Solid-state NMR chemical shift analysis for determining the conformation of ATP bound to Na,K-ATPase in its native membrane

Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13 C chemical shifts measured by m...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances Vol. 13; no. 49; pp. 34836 - 34846
Main Authors: Middleton, David A, Griffin, John, Esmann, Mikael, Fedosova, Natalya U
Format: Journal Article
Language:English
Published: Cambridge Royal Society of Chemistry 29-11-2023
The Royal Society of Chemistry
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13 C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13 C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3′- endo (N) conformation when bound with high affinity to NKA in the E 1 Na state, in contrast to the C2′- endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H-C-C-H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand-protein interactions. Solid-state NMR and DFT 13 C chemical shift calculations are used to determine the ribose ring conformation of hydrolysable adenosine 5′-triphosphate when freeze-trapped in the high-affinity binding site of Na,K-ATPase.
AbstractList Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13 C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13 C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3′- endo (N) conformation when bound with high affinity to NKA in the E 1 Na state, in contrast to the C2′- endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H-C-C-H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand-protein interactions. Solid-state NMR and DFT 13 C chemical shift calculations are used to determine the ribose ring conformation of hydrolysable adenosine 5′-triphosphate when freeze-trapped in the high-affinity binding site of Na,K-ATPase.
Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3′-endo (N) conformation when bound with high affinity to NKA in the E1Na state, in contrast to the C2′-endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H–C–C–H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand–protein interactions.
Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13 C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13 C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3′- endo (N) conformation when bound with high affinity to NKA in the E 1 Na state, in contrast to the C2′- endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H–C–C–H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand–protein interactions.
Author Esmann, Mikael
Griffin, John
Middleton, David A
Fedosova, Natalya U
AuthorAffiliation Department of Chemistry
Department of Biomedicine
Aarhus University
Lancaster University
AuthorAffiliation_xml – name: Department of Chemistry
– name: Lancaster University
– name: Aarhus University
– name: Department of Biomedicine
Author_xml – sequence: 1
  givenname: David A
  surname: Middleton
  fullname: Middleton, David A
– sequence: 2
  givenname: John
  surname: Griffin
  fullname: Griffin, John
– sequence: 3
  givenname: Mikael
  surname: Esmann
  fullname: Esmann, Mikael
– sequence: 4
  givenname: Natalya U
  surname: Fedosova
  fullname: Fedosova, Natalya U
BookMark eNpdkc1PFjEQxhuCCYhcvJs04WKMK-323e72RN7gB0ZEg3BuZrtTtmS3xbZLQvznLb4E1LnMZOaXJzPzPCfbPngk5CVn7zgT6nAQEZishRy3yG7NVrKqmVTbf9U7ZD-la1ZCNryWfJf8-hEmN1QpQ0Z69vWcmhFnZ2CiaXQ2U_Aw3SWXqA2RDpgxzs47f0XziNQEX9ozZBc8DZauL77TPix-oDnQM3j7pSodSEidpy4n6gt5i3TGuY_g8QV5ZmFKuP-Q98jlxw8XxyfV6bdPn4_Xp5URsslVa41dddAOPRfM9HUvuWoHLowSbQNWKS4GZY3p0JabJIe-bVvgsDK2WUkjxR452ujeLP2Mg0GfI0z6JroZ4p0O4PS_E-9GfRVuNWeya4RQReH1g0IMPxdMWc8uGZymckVYkq47JTvWlFTQg__Q67DE8sUN1TZCcl6oNxvKxJBSRPu4DWf63kz9Xpyv_5h5UuBXGzgm88g9mS1-A_cSnmk
Cites_doi 10.1016/j.febslet.2008.09.033
10.1021/jacs.2c04287
10.1021/bi011887u
10.1021/ja106555c
10.1002/anie.201100736
10.1021/jp980926h
10.1139/v11-017
10.1021/ja051019a
10.1002/1873-3468.14437
10.1016/j.febslet.2006.11.026
10.1063/1.4811498
10.1021/acs.jmedchem.6b01453
10.1021/jp0007538
10.1021/jp075921b
10.1021/jacs.5b02635
10.1006/jmre.2000.2179
10.1002/jcc.21118
10.3389/fmolb.2021.791090
10.1103/PhysRevB.76.024401
10.1016/j.jmr.2009.05.002
10.1002/cbic.200900167
10.1002/mrc.4868
10.2142/biophysics.9.1
10.1021/ja00778a043
10.1038/nrd2199
10.1038/nrd1773
10.1103/PhysRevLett.77.3865
10.1016/j.cplett.2010.08.077
10.3390/molecules25225268
10.1002/cbic.201900439
10.1073/pnas.2123226119
10.1042/BST0350985
10.1107/S2053229617001589
10.1007/s10858-017-0144-3
10.1021/acs.chemrev.1c00837
10.1021/ja061984g
10.1021/acs.biochem.5b00893
10.1016/j.sbi.2019.02.002
10.1021/jp0513925
10.1038/nature12578
10.1002/anie.201908914
10.1063/1.470372
10.1038/s41467-022-32990-x
10.1126/science.1243352
10.1103/PhysRevB.63.245101
10.1007/s10858-015-9947-2
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
– notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d3ra06236h
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 34846
ExternalDocumentID 10_1039_D3RA06236H
d3ra06236h
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAGNR
AAIWI
AAXHV
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFPKN
AFVBQ
AGRSR
AGSTE
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
HZ~
H~N
J3I
M~E
O9-
OK1
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAHBH
AAJAE
AARTK
AAWGC
AAYXX
ABEMK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AGEGJ
AHGCF
APEMP
CITATION
H13
PGMZT
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c365t-7fcf48a7db130cb2b6197d13c9375af9913d9fcc8ef12661ab777a1a4cf546c63
IEDL.DBID RPM
ISSN 2046-2069
IngestDate Tue Sep 17 21:30:04 EDT 2024
Fri Oct 25 22:44:07 EDT 2024
Thu Oct 10 19:11:08 EDT 2024
Thu Nov 21 22:26:09 EST 2024
Fri Feb 09 04:38:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-7fcf48a7db130cb2b6197d13c9375af9913d9fcc8ef12661ab777a1a4cf546c63
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3ra06236h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8943-3835
0000-0002-3227-7632
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685339/
PQID 2896753611
PQPubID 2047525
PageCount 11
ParticipantIDs rsc_primary_d3ra06236h
proquest_miscellaneous_2896805289
crossref_primary_10_1039_D3RA06236H
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10685339
proquest_journals_2896753611
PublicationCentury 2000
PublicationDate 2023-11-29
PublicationDateYYYYMMDD 2023-11-29
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-29
  day: 29
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle RSC advances
PublicationYear 2023
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Yates (D3RA06236H/cit27/1) 2007; 76
Baias (D3RA06236H/cit14/1) 2019; 57
Jørgensen (D3RA06236H/cit20/1) 2003; 986
Lacabanne (D3RA06236H/cit19/1) 2022; 144
Middleton (D3RA06236H/cit43/1) 2015; 54
Overington (D3RA06236H/cit1/1) 2006; 5
Segall (D3RA06236H/cit25/1) 2002; 14
Lai (D3RA06236H/cit10/1) 2011; 133
Wiegand (D3RA06236H/cit17/1) 2020; 21
Kobayashi (D3RA06236H/cit51/1) 2013; 9
Middleton (D3RA06236H/cit21/1) 2006; 580
van der Wel (D3RA06236H/cit49/1) 2021; 8
Elkins (D3RA06236H/cit7/1) 2019; 57
Poppler (D3RA06236H/cit26/1) 2019; 58
Kanai (D3RA06236H/cit38/1) 2022; 119
Kanai (D3RA06236H/cit41/1) 2013; 502
Bryce (D3RA06236H/cit15/1) 2017; 73
Hartman (D3RA06236H/cit11/1) 2015; 62
Middleton (D3RA06236H/cit5/1) 2009; 10
Xu (D3RA06236H/cit36/1) 2000; 104
Nyblom (D3RA06236H/cit40/1) 2013; 342
Patching (D3RA06236H/cit48/1) 2009; 199
Nguyen (D3RA06236H/cit42/1) 2022; 13
Perdew (D3RA06236H/cit28/1) 1996; 77
Hellmich (D3RA06236H/cit18/1) 2008; 582
Lee (D3RA06236H/cit3/1) 2018; 61
Brouwer (D3RA06236H/cit32/1) 2011; 89
Wiegand (D3RA06236H/cit50/1) 2017; 69
Middleton (D3RA06236H/cit8/1) 2007; 35
Gervais (D3RA06236H/cit29/1) 2005; 109
Dejaegere (D3RA06236H/cit34/1) 1998; 102
Suardiaz (D3RA06236H/cit37/1) 2013; 139
Altona (D3RA06236H/cit35/1) 1972; 94
Pickard (D3RA06236H/cit24/1) 2001; 63
Martineau (D3RA06236H/cit16/1) 2014; 82
Zheng (D3RA06236H/cit30/1) 2009; 30
Ying (D3RA06236H/cit44/1) 2006; 128
Bak (D3RA06236H/cit31/1) 2000; 147
Yates (D3RA06236H/cit46/1) 2005; 127
Piper (D3RA06236H/cit2/1) 2022; 122
Kanai (D3RA06236H/cit39/1) 2022; 596
Middleton (D3RA06236H/cit4/1) 2011; 50
Bennett (D3RA06236H/cit23/1) 1995; 103
Beran (D3RA06236H/cit13/1) 2019; 8
Shao (D3RA06236H/cit33/1) 2007; 111
Fedosova (D3RA06236H/cit22/1) 2002; 41
Lacabanne (D3RA06236H/cit6/1) 2020; 25
Watts (D3RA06236H/cit9/1) 2005; 4
Gupta (D3RA06236H/cit12/1) 2015; 137
Kibalchenko (D3RA06236H/cit45/1) 2010; 498
References_xml – issn: 2014
  issue: vol. 82
  end-page: p 1-57
  publication-title: Annual Reports on NMR Spectroscopy
  doi: Martineau Senker Taulelle
– issn: 2003
  issue: vol. 986
  end-page: p 1-718
  publication-title: Na,K-ATPase and Related Cation Pumps
  doi: Jørgensen Karlish Maunsbach
– issn: 2013
  publication-title: Gaussian 09, Revision E.01
  doi: Frisch Schlegel Scuseria Robb Scalmani Barone Mennucci Petersson Caricato Li Hratchian Izmaylov Zheng Sonnenberg Hada Ehara Fukuda Hasegawa Ishida Nakajima Honda Nakai Vreven Montgomery Jr Peralta Bearpark Heyd Brothers Kudin Keith Kobayashi Normand Raghavachari Burant Iyengar Tomasi Cossi Millam Klene Knox Cross Bakken Jaramillo Gomperts Stratmann Yazyev Cammi Pomelli Ochterski Martin Zakrzewski Voth Salvador Dapprich Daniels Farkas Ortiz Cioslowski Fox
– volume: 582
  start-page: 3557
  year: 2008
  ident: D3RA06236H/cit18/1
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2008.09.033
  contributor:
    fullname: Hellmich
– volume: 144
  start-page: 12431
  year: 2022
  ident: D3RA06236H/cit19/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c04287
  contributor:
    fullname: Lacabanne
– volume: 41
  start-page: 1267
  year: 2002
  ident: D3RA06236H/cit22/1
  publication-title: Biochemistry
  doi: 10.1021/bi011887u
  contributor:
    fullname: Fedosova
– volume: 133
  start-page: 4
  year: 2011
  ident: D3RA06236H/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106555c
  contributor:
    fullname: Lai
– volume: 50
  start-page: 7041
  year: 2011
  ident: D3RA06236H/cit4/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201100736
  contributor:
    fullname: Middleton
– volume: 102
  start-page: 5280
  year: 1998
  ident: D3RA06236H/cit34/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp980926h
  contributor:
    fullname: Dejaegere
– volume: 89
  start-page: 737
  year: 2011
  ident: D3RA06236H/cit32/1
  publication-title: Can. J. Chem.
  doi: 10.1139/v11-017
  contributor:
    fullname: Brouwer
– volume: 127
  start-page: 10216
  year: 2005
  ident: D3RA06236H/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051019a
  contributor:
    fullname: Yates
– volume: 596
  start-page: 2513
  year: 2022
  ident: D3RA06236H/cit39/1
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.14437
  contributor:
    fullname: Kanai
– volume: 580
  start-page: 6685
  year: 2006
  ident: D3RA06236H/cit21/1
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.11.026
  contributor:
    fullname: Middleton
– volume: 139
  start-page: 034101
  year: 2013
  ident: D3RA06236H/cit37/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4811498
  contributor:
    fullname: Suardiaz
– volume: 61
  start-page: 1
  year: 2018
  ident: D3RA06236H/cit3/1
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b01453
  contributor:
    fullname: Lee
– volume: 104
  start-page: 5641
  year: 2000
  ident: D3RA06236H/cit36/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0007538
  contributor:
    fullname: Xu
– volume: 111
  start-page: 13126
  year: 2007
  ident: D3RA06236H/cit33/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp075921b
  contributor:
    fullname: Shao
– volume: 137
  start-page: 5618
  year: 2015
  ident: D3RA06236H/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02635
  contributor:
    fullname: Gupta
– volume: 147
  start-page: 296
  year: 2000
  ident: D3RA06236H/cit31/1
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2000.2179
  contributor:
    fullname: Bak
– volume: 8
  start-page: 215
  year: 2019
  ident: D3RA06236H/cit13/1
  publication-title: Emagres
  contributor:
    fullname: Beran
– volume: 30
  start-page: 222
  year: 2009
  ident: D3RA06236H/cit30/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21118
  contributor:
    fullname: Zheng
– volume: 8
  start-page: 791090
  year: 2021
  ident: D3RA06236H/cit49/1
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.791090
  contributor:
    fullname: van der Wel
– volume: 76
  start-page: 024401
  year: 2007
  ident: D3RA06236H/cit27/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.024401
  contributor:
    fullname: Yates
– volume: 199
  start-page: 242
  year: 2009
  ident: D3RA06236H/cit48/1
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2009.05.002
  contributor:
    fullname: Patching
– volume: 10
  start-page: 1789
  year: 2009
  ident: D3RA06236H/cit5/1
  publication-title: ChemBioChem
  doi: 10.1002/cbic.200900167
  contributor:
    fullname: Middleton
– volume: 57
  start-page: 166
  year: 2019
  ident: D3RA06236H/cit14/1
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.4868
  contributor:
    fullname: Baias
– volume: 9
  start-page: 1
  year: 2013
  ident: D3RA06236H/cit51/1
  publication-title: Biophysics
  doi: 10.2142/biophysics.9.1
  contributor:
    fullname: Kobayashi
– volume: 94
  start-page: 8205
  year: 1972
  ident: D3RA06236H/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00778a043
  contributor:
    fullname: Altona
– volume: 5
  start-page: 993
  year: 2006
  ident: D3RA06236H/cit1/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd2199
  contributor:
    fullname: Overington
– volume: 4
  start-page: 555
  year: 2005
  ident: D3RA06236H/cit9/1
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd1773
  contributor:
    fullname: Watts
– volume: 77
  start-page: 3865
  year: 1996
  ident: D3RA06236H/cit28/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 498
  start-page: 270
  year: 2010
  ident: D3RA06236H/cit45/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.08.077
  contributor:
    fullname: Kibalchenko
– volume: 25
  start-page: 5268
  year: 2020
  ident: D3RA06236H/cit6/1
  publication-title: Molecules
  doi: 10.3390/molecules25225268
  contributor:
    fullname: Lacabanne
– volume: 21
  start-page: 324
  year: 2020
  ident: D3RA06236H/cit17/1
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201900439
  contributor:
    fullname: Wiegand
– volume: 14
  start-page: 2717
  year: 2002
  ident: D3RA06236H/cit25/1
  publication-title: J. Phys.: Condens.Matter
  contributor:
    fullname: Segall
– volume: 119
  start-page: e2123226119
  year: 2022
  ident: D3RA06236H/cit38/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2123226119
  contributor:
    fullname: Kanai
– volume: 35
  start-page: 985
  year: 2007
  ident: D3RA06236H/cit8/1
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0350985
  contributor:
    fullname: Middleton
– volume: 73
  start-page: 126
  year: 2017
  ident: D3RA06236H/cit15/1
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
  doi: 10.1107/S2053229617001589
  contributor:
    fullname: Bryce
– volume: 69
  start-page: 157
  year: 2017
  ident: D3RA06236H/cit50/1
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-017-0144-3
  contributor:
    fullname: Wiegand
– volume: 122
  start-page: 13989
  year: 2022
  ident: D3RA06236H/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00837
  contributor:
    fullname: Piper
– volume: 128
  start-page: 11443
  year: 2006
  ident: D3RA06236H/cit44/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja061984g
  contributor:
    fullname: Ying
– volume: 54
  start-page: 7041
  year: 2015
  ident: D3RA06236H/cit43/1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00893
  contributor:
    fullname: Middleton
– volume: 57
  start-page: 103
  year: 2019
  ident: D3RA06236H/cit7/1
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2019.02.002
  contributor:
    fullname: Elkins
– volume: 986
  start-page: 1
  volume-title: Na,K-ATPase and Related Cation Pumps
  year: 2003
  ident: D3RA06236H/cit20/1
  contributor:
    fullname: Jørgensen
– volume: 109
  start-page: 6960
  year: 2005
  ident: D3RA06236H/cit29/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0513925
  contributor:
    fullname: Gervais
– volume: 502
  start-page: 201
  year: 2013
  ident: D3RA06236H/cit41/1
  publication-title: Nature
  doi: 10.1038/nature12578
  contributor:
    fullname: Kanai
– volume: 58
  start-page: 18540
  year: 2019
  ident: D3RA06236H/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908914
  contributor:
    fullname: Poppler
– volume: 103
  start-page: 6951
  year: 1995
  ident: D3RA06236H/cit23/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470372
  contributor:
    fullname: Bennett
– volume: 13
  start-page: 5293
  year: 2022
  ident: D3RA06236H/cit42/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32990-x
  contributor:
    fullname: Nguyen
– volume: 342
  start-page: 123
  year: 2013
  ident: D3RA06236H/cit40/1
  publication-title: Science
  doi: 10.1126/science.1243352
  contributor:
    fullname: Nyblom
– volume: 82
  start-page: 1
  volume-title: Annual Reports on NMR Spectroscopy
  year: 2014
  ident: D3RA06236H/cit16/1
  contributor:
    fullname: Martineau
– volume: 63
  start-page: 245101
  year: 2001
  ident: D3RA06236H/cit24/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.63.245101
  contributor:
    fullname: Pickard
– volume: 62
  start-page: 327
  year: 2015
  ident: D3RA06236H/cit11/1
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-015-9947-2
  contributor:
    fullname: Hartman
SSID ssj0000651261
Score 2.4364917
Snippet Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details...
SourceID pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 34836
SubjectTerms Adenine
Affinity
Chemical equilibrium
Chemistry
Crystallography
Density functional theory
Dipole interactions
Ligands
Membrane structures
Membranes
NMR
Nuclear magnetic resonance
Physiology
Proteins
Ribose
Solid state
Title Solid-state NMR chemical shift analysis for determining the conformation of ATP bound to Na,K-ATPase in its native membrane
URI https://www.proquest.com/docview/2896753611
https://search.proquest.com/docview/2896805289
https://pubmed.ncbi.nlm.nih.gov/PMC10685339
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB0RLvRStaWophQNoseaxNn1xx6jAIqEEkWBSr1Z6_1QLBEbJc6pf76zGzsQjr16_bm73veeduYNwE85cBYhgla_oTIhNzELJRcmLAwXPFKMNIUvYvuYzv5kt3fOJifpcmF80L4qypvqeXVTlUsfW_myUv0uTqw_n45JxhDKMNHvQY_I4RuNvlt_CcSSqPMipdM0W8sB4XyyPESfV0r5PiCyt-7qf3icuf8EH1uCiKPdi3yGI1N9gZNxV5ftFP4-1s-lDn0mEM6mC1Rtzj9ulqVtULY2I0h0FHUb7UIAhUT1kNTvPl0Ra4ujpzkWrrISNjXO5K-HkI4QsGFZYdlssPK-4LgyK1LVlfkKv-_vnsaTsC2hECqWxE2YWmV5JlNdEFapYliQXkp1xBSxklhaIodMC6tUZmzkoFoWaZrKSHJlY56ohJ3BcVVX5htgyrN4IDOnIDW3xKoKEiPGOOvHWIuhCuC669r8ZeeUkfsdbibyW7YY-QGYBHDR9Xre_i2bnEQf6RaWRFEAV_tm6la3eUEfV29357jyC5kIIDsYrf3TnFP2YQtNIO-Y3U2YAM5oYPcXvM6L8_-_53f44ErQu_zEobiA42a9NT-gt9HbSy_wL_3s_AfIBuye
link.rule.ids 230,315,729,782,786,866,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4ReqCXvhFuKUzVHmtiZ9evYxRAQZAIQSr1Zq33oVgiNkqcE3-e2Y0dmh65eteP9ezuN5925huAXyKwEiEZ7X4DqX2uI-YLnmm_0DzjoWTEKVwR2_tk-jc9v7AyOXGXC-OC9mVRnlUPi7OqnLvYyseF7HdxYv3byYhoDKEMy_o9eEMLNgj-YembHZhgLA47NVLqqNhSBIT08XwXf16cyv9DInvLrgKIQ5rL96_9xg_wrvUtcbhp_wh7uvoEB6OupNtneLqvH0rluyQinE7uULZyAbial6ZB0SqUIHmyqNpAGcI2JC8RiThvMx2xNjic3WJhizJhU-NU_L726QphIpYVls0KKycpjgu9IEJe6S_w5_JiNhr7bfUFX7I4avzESMNTkaiCYE4Wg4KoVqJCJsmhiYQhv5KpzEiZahNalBdFkiQiFFyaiMcyZoewX9WVPgJMeBoFIrXkU3FDDllBPEZrqxoZqWwgPfjZ2SR_3Ihs5O5wnGX5ObsbOsuNPTjuzJW3C22VE18kysPiMPTgx7aZfqs996DB1etNH1u5Ic08SHfMvH2bFdnebSG7OrHtzo4eHNKM2N7wMqG-vv6Zp3Awnk1u8pur6fU3eGsr2ds0x0F2DPvNcq2_Q2-l1iducj8DEwcBdA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6RIgEX3lUNLQyCI25ir1_LLUoaFZVGUVskbtZ6H4qlxo4S58SfZ3Zjp02P9OpdP9azu9982plvAL6JgZUI4bT7hVL7kY6ZLyKu_UJHPAokI07hithep9M_2fjMyuT86HJhXNC-LMrT6nZxWpVzF1u5XMh-FyfWn12OiMYQyjDeXyrT78FTWrSD8B5T3-7CBGVJ0CmSUmfFVmJAaJ_M9zHozrF8GBbZW3VVQBzaTF495jtfw8vWx8Thts8beKKrt_B81JV2ewd_r-vbUvkumQinl1coW9kAXM9L06BolUqQPFpUbcAMYRySt4hEoHcZj1gbHN7MsLDFmbCpcSq-X_h0hbARywrLZo2VkxbHhV4QMa_0e_g9ObsZnfttFQZfsiRu_NRIE2UiVQXBnSzCgihXqgImybGJhSH_kilupMy0CSzaiyJNUxGISJo4SmTCDuGgqit9BJhGWTwQmSWhKjLkmBXEZ7S26pGx4qH04Gtnl3y5FdvI3SE54_mYXQ2d9c49OO5MlrcLbp0TbyTqw5Ig8ODLrpl-qz3_oMHVm20fW8Eh4x5ke6bevc2Kbe-3kG2d6HZnSw8OaVbsbribVB_-_5mf4dlsPMl__ZxefIQXtqC9zXYM-TEcNKuNPoHeWm0-ufn9DyZvA_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid-state+NMR+chemical+shift+analysis+for+determining+the+conformation+of+ATP+bound+to+Na%2CK-ATPase+in+its+native+membrane&rft.jtitle=RSC+advances&rft.au=Middleton%2C+David+A&rft.au=Griffin%2C+John&rft.au=Esmann%2C+Mikael&rft.au=Fedosova%2C+Natalya+U&rft.date=2023-11-29&rft.eissn=2046-2069&rft.volume=13&rft.issue=49&rft.spage=34836&rft.epage=34846&rft_id=info:doi/10.1039%2Fd3ra06236h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon