (ref_8) 2005; 62
References_xml – volume: 62
  start-page: 1150
  year: 2005
  ident: ref_10
  article-title: Effort distribution and catch patterns adjacent to temperate MPAs
  publication-title: ICES J. Mar. Sci.
  doi: 10.1016/j.icesjms.2005.04.005
  contributor:
    fullname: Murawski
– volume: 29
  start-page: 365
  year: 2022
  ident: ref_35
  article-title: Spatial distribution of squid fishing vessel operations in the southwest Atlantic Ocean and its relationship with environmental factors
  publication-title: J. Fish. Sci. China
  contributor:
    fullname: Yang
– volume: 17
  start-page: 501
  year: 2007
  ident: ref_41
  article-title: An overview of historical changes in the fishing gear and practices of pelagic longliners, with particular reference to Japan’s Pacific fleet
  publication-title: Rev. Fish Biol. Fish.
  doi: 10.1007/s11160-007-9051-0
  contributor:
    fullname: Ward
– volume: 100
  start-page: 248
  year: 2009
  ident: ref_5
  article-title: Development of performance indices for the Newfoundland and Labrador snow crab (Chionoecetes opilio) fishery using data from a vessel monitoring system
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2009.08.006
  contributor:
    fullname: Mullowney
– volume: 181
  start-page: 34
  year: 2016
  ident: ref_1
  article-title: Modeling landings profiles of fishing vessels: An application of Self-Organizing Maps to VMS and logbook data
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2016.04.005
  contributor:
    fullname: Russo
– volume: 359
  start-page: 904
  year: 2018
  ident: ref_16
  article-title: Tracking the Global Footprint of Fisheries
  publication-title: Science
  doi: 10.1126/science.aao5646
  contributor:
    fullname: Kroodsma
– volume: 71
  start-page: 1363
  year: 2014
  ident: ref_28
  article-title: Deriving high-resolution spatiotemporal fishing effort of large-scale longline fishery from vessel monitoring system (VMS) data and validated by observer data
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/cjfas-2013-0552
  contributor:
    fullname: Chang
– volume: 2
  start-page: 10
  year: 2021
  ident: ref_26
  article-title: Neural Network Optimization Method and Its Application in Information Processing
  publication-title: Math. Probl. Eng.
  contributor:
    fullname: Wang
– volume: 38
  start-page: 34
  year: 2016
  ident: ref_37
  article-title: Forecasting fishing ground of Thunnus alalunga based on BP neural network in the South Pacific Ocean
  publication-title: Acta Oceanol. Sin.
  contributor:
    fullname: Mao
– ident: ref_39
– volume: 62
  start-page: 477
  year: 2005
  ident: ref_8
  article-title: Lévy trajectories of Peruvian purse-seiners as an indicator of the spatial distribution of anchovy (Engraulis ringens)
  publication-title: ICES J. Mar. Sci.
  doi: 10.1016/j.icesjms.2004.12.002
  contributor:
    fullname: Bertrand
– volume: 92
  start-page: 75
  year: 2016
  ident: ref_31
  article-title: Conservation science and policy applications of the marine vessel Automatic Identification System (AIS)—A review
  publication-title: Bull. Mar. Sci.
  doi: 10.5343/bms.2015.1034
  contributor:
    fullname: Robards
– volume: 60
  start-page: 1433
  year: 2003
  ident: ref_6
  article-title: Folly and fantasy in the analysis of spatial catch rate data
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f03-152
  contributor:
    fullname: Walters
– volume: 161
  start-page: 312
  year: 2015
  ident: ref_27
  article-title: Model selection between traditional and popular methods for standardizing catch rates of target species a case study of Japanese Spanish mackerel in the gillnet fishery
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2014.08.021
  contributor:
    fullname: Li
– volume: 75
  start-page: 452
  year: 2018
  ident: ref_3
  article-title: Target-based catch-per-unit-effort standardization in multispecies fisheries
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/cjfas-2016-0460
  contributor:
    fullname: Okamura
– volume: 40
  start-page: 649
  year: 2018
  ident: ref_21
  article-title: On fishing grounds distribution of tuna longline based on satellite automatic identification system in the Western and Central Pacific
  publication-title: Mar. Fish.
  contributor:
    fullname: Yuan
– volume: 49
  start-page: 1729
  year: 2020
  ident: ref_4
  article-title: Use of different modeling approach for sensitivity analysis in predicting the Catch per Unit Effort (CPUE) of fish
  publication-title: Indian J. Geo-Mar. Sci.
  contributor:
    fullname: Yadav
– volume: 68
  start-page: 1998
  year: 2011
  ident: ref_12
  article-title: Fishing activity of tuna purse seiners estimated from vessel monitoring system (VMS) data
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f2011-114
  contributor:
    fullname: Bez
– volume: 67
  start-page: 1260
  year: 2010
  ident: ref_7
  article-title: Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsq010
  contributor:
    fullname: Janette
– volume: 21
  start-page: 884
  year: 2012
  ident: ref_23
  article-title: Otolith morphology of bigeye tuna in Marshall Islands waters
  publication-title: J. Shanghai Ocean Univ.
  contributor:
    fullname: Song
– volume: 31
  start-page: 259
  year: 2015
  ident: ref_38
  article-title: Comparison and analysis of different model algorithms for CPUE standardization in fishery
  publication-title: Trans. Chin. Soc. Agric. Eng.
  contributor:
    fullname: Yang
– volume: 18
  start-page: 403
  year: 2019
  ident: ref_34
  article-title: FVID: Fishing Vessel Type Identification Based on VMS Trajectories
  publication-title: J. Ocean Univ. China
  doi: 10.1007/s11802-019-3717-9
  contributor:
    fullname: Huang
– volume: 34
  start-page: 1
  year: 2007
  ident: ref_22
  article-title: Extraction and classification of longline fishing trips from vessel monitoring systems data with sequential recording gaps
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  contributor:
    fullname: Bordalo
– ident: ref_25
– ident: ref_29
– ident: ref_9
  doi: 10.1371/journal.pone.0130746
– volume: 92
  start-page: 180
  year: 2008
  ident: ref_2
  article-title: Trawling for cephalopods off the Portuguese caost-Fleet dynamics and landing composition
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2008.01.015
  contributor:
    fullname: Fonseca
– volume: 70
  start-page: 209
  year: 2014
  ident: ref_40
  article-title: CPUE standardisation and the construction of indices of stock abundance in a spatially varying fishery using general linear models
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2004.08.026
  contributor:
    fullname: Campbell
– volume: 70
  start-page: 1330
  year: 2013
  ident: ref_14
  article-title: The effectiveness of using CPUE data derived from Vessel Monitoring Systems and fisheries logbooks to estimate scallop biomass
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fst099
  contributor:
    fullname: Murray
– volume: 234
  start-page: 109256
  year: 2021
  ident: ref_32
  article-title: Improved Kinematic Interpolation for AIS Trajectory Reconstruction
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109256
  contributor:
    fullname: Guo
– volume: 80
  start-page: 879
  year: 2014
  ident: ref_36
  article-title: Application of support vector regression to CPUE analysis for southern bluefin tuna Thunnus maccoyii and its comparison with conventional methods
  publication-title: Fish Sci.
  doi: 10.1007/s12562-014-0770-6
  contributor:
    fullname: Shono
– volume: 27
  start-page: 307
  year: 2020
  ident: ref_17
  article-title: Calculating the fishing intensity of offshore longline fleets on fishing grounds based on their fishing characteristics
  publication-title: J. Fish. Sci. China
  contributor:
    fullname: Yang
– ident: ref_24
  doi: 10.3390/fishes8100516
– volume: 36
  start-page: 198
  year: 2020
  ident: ref_18
  article-title: Calculating the fishing effort of longline fishing vessel in the western and central pacific ocean using AIS
  publication-title: Trans. Chin. Soc. Agric. Eng.
  contributor:
    fullname: Yang
– volume: 68
  start-page: 245
  year: 2011
  ident: ref_11
  article-title: Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsq137
  contributor:
    fullname: Gerritsen
– volume: 65
  start-page: 2376
  year: 2010
  ident: ref_13
  article-title: Fishing activity of tuna purse estimated from VMS data and validated by observers’ data
  publication-title: Collect. Vol. Sci. Pap.
  contributor:
    fullname: Walker
– ident: ref_19
– volume: 159
  start-page: 165
  year: 2018
  ident: ref_33
  article-title: A novel ship trajectory reconstruction approach using AIS data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.03.085
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 11
  year: 2023
  ident: ref_42
  article-title: Validating the fishing locations reported in the logbooks using the positional data of vessel monitoring systems in the multi-day fishery of Sri Lanka
  publication-title: Sri Lanka J. Aquat. Sci.
  doi: 10.4038/sljas.v28i1.7604
  contributor:
    fullname: Gunawardane
– ident: ref_20
– ident: ref_30
  doi: 10.1371/journal.pone.0001111
– volume: 91
  start-page: 113
  year: 2018
  ident: ref_15
  article-title: AIS data to inform small scale fisheries management and marine spatial planning
  publication-title: Mar. Policy
  doi: 10.1016/j.marpol.2018.02.012
  contributor:
    fullname: James
SSID ssj0001999589
Score 2.2974298
Snippet Visualising the fishing behaviour of vessels and quantifying the spatial distribution of fishing effort is the scientific basis for assessing and managing...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 66
SubjectTerms Accuracy
AIS
Back propagation
Classification
Coefficients
correlation analyses
Correlation analysis
Correlation coefficient
Data collection
Datasets
Distribution
Environmental aspects
Fisheries
Fisheries management
Fishery data
Fishery management
Fishery resources
Fishing
Fishing boats
Fishing effort
Fishing vessels
Forecasts and trends
Hooks
Identification
Islands
Logbooks
Longline fishing
Longliners
Longlining (Fisheries)
Machine learning
Neural networks
Propagation
Research methodology
Screening
Spatial analysis
Spatial distribution
status identification
Temporal distribution
tuna longliner
Title Status Identification in Support of Fishing Effort Estimation for Tuna Longliners in Waters near the Marshall Islands Based on AIS Data
URI https://www.proquest.com/docview/2930691053
https://doaj.org/article/5c715f250362488897687fb44af2896b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJ4SEeIqFguaA4BTVu47t5LiluwKJx6FFcLPGj5G4ZKtm9zfwt5mJ04oeEBeOsZLI8nz2fGN7vlHqDWaDPvemKYSuaaPXDepim0wJNTECbJ5KJ5z7Lz-6s43I5NyU-pI7YVUeuA7ciU1-aYkdNa-0DLaO3WfnKbYtEscKLk6rr3Z_BFPT7grzHtv1VVTTcFx_QnLFfOz1dNhwywlNWv1_W5EnN7N9qB7M_BDWtV-P1J0yPFb3v6aCwywu_UT9EoZ4GKEm2dK86wY_B5AancynYUewrZtLsCGSlg1P5ZqlCPwMF4cB4dNOcngHJoDy7XcUoU0YGPrArBA-c8grlVZAUDPkEU7Z4WXgH6w_nsMZ7vGp-rbdXLz_0MwFFZpknN030VLLEVbbGY1UlivvdPYpGa-RaQPZklY9Oh2ZNWTjc7Y2tS4WcjkZna03z9TRsBvKcwWIbdIdxd4m5nylQxLylTFGF5ee8kK9vR7hcFl1MwLHG2KKcMsUC3Uq43_zkshdTw0MgjCDIPwLBAv1TqwXZFLurzDhnFvAfRV5q7D2HMea3uhuoY6vDRzm2ToGpjzaMW-y5sX_6M1LdW_F1Kfe7T5WR_urQ3ml7o758HpC6W8x7exi
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Status+Identification+in+Support+of+Fishing+Effort+Estimation+for+Tuna+Longliners+in+Waters+near+the+Marshall+Islands+Based+on+AIS+Data&rft.jtitle=Fishes&rft.au=Lu%2C+Zhengwei&rft.au=Song%2C+Liming&rft.au=Jiang%2C+Keji&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2410-3888&rft.volume=9&rft.issue=2&rft.spage=66&rft_id=info:doi/10.3390%2Ffishes9020066&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2410-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2410-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2410-3888&client=summon