Solid-state NMR chemical shift analysis for determining the conformation of ATP bound to Na,K-ATPase in its native membrane
Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13 C chemical shifts measured by m...
Saved in:
Published in: | RSC advances Vol. 13; no. 49; pp. 34836 - 34846 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cambridge
Royal Society of Chemistry
29-11-2023
The Royal Society of Chemistry |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that
13
C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The
13
C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3′-
endo
(N) conformation when bound with high affinity to NKA in the E
1
Na state, in contrast to the C2′-
endo
(S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H-C-C-H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand-protein interactions.
Solid-state NMR and DFT
13
C chemical shift calculations are used to determine the ribose ring conformation of hydrolysable adenosine 5′-triphosphate when freeze-trapped in the high-affinity binding site of Na,K-ATPase. |
---|---|
AbstractList | Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that
13
C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The
13
C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3′-
endo
(N) conformation when bound with high affinity to NKA in the E
1
Na state, in contrast to the C2′-
endo
(S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H-C-C-H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand-protein interactions.
Solid-state NMR and DFT
13
C chemical shift calculations are used to determine the ribose ring conformation of hydrolysable adenosine 5′-triphosphate when freeze-trapped in the high-affinity binding site of Na,K-ATPase. Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3′-endo (N) conformation when bound with high affinity to NKA in the E1Na state, in contrast to the C2′-endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H–C–C–H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand–protein interactions. Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13 C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13 C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3′- endo (N) conformation when bound with high affinity to NKA in the E 1 Na state, in contrast to the C2′- endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H–C–C–H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand–protein interactions. |
Author | Esmann, Mikael Griffin, John Middleton, David A Fedosova, Natalya U |
AuthorAffiliation | Department of Chemistry Department of Biomedicine Aarhus University Lancaster University |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Lancaster University – name: Aarhus University – name: Department of Biomedicine |
Author_xml | – sequence: 1 givenname: David A surname: Middleton fullname: Middleton, David A – sequence: 2 givenname: John surname: Griffin fullname: Griffin, John – sequence: 3 givenname: Mikael surname: Esmann fullname: Esmann, Mikael – sequence: 4 givenname: Natalya U surname: Fedosova fullname: Fedosova, Natalya U |
BookMark | eNpdkc1PFjEQxhuCCYhcvJs04WKMK-323e72RN7gB0ZEg3BuZrtTtmS3xbZLQvznLb4E1LnMZOaXJzPzPCfbPngk5CVn7zgT6nAQEZishRy3yG7NVrKqmVTbf9U7ZD-la1ZCNryWfJf8-hEmN1QpQ0Z69vWcmhFnZ2CiaXQ2U_Aw3SWXqA2RDpgxzs47f0XziNQEX9ozZBc8DZauL77TPix-oDnQM3j7pSodSEidpy4n6gt5i3TGuY_g8QV5ZmFKuP-Q98jlxw8XxyfV6bdPn4_Xp5URsslVa41dddAOPRfM9HUvuWoHLowSbQNWKS4GZY3p0JabJIe-bVvgsDK2WUkjxR452ujeLP2Mg0GfI0z6JroZ4p0O4PS_E-9GfRVuNWeya4RQReH1g0IMPxdMWc8uGZymckVYkq47JTvWlFTQg__Q67DE8sUN1TZCcl6oNxvKxJBSRPu4DWf63kz9Xpyv_5h5UuBXGzgm88g9mS1-A_cSnmk |
Cites_doi | 10.1016/j.febslet.2008.09.033 10.1021/jacs.2c04287 10.1021/bi011887u 10.1021/ja106555c 10.1002/anie.201100736 10.1021/jp980926h 10.1139/v11-017 10.1021/ja051019a 10.1002/1873-3468.14437 10.1016/j.febslet.2006.11.026 10.1063/1.4811498 10.1021/acs.jmedchem.6b01453 10.1021/jp0007538 10.1021/jp075921b 10.1021/jacs.5b02635 10.1006/jmre.2000.2179 10.1002/jcc.21118 10.3389/fmolb.2021.791090 10.1103/PhysRevB.76.024401 10.1016/j.jmr.2009.05.002 10.1002/cbic.200900167 10.1002/mrc.4868 10.2142/biophysics.9.1 10.1021/ja00778a043 10.1038/nrd2199 10.1038/nrd1773 10.1103/PhysRevLett.77.3865 10.1016/j.cplett.2010.08.077 10.3390/molecules25225268 10.1002/cbic.201900439 10.1073/pnas.2123226119 10.1042/BST0350985 10.1107/S2053229617001589 10.1007/s10858-017-0144-3 10.1021/acs.chemrev.1c00837 10.1021/ja061984g 10.1021/acs.biochem.5b00893 10.1016/j.sbi.2019.02.002 10.1021/jp0513925 10.1038/nature12578 10.1002/anie.201908914 10.1063/1.470372 10.1038/s41467-022-32990-x 10.1126/science.1243352 10.1103/PhysRevB.63.245101 10.1007/s10858-015-9947-2 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 – notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d3ra06236h |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 34846 |
ExternalDocumentID | 10_1039_D3RA06236H d3ra06236h |
GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAGNR AAIWI AAXHV ABGFH ACGFS ADBBV ADMRA AENEX AFPKN AFVBQ AGRSR AGSTE AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- GROUPED_DOAJ HZ~ H~N J3I M~E O9- OK1 R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAHBH AAJAE AARTK AAWGC AAYXX ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AHGCF APEMP CITATION H13 PGMZT 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c365t-7fcf48a7db130cb2b6197d13c9375af9913d9fcc8ef12661ab777a1a4cf546c63 |
IEDL.DBID | RPM |
ISSN | 2046-2069 |
IngestDate | Tue Sep 17 21:30:04 EDT 2024 Fri Oct 25 22:44:07 EDT 2024 Thu Oct 10 19:11:08 EDT 2024 Thu Nov 21 22:26:09 EST 2024 Fri Feb 09 04:38:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-7fcf48a7db130cb2b6197d13c9375af9913d9fcc8ef12661ab777a1a4cf546c63 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d3ra06236h ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8943-3835 0000-0002-3227-7632 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685339/ |
PQID | 2896753611 |
PQPubID | 2047525 |
PageCount | 11 |
ParticipantIDs | rsc_primary_d3ra06236h proquest_miscellaneous_2896805289 crossref_primary_10_1039_D3RA06236H pubmedcentral_primary_oai_pubmedcentral_nih_gov_10685339 proquest_journals_2896753611 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-29 |
PublicationDateYYYYMMDD | 2023-11-29 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | RSC advances |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Yates (D3RA06236H/cit27/1) 2007; 76 Baias (D3RA06236H/cit14/1) 2019; 57 Jørgensen (D3RA06236H/cit20/1) 2003; 986 Lacabanne (D3RA06236H/cit19/1) 2022; 144 Middleton (D3RA06236H/cit43/1) 2015; 54 Overington (D3RA06236H/cit1/1) 2006; 5 Segall (D3RA06236H/cit25/1) 2002; 14 Lai (D3RA06236H/cit10/1) 2011; 133 Wiegand (D3RA06236H/cit17/1) 2020; 21 Kobayashi (D3RA06236H/cit51/1) 2013; 9 Middleton (D3RA06236H/cit21/1) 2006; 580 van der Wel (D3RA06236H/cit49/1) 2021; 8 Elkins (D3RA06236H/cit7/1) 2019; 57 Poppler (D3RA06236H/cit26/1) 2019; 58 Kanai (D3RA06236H/cit38/1) 2022; 119 Kanai (D3RA06236H/cit41/1) 2013; 502 Bryce (D3RA06236H/cit15/1) 2017; 73 Hartman (D3RA06236H/cit11/1) 2015; 62 Middleton (D3RA06236H/cit5/1) 2009; 10 Xu (D3RA06236H/cit36/1) 2000; 104 Nyblom (D3RA06236H/cit40/1) 2013; 342 Patching (D3RA06236H/cit48/1) 2009; 199 Nguyen (D3RA06236H/cit42/1) 2022; 13 Perdew (D3RA06236H/cit28/1) 1996; 77 Hellmich (D3RA06236H/cit18/1) 2008; 582 Lee (D3RA06236H/cit3/1) 2018; 61 Brouwer (D3RA06236H/cit32/1) 2011; 89 Wiegand (D3RA06236H/cit50/1) 2017; 69 Middleton (D3RA06236H/cit8/1) 2007; 35 Gervais (D3RA06236H/cit29/1) 2005; 109 Dejaegere (D3RA06236H/cit34/1) 1998; 102 Suardiaz (D3RA06236H/cit37/1) 2013; 139 Altona (D3RA06236H/cit35/1) 1972; 94 Pickard (D3RA06236H/cit24/1) 2001; 63 Martineau (D3RA06236H/cit16/1) 2014; 82 Zheng (D3RA06236H/cit30/1) 2009; 30 Ying (D3RA06236H/cit44/1) 2006; 128 Bak (D3RA06236H/cit31/1) 2000; 147 Yates (D3RA06236H/cit46/1) 2005; 127 Piper (D3RA06236H/cit2/1) 2022; 122 Kanai (D3RA06236H/cit39/1) 2022; 596 Middleton (D3RA06236H/cit4/1) 2011; 50 Bennett (D3RA06236H/cit23/1) 1995; 103 Beran (D3RA06236H/cit13/1) 2019; 8 Shao (D3RA06236H/cit33/1) 2007; 111 Fedosova (D3RA06236H/cit22/1) 2002; 41 Lacabanne (D3RA06236H/cit6/1) 2020; 25 Watts (D3RA06236H/cit9/1) 2005; 4 Gupta (D3RA06236H/cit12/1) 2015; 137 Kibalchenko (D3RA06236H/cit45/1) 2010; 498 |
References_xml | – issn: 2014 issue: vol. 82 end-page: p 1-57 publication-title: Annual Reports on NMR Spectroscopy doi: Martineau Senker Taulelle – issn: 2003 issue: vol. 986 end-page: p 1-718 publication-title: Na,K-ATPase and Related Cation Pumps doi: Jørgensen Karlish Maunsbach – issn: 2013 publication-title: Gaussian 09, Revision E.01 doi: Frisch Schlegel Scuseria Robb Scalmani Barone Mennucci Petersson Caricato Li Hratchian Izmaylov Zheng Sonnenberg Hada Ehara Fukuda Hasegawa Ishida Nakajima Honda Nakai Vreven Montgomery Jr Peralta Bearpark Heyd Brothers Kudin Keith Kobayashi Normand Raghavachari Burant Iyengar Tomasi Cossi Millam Klene Knox Cross Bakken Jaramillo Gomperts Stratmann Yazyev Cammi Pomelli Ochterski Martin Zakrzewski Voth Salvador Dapprich Daniels Farkas Ortiz Cioslowski Fox – volume: 582 start-page: 3557 year: 2008 ident: D3RA06236H/cit18/1 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.09.033 contributor: fullname: Hellmich – volume: 144 start-page: 12431 year: 2022 ident: D3RA06236H/cit19/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c04287 contributor: fullname: Lacabanne – volume: 41 start-page: 1267 year: 2002 ident: D3RA06236H/cit22/1 publication-title: Biochemistry doi: 10.1021/bi011887u contributor: fullname: Fedosova – volume: 133 start-page: 4 year: 2011 ident: D3RA06236H/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106555c contributor: fullname: Lai – volume: 50 start-page: 7041 year: 2011 ident: D3RA06236H/cit4/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201100736 contributor: fullname: Middleton – volume: 102 start-page: 5280 year: 1998 ident: D3RA06236H/cit34/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp980926h contributor: fullname: Dejaegere – volume: 89 start-page: 737 year: 2011 ident: D3RA06236H/cit32/1 publication-title: Can. J. Chem. doi: 10.1139/v11-017 contributor: fullname: Brouwer – volume: 127 start-page: 10216 year: 2005 ident: D3RA06236H/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja051019a contributor: fullname: Yates – volume: 596 start-page: 2513 year: 2022 ident: D3RA06236H/cit39/1 publication-title: FEBS Lett. doi: 10.1002/1873-3468.14437 contributor: fullname: Kanai – volume: 580 start-page: 6685 year: 2006 ident: D3RA06236H/cit21/1 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.11.026 contributor: fullname: Middleton – volume: 139 start-page: 034101 year: 2013 ident: D3RA06236H/cit37/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4811498 contributor: fullname: Suardiaz – volume: 61 start-page: 1 year: 2018 ident: D3RA06236H/cit3/1 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01453 contributor: fullname: Lee – volume: 104 start-page: 5641 year: 2000 ident: D3RA06236H/cit36/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0007538 contributor: fullname: Xu – volume: 111 start-page: 13126 year: 2007 ident: D3RA06236H/cit33/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp075921b contributor: fullname: Shao – volume: 137 start-page: 5618 year: 2015 ident: D3RA06236H/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02635 contributor: fullname: Gupta – volume: 147 start-page: 296 year: 2000 ident: D3RA06236H/cit31/1 publication-title: J. Magn. Reson. doi: 10.1006/jmre.2000.2179 contributor: fullname: Bak – volume: 8 start-page: 215 year: 2019 ident: D3RA06236H/cit13/1 publication-title: Emagres contributor: fullname: Beran – volume: 30 start-page: 222 year: 2009 ident: D3RA06236H/cit30/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21118 contributor: fullname: Zheng – volume: 8 start-page: 791090 year: 2021 ident: D3RA06236H/cit49/1 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.791090 contributor: fullname: van der Wel – volume: 76 start-page: 024401 year: 2007 ident: D3RA06236H/cit27/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.024401 contributor: fullname: Yates – volume: 199 start-page: 242 year: 2009 ident: D3RA06236H/cit48/1 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2009.05.002 contributor: fullname: Patching – volume: 10 start-page: 1789 year: 2009 ident: D3RA06236H/cit5/1 publication-title: ChemBioChem doi: 10.1002/cbic.200900167 contributor: fullname: Middleton – volume: 57 start-page: 166 year: 2019 ident: D3RA06236H/cit14/1 publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.4868 contributor: fullname: Baias – volume: 9 start-page: 1 year: 2013 ident: D3RA06236H/cit51/1 publication-title: Biophysics doi: 10.2142/biophysics.9.1 contributor: fullname: Kobayashi – volume: 94 start-page: 8205 year: 1972 ident: D3RA06236H/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00778a043 contributor: fullname: Altona – volume: 5 start-page: 993 year: 2006 ident: D3RA06236H/cit1/1 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd2199 contributor: fullname: Overington – volume: 4 start-page: 555 year: 2005 ident: D3RA06236H/cit9/1 publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd1773 contributor: fullname: Watts – volume: 77 start-page: 3865 year: 1996 ident: D3RA06236H/cit28/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: Perdew – volume: 498 start-page: 270 year: 2010 ident: D3RA06236H/cit45/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.08.077 contributor: fullname: Kibalchenko – volume: 25 start-page: 5268 year: 2020 ident: D3RA06236H/cit6/1 publication-title: Molecules doi: 10.3390/molecules25225268 contributor: fullname: Lacabanne – volume: 21 start-page: 324 year: 2020 ident: D3RA06236H/cit17/1 publication-title: ChemBioChem doi: 10.1002/cbic.201900439 contributor: fullname: Wiegand – volume: 14 start-page: 2717 year: 2002 ident: D3RA06236H/cit25/1 publication-title: J. Phys.: Condens.Matter contributor: fullname: Segall – volume: 119 start-page: e2123226119 year: 2022 ident: D3RA06236H/cit38/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2123226119 contributor: fullname: Kanai – volume: 35 start-page: 985 year: 2007 ident: D3RA06236H/cit8/1 publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0350985 contributor: fullname: Middleton – volume: 73 start-page: 126 year: 2017 ident: D3RA06236H/cit15/1 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. doi: 10.1107/S2053229617001589 contributor: fullname: Bryce – volume: 69 start-page: 157 year: 2017 ident: D3RA06236H/cit50/1 publication-title: J. Biomol. NMR doi: 10.1007/s10858-017-0144-3 contributor: fullname: Wiegand – volume: 122 start-page: 13989 year: 2022 ident: D3RA06236H/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00837 contributor: fullname: Piper – volume: 128 start-page: 11443 year: 2006 ident: D3RA06236H/cit44/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja061984g contributor: fullname: Ying – volume: 54 start-page: 7041 year: 2015 ident: D3RA06236H/cit43/1 publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00893 contributor: fullname: Middleton – volume: 57 start-page: 103 year: 2019 ident: D3RA06236H/cit7/1 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2019.02.002 contributor: fullname: Elkins – volume: 986 start-page: 1 volume-title: Na,K-ATPase and Related Cation Pumps year: 2003 ident: D3RA06236H/cit20/1 contributor: fullname: Jørgensen – volume: 109 start-page: 6960 year: 2005 ident: D3RA06236H/cit29/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp0513925 contributor: fullname: Gervais – volume: 502 start-page: 201 year: 2013 ident: D3RA06236H/cit41/1 publication-title: Nature doi: 10.1038/nature12578 contributor: fullname: Kanai – volume: 58 start-page: 18540 year: 2019 ident: D3RA06236H/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908914 contributor: fullname: Poppler – volume: 103 start-page: 6951 year: 1995 ident: D3RA06236H/cit23/1 publication-title: J. Chem. Phys. doi: 10.1063/1.470372 contributor: fullname: Bennett – volume: 13 start-page: 5293 year: 2022 ident: D3RA06236H/cit42/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32990-x contributor: fullname: Nguyen – volume: 342 start-page: 123 year: 2013 ident: D3RA06236H/cit40/1 publication-title: Science doi: 10.1126/science.1243352 contributor: fullname: Nyblom – volume: 82 start-page: 1 volume-title: Annual Reports on NMR Spectroscopy year: 2014 ident: D3RA06236H/cit16/1 contributor: fullname: Martineau – volume: 63 start-page: 245101 year: 2001 ident: D3RA06236H/cit24/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.63.245101 contributor: fullname: Pickard – volume: 62 start-page: 327 year: 2015 ident: D3RA06236H/cit11/1 publication-title: J. Biomol. NMR doi: 10.1007/s10858-015-9947-2 contributor: fullname: Hartman |
SSID | ssj0000651261 |
Score | 2.4364917 |
Snippet | Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details... |
SourceID | pubmedcentral proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 34836 |
SubjectTerms | Adenine Affinity Chemical equilibrium Chemistry Crystallography Density functional theory Dipole interactions Ligands Membrane structures Membranes NMR Nuclear magnetic resonance Physiology Proteins Ribose Solid state |
Title | Solid-state NMR chemical shift analysis for determining the conformation of ATP bound to Na,K-ATPase in its native membrane |
URI | https://www.proquest.com/docview/2896753611 https://search.proquest.com/docview/2896805289 https://pubmed.ncbi.nlm.nih.gov/PMC10685339 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB0RLvRStaWophQNoseaxNn1xx6jAIqEEkWBSr1Z6_1QLBEbJc6pf76zGzsQjr16_bm73veeduYNwE85cBYhgla_oTIhNzELJRcmLAwXPFKMNIUvYvuYzv5kt3fOJifpcmF80L4qypvqeXVTlUsfW_myUv0uTqw_n45JxhDKMNHvQY_I4RuNvlt_CcSSqPMipdM0W8sB4XyyPESfV0r5PiCyt-7qf3icuf8EH1uCiKPdi3yGI1N9gZNxV5ftFP4-1s-lDn0mEM6mC1Rtzj9ulqVtULY2I0h0FHUb7UIAhUT1kNTvPl0Ra4ujpzkWrrISNjXO5K-HkI4QsGFZYdlssPK-4LgyK1LVlfkKv-_vnsaTsC2hECqWxE2YWmV5JlNdEFapYliQXkp1xBSxklhaIodMC6tUZmzkoFoWaZrKSHJlY56ohJ3BcVVX5htgyrN4IDOnIDW3xKoKEiPGOOvHWIuhCuC669r8ZeeUkfsdbibyW7YY-QGYBHDR9Xre_i2bnEQf6RaWRFEAV_tm6la3eUEfV29357jyC5kIIDsYrf3TnFP2YQtNIO-Y3U2YAM5oYPcXvM6L8_-_53f44ErQu_zEobiA42a9NT-gt9HbSy_wL_3s_AfIBuye |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4ReqCXvhFuKUzVHmtiZ9evYxRAQZAIQSr1Zq33oVgiNkqcE3-e2Y0dmh65eteP9ezuN5925huAXyKwEiEZ7X4DqX2uI-YLnmm_0DzjoWTEKVwR2_tk-jc9v7AyOXGXC-OC9mVRnlUPi7OqnLvYyseF7HdxYv3byYhoDKEMy_o9eEMLNgj-YembHZhgLA47NVLqqNhSBIT08XwXf16cyv9DInvLrgKIQ5rL96_9xg_wrvUtcbhp_wh7uvoEB6OupNtneLqvH0rluyQinE7uULZyAbial6ZB0SqUIHmyqNpAGcI2JC8RiThvMx2xNjic3WJhizJhU-NU_L726QphIpYVls0KKycpjgu9IEJe6S_w5_JiNhr7bfUFX7I4avzESMNTkaiCYE4Wg4KoVqJCJsmhiYQhv5KpzEiZahNalBdFkiQiFFyaiMcyZoewX9WVPgJMeBoFIrXkU3FDDllBPEZrqxoZqWwgPfjZ2SR_3Ihs5O5wnGX5ObsbOsuNPTjuzJW3C22VE18kysPiMPTgx7aZfqs996DB1etNH1u5Ic08SHfMvH2bFdnebSG7OrHtzo4eHNKM2N7wMqG-vv6Zp3Awnk1u8pur6fU3eGsr2ds0x0F2DPvNcq2_Q2-l1iducj8DEwcBdA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6RIgEX3lUNLQyCI25ir1_LLUoaFZVGUVskbtZ6H4qlxo4S58SfZ3Zjp02P9OpdP9azu9982plvAL6JgZUI4bT7hVL7kY6ZLyKu_UJHPAokI07hithep9M_2fjMyuT86HJhXNC-LMrT6nZxWpVzF1u5XMh-FyfWn12OiMYQyjDeXyrT78FTWrSD8B5T3-7CBGVJ0CmSUmfFVmJAaJ_M9zHozrF8GBbZW3VVQBzaTF495jtfw8vWx8Thts8beKKrt_B81JV2ewd_r-vbUvkumQinl1coW9kAXM9L06BolUqQPFpUbcAMYRySt4hEoHcZj1gbHN7MsLDFmbCpcSq-X_h0hbARywrLZo2VkxbHhV4QMa_0e_g9ObsZnfttFQZfsiRu_NRIE2UiVQXBnSzCgihXqgImybGJhSH_kilupMy0CSzaiyJNUxGISJo4SmTCDuGgqit9BJhGWTwQmSWhKjLkmBXEZ7S26pGx4qH04Gtnl3y5FdvI3SE54_mYXQ2d9c49OO5MlrcLbp0TbyTqw5Ig8ODLrpl-qz3_oMHVm20fW8Eh4x5ke6bevc2Kbe-3kG2d6HZnSw8OaVbsbribVB_-_5mf4dlsPMl__ZxefIQXtqC9zXYM-TEcNKuNPoHeWm0-ufn9DyZvA_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid-state+NMR+chemical+shift+analysis+for+determining+the+conformation+of+ATP+bound+to+Na%2CK-ATPase+in+its+native+membrane&rft.jtitle=RSC+advances&rft.au=Middleton%2C+David+A&rft.au=Griffin%2C+John&rft.au=Esmann%2C+Mikael&rft.au=Fedosova%2C+Natalya+U&rft.date=2023-11-29&rft.eissn=2046-2069&rft.volume=13&rft.issue=49&rft.spage=34836&rft.epage=34846&rft_id=info:doi/10.1039%2Fd3ra06236h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |