An Investigation of Speech Features, Plant System Alarms, and Operator–System Interaction for the Classification of Operator Cognitive Workload During Dynamic Work

Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. Background Theories and models of cognitive workload are critical for the design and evaluation of human–machine syste...

Full description

Saved in:
Bibliographic Details
Published in:Human factors Vol. 63; no. 5; pp. 736 - 756
Main Authors: Braarud, Per Ø., Bodal, Terje, Hulsund, John E., Louka, Michael N., Nihlwing, Christer, Nystad, Espen, Svengren, Håkan, Wingstedt, Emil
Format: Journal Article
Language:English
Published: Los Angeles, CA SAGE Publications 01-08-2021
Human Factors and Ergonomics Society
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. Background Theories and models of cognitive workload are critical for the design and evaluation of human–machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human–machine interaction. Method The study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators’ workload based on crew communication, operator–system interaction, and system alarms. Results Random Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator–system interaction features were used. The most important features were the number of alarms and amount of operator–system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms. Conclusion The results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload. Application The approach presented can be developed for nonintrusive workload measurement in real-world human–machine applications, simulator-based training, and research.
AbstractList Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. Background Theories and models of cognitive workload are critical for the design and evaluation of human–machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human–machine interaction. Method The study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators’ workload based on crew communication, operator–system interaction, and system alarms. Results Random Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator–system interaction features were used. The most important features were the number of alarms and amount of operator–system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms. Conclusion The results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload. Application The approach presented can be developed for nonintrusive workload measurement in real-world human–machine applications, simulator-based training, and research.
To investigate speech features, human-machine alarms, and operator-system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. Theories and models of cognitive workload are critical for the design and evaluation of human-machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human-machine interaction. The study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators' workload based on crew communication, operator-system interaction, and system alarms. Random Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator-system interaction features were used. The most important features were the number of alarms and amount of operator-system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms. The results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload. The approach presented can be developed for nonintrusive workload measurement in real-world human-machine applications, simulator-based training, and research.
OBJECTIVETo investigate speech features, human-machine alarms, and operator-system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. BACKGROUNDTheories and models of cognitive workload are critical for the design and evaluation of human-machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human-machine interaction. METHODThe study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators' workload based on crew communication, operator-system interaction, and system alarms. RESULTSRandom Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator-system interaction features were used. The most important features were the number of alarms and amount of operator-system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms. CONCLUSIONThe results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload. APPLICATIONThe approach presented can be developed for nonintrusive workload measurement in real-world human-machine applications, simulator-based training, and research.
Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. Background Theories and models of cognitive workload are critical for the design and evaluation of human–machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human–machine interaction. Method The study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators’ workload based on crew communication, operator–system interaction, and system alarms. Results Random Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator–system interaction features were used. The most important features were the number of alarms and amount of operator–system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms. Conclusion The results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload. Application The approach presented can be developed for nonintrusive workload measurement in real-world human–machine applications, simulator-based training, and research.
Author Nystad, Espen
Nihlwing, Christer
Bodal, Terje
Svengren, Håkan
Wingstedt, Emil
Louka, Michael N.
Braarud, Per Ø.
Hulsund, John E.
Author_xml – sequence: 1
  givenname: Per Ø.
  surname: Braarud
  fullname: Braarud, Per Ø.
  email: Per.Oivind.Braarud@ife.no
– sequence: 2
  givenname: Terje
  surname: Bodal
  fullname: Bodal, Terje
– sequence: 3
  givenname: John E.
  surname: Hulsund
  fullname: Hulsund, John E.
– sequence: 4
  givenname: Michael N.
  orcidid: 0000-0003-0226-2357
  surname: Louka
  fullname: Louka, Michael N.
– sequence: 5
  givenname: Christer
  surname: Nihlwing
  fullname: Nihlwing, Christer
– sequence: 6
  givenname: Espen
  surname: Nystad
  fullname: Nystad, Espen
– sequence: 7
  givenname: Håkan
  surname: Svengren
  fullname: Svengren, Håkan
– sequence: 8
  givenname: Emil
  surname: Wingstedt
  fullname: Wingstedt, Emil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33054415$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc1u1DAQtlAR3RbunJAlLhwIjOOfJMfVlsJKlYpUEMfIm4y3Lom92E6lvfEOPAMvxpPg7W6LVImTpe9vxvOdkCPnHRLyksE7xqrqPQCrqxLqEhrFKg5PyIxJURU1q9kRme3oYscfk5MYbwBANVw-I8ecgxSCyRn5PXd06W4xJrvWyXpHvaFXG8Tump6jTlPA-JZ-HrRL9GobE450PugwZlC7nl5uMOjkw5-fvw7s0qUMdXdRxgearpEuBh2jNbZ7mHDvowu_djbZW6TffPg-eN3TsylYt6ZnW6dH293hz8lTo4eILw7vKfl6_uHL4lNxcflxuZhfFB1XMhWVZL1hCqAqhRDIpamN5MAAUEhQEhvTr8TKGFGLTtcNQ65qITujTKlEqfgpebPP3QT_Y8pHaUcbOxzy99FPsS2FZHW-tGJZ-vqR9MZPweXt2lKKpmGgoMwq2Ku64GMMaNpNsKMO25ZBu6uwfVxhtrw6BE-rEfsHw31nWVDsBVGv8d_U_wb-BeYRpnQ
CitedBy_id crossref_primary_10_1080_00140139_2024_2302381
crossref_primary_10_1016_j_compchemeng_2023_108526
crossref_primary_10_1080_00140139_2023_2221413
crossref_primary_10_3390_biomedinformatics4020064
Cites_doi 10.1016/j.jairtraman.2014.04.002
10.1037/xhp0000638
10.1145/2395123.2395127
10.18637/jss.v028.i05
10.1109/ICASSP.2010.5494987
10.1177/001872089403600101
10.1016/j.ergon.2018.12.001
10.1177/1541931215591373
10.1016/j.ergon.2006.04.002
10.2345/0899-8205-46.4.268
10.1093/bja/aeq307
10.1016/0001-6918(67)90048-0
10.1016/S0301-0511(96)05223-4
10.1162/089976698300017197
10.1518/hfes.45.4.635.27088
10.1109/ICASSP.2013.6637699
10.1145/1240866.1241057
10.1037/14528-018
10.1109/CCMB.2014.7020692
10.1186/s41235-019-0166-3
10.1177/0018720814539505
10.1016/S0166-4115(08)62386-9
10.1145/2556288.2557068
10.1214/ss/1009213286
10.1007/s10648-005-3951-0
10.1044/1092-4388(2013/12-0103)
10.1097/ACO.0000000000000260
10.1177/001872089103300102
10.1016/j.ergon.2019.102904
10.1121/1.3543948
10.4018/jthi.2013070106
10.1007/978-0-387-21706-2
10.3758/BRM.40.4.988
10.1016/S0166-4115(08)62387-0
10.1177/0018720819825803
10.1007/s002139900335
10.1007/s00421-002-0625-1
10.1080/00140139.2013.790483
10.1177/001872088903100503
10.1080/00140139.2014.956151
10.1007/s10111-019-00553-8
10.1007/978-3-319-61061-0_1
10.1177/0018720818809590
10.1016/j.apergo.2010.08.005
10.1086/509092
10.1016/j.bspc.2019.101634
10.1016/S0967-0661(97)00018-X
10.1007/978-1-4614-7138-7
10.1121/1.405815
10.1109/EMBC.2019.8857501
10.1080/1463922X.2013.869371
10.1016/j.wocn.2018.07.001
10.1016/0301-0511(92)90016-N
10.1016/j.neucom.2015.03.105
10.1016/j.ijhcs.2018.12.003
10.21437/Interspeech.2014-114
10.1016/j.ergon.2016.09.003
10.1177/0018720819856454
10.1007/978-3-540-75555-5_52
10.7551/mitpress/1881.001.0001
10.1007/978-3-642-39143-9_39
ContentType Journal Article
Copyright Copyright © 2020, Human Factors and Ergonomics Society
Copyright_xml – notice: Copyright © 2020, Human Factors and Ergonomics Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7TK
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
DOI 10.1177/0018720820961730
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Health & Safety Science Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Psychology
EISSN 1547-8181
EndPage 756
ExternalDocumentID 10_1177_0018720820961730
33054415
10.1177_0018720820961730
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-MK
-TM
-TN
-~X
.2G
.2L
.2N
.4S
.55
.DC
.GJ
01A
09Z
0R~
1~K
29I
2FS
31W
31X
31Z
36B
3EH
3V.
4.4
53G
54M
5GY
5VS
7X2
7X7
7XC
85S
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AABOD
AACKU
AACTG
AADIR
AADUE
AAGGD
AAJOX
AAJPV
AAKTJ
AAMFR
AAMGE
AANSI
AAPEO
AAQDB
AARIX
AATAA
AATBZ
AAWLO
AAWTL
AAYJJ
AAYTG
ABAWP
ABCCA
ABDEX
ABDMP
ABDWY
ABEIX
ABFWQ
ABFXH
ABGFU
ABHKI
ABIVO
ABJCF
ABKRH
ABLUO
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABUWG
ABYTW
ACABN
ACAEP
ACDXX
ACFUR
ACFZE
ACGBL
ACGFS
ACGOD
ACHQT
ACIWK
ACLZU
ACOFE
ACOXC
ACPRK
ACROE
ACSIQ
ACTQU
ACUAV
ACUFS
ACUIR
ACXKE
ADBBV
ADEIA
ADNWM
ADPEE
ADRRZ
ADTBJ
ADTOS
ADUKL
AEDFJ
AENEX
AEOBU
AEONT
AEPTA
AEQLS
AESMA
AESZF
AEUHG
AEUIJ
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFRAH
AFUIA
AGDVU
AGHSJ
AGKLV
AGNHF
AGNWV
AGWFA
AHHFK
AHMBA
AHOJL
AHWHD
AI.
AIOMO
AIZZC
AJEFB
AJUXI
AJUZI
ALEEW
ALFTD
ALIPV
ALJHS
ALMA_UNASSIGNED_HOLDINGS
ANDLU
AQUVI
ARTOV
ASPBG
ATCPS
AUTPY
AUVAJ
AVQMV
AVWKF
AYAKG
AYPQM
AZFZN
AZQEC
B8T
B8Z
B94
BBNVY
BBRGL
BCR
BCU
BDDNI
BDZRT
BEC
BENPR
BES
BGLVJ
BHPHI
BKOMP
BKSAR
BLC
BMVBW
BPACV
BPHCQ
BVXVI
BYIEH
CAG
CBRKF
CCGJY
CCPQU
CEADM
CFDXU
COF
CORYS
D1J
D1K
DD0
DD~
DE-
DG~
DH.
DO-
DOPDO
DU5
DV7
DV8
DWQXO
D~Y
EBS
EDH
EJD
EMOBN
F3I
F5P
FAC
FAS
FEDTE
FHBDP
FJW
FYUFA
G8K
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GUQSH
HCIFZ
HF~
HMCUK
HVGLF
HZ~
IAO
ICD
ICJ
IEA
IGS
IOF
IPO
IPY
ITC
J8X
JCYGO
K.F
K50
K6-
KQ4
L6V
LK5
LK8
LPU
M0K
M0T
M1D
M1P
M2M
M2O
M2P
M2Q
M4V
M7P
M7R
M7S
N9A
O9-
OHT
P.B
P2P
PADUT
PATMY
PCBAR
PEA
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q1R
Q2X
Q7O
Q7P
Q7V
Q7X
Q82
Q83
QN7
ROL
S01
S0X
SCNPE
SFC
SGU
SGV
SGZ
SJFOW
SPV
SSDHQ
TN5
U5U
UAP
UBX
UHB
UKHRP
UPT
VH1
VQA
WH7
X7M
XH6
XOL
XZL
YNY
ZGI
ZPLXX
ZPPRI
ZRKOI
ZXP
~02
~32
ACJER
ADMHG
AEDXQ
AEILP
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
ABDPE
ADVBO
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7TK
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c365t-751df160072444e35f8f530100e45065e9fdb4bff484ca891e36845cf6f264263
IEDL.DBID ARPSY
ISSN 0018-7208
IngestDate Fri Oct 25 08:32:46 EDT 2024
Tue Nov 19 23:06:06 EST 2024
Fri Nov 22 01:40:28 EST 2024
Wed Oct 16 00:42:26 EDT 2024
Tue Jul 16 20:47:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords cognitive workload
dynamic measurement
simulator research
nonintrusive
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-751df160072444e35f8f530100e45065e9fdb4bff484ca891e36845cf6f264263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0226-2357
PMID 33054415
PQID 2549910602
PQPubID 48481
PageCount 21
ParticipantIDs proquest_miscellaneous_2451861761
proquest_journals_2549910602
crossref_primary_10_1177_0018720820961730
pubmed_primary_33054415
sage_journals_10_1177_0018720820961730
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Santa Monica
PublicationTitle Human factors
PublicationTitleAlternate Hum Factors
PublicationYear 2021
Publisher SAGE Publications
Human Factors and Ergonomics Society
Publisher_xml – name: SAGE Publications
– name: Human Factors and Ergonomics Society
References Hollands, Spivak, Kramkowski 2019; 61
Lieberman 2007; 48
McDonald, Ferris, Wiener 2020; 62
Boersma, van Heuven 2001; 5
Hockey 1997; 45
Vicente 1997; 5
Strayer, Cooper, Goethe, McCarty, Getty, Biondi 2019; 4
Rahman, Ahmed, Barua, Begum 2020; 55
Moray 1967; 27
Schulz, Schneider, Fritz, Vockeroth, Hapfelmeier, Wasmaier, Kochs, Schneider 2011; 106
Nygren 1991; 33
Brown, Cai, Dasgupta 2001; 16
Chen, Ruiz, Choi, Epps, Khawaja, Taib, Yin, Wang 2012; 2
Matthews, Winter, Hancock 2020; 4
van Merriënboer, Sweller 2005; 17
Gao, Wang, Song, Li, Dong 2013; 56
Jadoul, Thompson, de Boer 2018; 71
Burris, Vorperian, Fourakis, Kent, Bolt 2014; 57
Ragab, Craye, Kamel, Karray 2014; 8814
Guastello, Shircel, Malon, Timm 2015; 16
Tobaruela, Schuster, Majumdar, Ochieng, Martinez, Hendrickx 2014; 39
Wilson, Russell 2003; 45
Hancock, Matthews 2019; 61
Dietterich 1998; 10
Braarud 2020; 76
Young, Brookhuis, Wickens, Hancock 2015; 58
Castro, Strayer, Matzke, Heathcote 2019; 45
Vukovic, Sethu, Parker, Cavedon, Lech, Thangarajah 2019; 124
Wittels, Johannes, Enne, Kirsch, Gunga 2002; 87
Ruskin, Hueske-Kraus 2015; 28
Hancock, Warm 1989; 31
Humphrey, Kramer 1994; 36
Cegarra, Chevalier 2008; 40
Rusnock, Borghetti 2018; 63
Lin, Li, Wu, Tang 2013; 9
Grier 2015; 59
Wulvik, Dybvik, Steinert 2020; 22
Brenner, Doherty, Shipp 1994; 65
Reinerman-Jones, Hughes, D’Agostino, Matthews 2019; 69
Huttunen, Keränen, Pääkkönen, Päivikki Eskelinen-Rönkä, Leino 2011; 129
Cvach 2012; 46
Ferreira, Ferreira, Kim, Siirtola, Röning, Forlizzi, Dey 2014; 2014
Kennedy, Scholey 2000; 149
Matthews, Reinerman-Jones, Barber, Abich 2015; 57
Pimenta, Carneiro, Neves, Novais 2016; 172
Lively, Pisoni, Van Summers, Bernacki 1993; 93
Moray 1988; 2
Ahlstrom, Friedman-Berg 2006; 36
Kuhn 2008; 28
Mulder 1992; 34
Huttunen, Keränen, Väyrynen, Pääkkönen, Leino 2011; 42
van Segbroeck M. (bibr74-0018720820961730) 2014
bibr71-0018720820961730
bibr46-0018720820961730
bibr12-0018720820961730
bibr70-0018720820961730
bibr29-0018720820961730
Luig J. (bibr48-0018720820961730) 2010
Byers J. C. (bibr11-0018720820961730) 1989
bibr9-0018720820961730
bibr21-0018720820961730
bibr61-0018720820961730
bibr47-0018720820961730
bibr56-0018720820961730
bibr13-0018720820961730
bibr52-0018720820961730
Matthews G. (bibr89-0018720820961730) 2020; 4
bibr78-0018720820961730
bibr65-0018720820961730
bibr90-0018720820961730
bibr30-0018720820961730
bibr18-0018720820961730
bibr44-0018720820961730
bibr49-0018720820961730
bibr51-0018720820961730
bibr36-0018720820961730
bibr57-0018720820961730
bibr64-0018720820961730
bibr23-0018720820961730
bibr10-0018720820961730
Brenner M. (bibr8-0018720820961730) 1994; 65
bibr28-0018720820961730
R Core Team (bibr60-0018720820961730) 2019
bibr72-0018720820961730
bibr15-0018720820961730
bibr85-0018720820961730
bibr88-0018720820961730
Yin B. (bibr82-0018720820961730) 2007
bibr20-0018720820961730
Jordan C. S (bibr39-0018720820961730) 1992
bibr67-0018720820961730
bibr54-0018720820961730
bibr80-0018720820961730
Boersma P. (bibr3-0018720820961730) 2001; 5
bibr41-0018720820961730
bibr59-0018720820961730
bibr16-0018720820961730
bibr33-0018720820961730
bibr76-0018720820961730
bibr75-0018720820961730
bibr40-0018720820961730
bibr83-0018720820961730
bibr25-0018720820961730
bibr68-0018720820961730
bibr17-0018720820961730
bibr77-0018720820961730
bibr31-0018720820961730
bibr43-0018720820961730
Ragab A. (bibr62-0018720820961730) 2014; 8814
bibr26-0018720820961730
bibr69-0018720820961730
bibr4-0018720820961730
Arshad S. (bibr2-0018720820961730) 2013
Brenner M. (bibr7-0018720820961730) 1985
bibr86-0018720820961730
bibr73-0018720820961730
bibr19-0018720820961730
bibr87-0018720820961730
bibr1-0018720820961730
bibr14-0018720820961730
Moray N (bibr53-0018720820961730) 1988; 2
bibr81-0018720820961730
Braarud P. Ø. (bibr5-0018720820961730) 2011
bibr66-0018720820961730
Gopher D. (bibr22-0018720820961730) 1986
bibr58-0018720820961730
bibr42-0018720820961730
bibr79-0018720820961730
bibr45-0018720820961730
Braarud P. Ø. (bibr6-0018720820961730) 2020
bibr32-0018720820961730
bibr37-0018720820961730
bibr63-0018720820961730
bibr50-0018720820961730
International Organization for Standardization (ISO) (bibr35-0018720820961730) 2016
bibr24-0018720820961730
International Organization for Standardization (ISO) (bibr34-0018720820961730) 2006
References_xml – volume: 46
  start-page: 268
  year: 2012
  end-page: 277
  article-title: Monitor alarm fatigue: An integrative review
  publication-title: Biomedical Instrumentation & Technology
  contributor:
    fullname: Cvach
– volume: 27
  start-page: 84
  year: 1967
  end-page: 92
  article-title: Where is capacity limited? A survey and a model
  publication-title: Acta Psychologica
  contributor:
    fullname: Moray
– volume: 16
  start-page: 20
  year: 2015
  end-page: 52
  article-title: Individual differences in the experience of cognitive workload
  publication-title: Theoretical Issues in Ergonomics Science
  contributor:
    fullname: Timm
– volume: 45
  start-page: 73
  year: 1997
  end-page: 93
  article-title: Compensatory control in the regulation of human performance under stress and high workload; a cognitive-energetical framework
  publication-title: Biological Psychology
  contributor:
    fullname: Hockey
– volume: 17
  start-page: 147
  year: 2005
  end-page: 177
  article-title: Cognitive load theory and complex learning: Recent developments and future directions
  publication-title: Educational Psychology Review
  contributor:
    fullname: Sweller
– volume: 57
  start-page: 26
  year: 2014
  end-page: 45
  article-title: Quantitative and descriptive comparison of four acoustic analysis systems: Vowel measurements
  publication-title: Journal of Speech, Language, and Hearing Research
  contributor:
    fullname: Bolt
– volume: 2014
  start-page: 39
  year: 2014
  end-page: 48
  article-title: Assessing real-time cognitive load based on psycho-physiological measures for younger and older adults [Symposium]
  publication-title: 2014 IEEE Symposium of Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Orlando, FL
  contributor:
    fullname: Dey
– volume: 48
  start-page: 39
  year: 2007
  end-page: 66
  article-title: The evolution of human speech: Its anatomical and neural bases
  publication-title: Current anthropology
  contributor:
    fullname: Lieberman
– volume: 2
  start-page: 123
  year: 1988
  end-page: 150
  article-title: Mental workload since 1979
  publication-title: International Review of Ergonomics
  contributor:
    fullname: Moray
– volume: 61
  start-page: 374
  year: 2019
  end-page: 392
  article-title: Workload and performance: Associations, Insensitivities, and dissociations
  publication-title: Human Factors: The Journal of the Human Factors and Ergonomics Society
  contributor:
    fullname: Matthews
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  article-title: Building predictive models in using the caret package
  publication-title: Journal of Statistical Software
  contributor:
    fullname: Kuhn
– volume: 4
  year: 2020
  article-title: What do subjective workload scales really measure? Operational and representational solutions to divergence of workload measures
  publication-title: Theoretical Issues in Ergonomics Science
  contributor:
    fullname: Hancock
– volume: 36
  start-page: 623
  year: 2006
  end-page: 636
  article-title: Using eye movement activity as a correlate of cognitive workload
  publication-title: International Journal of Industrial Ergonomics
  contributor:
    fullname: Friedman-Berg
– volume: 172
  start-page: 413
  year: 2016
  end-page: 426
  article-title: A neural network to classify fatigue from human–computer interaction
  publication-title: Neurocomputing
  contributor:
    fullname: Novais
– volume: 5
  start-page: 407
  year: 1997
  end-page: 416
  article-title: Operator adaptation in process control: A three-year research program
  publication-title: Control Engineering Practice
  contributor:
    fullname: Vicente
– volume: 55
  start-page: 1
  year: 2020
  end-page: 13
  article-title: Non-contact-based driver’s cognitive load classification using physiological and vehicular parameters
  publication-title: Biomedical Signal Processing and Control
  contributor:
    fullname: Begum
– volume: 93
  start-page: 2962
  year: 1993
  end-page: 2973
  article-title: Effects of cognitive workload on speech production: Acoustic analyses and perceptual consequences
  publication-title: The Journal of the Acoustical Society of America
  contributor:
    fullname: Bernacki
– volume: 69
  start-page: 217
  year: 2019
  end-page: 227
  article-title: Human performance metrics for the nuclear domain: A tool for evaluating measures of workload, situation awareness and teamwork
  publication-title: International Journal of Industrial Ergonomics
  contributor:
    fullname: Matthews
– volume: 62
  start-page: 1019
  year: 2020
  end-page: 1035
  article-title: Classification of driver distraction: A comprehensive analysis of feature generation, machine learning, and input measures
  publication-title: Human Factors
  contributor:
    fullname: Wiener
– volume: 40
  start-page: 988
  year: 2008
  end-page: 1000
  article-title: The use of tholos software for combining measures of mental workload: Toward theoretical and methodological improvements
  publication-title: Behavior Research Methods
  contributor:
    fullname: Chevalier
– volume: 129
  start-page: 1580
  year: 2011
  end-page: 1593
  article-title: Effect of cognitive load on articulation rate and formant frequencies during simulator flights
  publication-title: The Journal of the Acoustical Society of America
  contributor:
    fullname: Leino
– volume: 39
  start-page: 59
  year: 2014
  end-page: 71
  article-title: A method to estimate air traffic controller mental workload based on traffic clearances
  publication-title: Journal of Air Transport Management
  contributor:
    fullname: Hendrickx
– volume: 5
  start-page: 341
  year: 2001
  end-page: 345
  article-title: Praat, a system for doing phonetics by computer
  publication-title: Glot International
  contributor:
    fullname: van Heuven
– volume: 16
  start-page: 101
  year: 2001
  end-page: 133
  article-title: Interval estimation for a binomial proportion
  publication-title: Statistical Science
  contributor:
    fullname: Dasgupta
– volume: 45
  start-page: 826
  year: 2019
  end-page: 839
  article-title: Cognitive workload measurement and modeling under divided attention
  publication-title: Journal of Experimental Psychology: Human Perception and Performance
  contributor:
    fullname: Heathcote
– volume: 34
  start-page: 205
  year: 1992
  end-page: 236
  article-title: Measurement and analysis methods of heart rate and respiration for use in applied environments
  publication-title: Biological Psychology
  contributor:
    fullname: Mulder
– volume: 124
  start-page: 116
  year: 2019
  end-page: 133
  article-title: Estimating cognitive load from speech gathered in a complex real-life training exercise
  publication-title: International Journal of Human-Computer Studies
  contributor:
    fullname: Thangarajah
– volume: 65
  start-page: 21
  year: 1994
  end-page: 26
  article-title: Speech measures indicating workload demand
  publication-title: Aviation, Space, and Environmental Medicine
  contributor:
    fullname: Shipp
– volume: 106
  start-page: 44
  year: 2011
  end-page: 50
  article-title: Eye tracking for assessment of workload: A pilot study in an anaesthesia simulator environment
  publication-title: British Journal of Anaesthesia
  contributor:
    fullname: Schneider
– volume: 45
  start-page: 635
  year: 2003
  end-page: 644
  article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks
  publication-title: Human Factors
  contributor:
    fullname: Russell
– volume: 4
  start-page: 18
  year: 2019
  article-title: Assessing the visual and cognitive demands of in-vehicle information systems
  publication-title: Cognitive Research: Principles and Implications
  contributor:
    fullname: Biondi
– volume: 71
  start-page: 1
  year: 2018
  end-page: 15
  article-title: Introducing parselmouth: A python interface to praat
  publication-title: Journal of Phonetics
  contributor:
    fullname: de Boer
– volume: 42
  start-page: 348
  year: 2011
  end-page: 357
  article-title: Effect of cognitive load on speech prosody in aviation: Evidence from military simulator flights
  publication-title: Applied Ergonomics
  contributor:
    fullname: Leino
– volume: 59
  start-page: 1727
  year: 2015
  end-page: 1731
  article-title: How high is high? A meta-analysis of NASA-TLX global workload scores
  publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
  contributor:
    fullname: Grier
– volume: 149
  start-page: 63
  year: 2000
  end-page: 71
  article-title: Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort
  publication-title: Psychopharmacology
  contributor:
    fullname: Scholey
– volume: 8814
  start-page: 256
  year: 2014
  end-page: 265
  article-title: A visual-based driver distraction recognition and detection using random forest
  publication-title: Proceedings of the International Conference on Image Analysis and Recognition
  contributor:
    fullname: Karray
– volume: 36
  start-page: 3
  year: 1994
  end-page: 26
  article-title: Toward a psychophysiological assessment of dynamic changes in mental workload
  publication-title: Human Factors
  contributor:
    fullname: Kramer
– volume: 63
  start-page: 49
  year: 2018
  end-page: 64
  article-title: Workload profiles: A continuous measure of mental workload
  publication-title: International Journal of Industrial Ergonomics
  contributor:
    fullname: Borghetti
– volume: 10
  start-page: 1895
  year: 1998
  end-page: 1923
  article-title: Approximate statistical tests for comparing supervised classification learning algorithms
  publication-title: Neural Computation
  contributor:
    fullname: Dietterich
– volume: 58
  start-page: 1
  year: 2015
  end-page: 17
  article-title: State of science: Mental workload in ergonomics
  publication-title: Ergonomics
  contributor:
    fullname: Hancock
– volume: 87
  start-page: 278
  year: 2002
  end-page: 282
  article-title: Voice monitoring to measure emotional load during short-term stress
  publication-title: European Journal of Applied Physiology
  contributor:
    fullname: Gunga
– volume: 22
  start-page: 95
  year: 2020
  end-page: 108
  article-title: Investigating the relationship between mental state (workload and affect) and physiology in a control room setting (SHIP bridge simulator)
  publication-title: Cognition, Technology & Work
  contributor:
    fullname: Steinert
– volume: 56
  start-page: 1070
  year: 2013
  end-page: 1085
  article-title: Mental workload measurement for emergency operating procedures in digital nuclear power plants
  publication-title: Ergonomics
  contributor:
    fullname: Dong
– volume: 9
  start-page: 73
  year: 2013
  end-page: 88
  article-title: Automatic cognitive load classification using high-frequency interaction events
  publication-title: International Journal of Technology and Human Interaction
  contributor:
    fullname: Tang
– volume: 57
  start-page: 125
  year: 2015
  end-page: 143
  article-title: The psychometrics of mental workload: Multiple measures are sensitive but divergent
  publication-title: Human Factors
  contributor:
    fullname: Abich
– volume: 33
  start-page: 17
  year: 1991
  end-page: 33
  article-title: Psychometric properties of subjective workload measurement techniques: Implications for their use in the assessment of perceived mental workload
  publication-title: Human Factors
  contributor:
    fullname: Nygren
– volume: 2
  start-page: 1
  year: 2012
  end-page: 36
  article-title: Multimodal behavior and interaction as indicators of cognitive load
  publication-title: ACM Transactions on Interactive Intelligent Systems
  contributor:
    fullname: Wang
– volume: 76
  year: 2020
  article-title: An efficient screening technique for acceptable mental workload based on the NASA task load Index—development and application to control room validation
  publication-title: International Journal of Industrial Ergonomics
  contributor:
    fullname: Braarud
– volume: 31
  start-page: 519
  year: 1989
  end-page: 537
  article-title: A dynamic model of stress and sustained attention
  publication-title: Human Factors: The Journal of the Human Factors and Ergonomics Society
  contributor:
    fullname: Warm
– volume: 28
  start-page: 685
  year: 2015
  end-page: 690
  article-title: Alarm fatigue: Impacts on patient safety
  publication-title: Current Opinion in Anesthesiology
  contributor:
    fullname: Hueske-Kraus
– volume: 61
  start-page: 763
  year: 2019
  end-page: 773
  article-title: Cognitive load and situation awareness for soldiers: Effects of message presentation rate and sensory modality
  publication-title: Human Factors
  contributor:
    fullname: Kramkowski
– volume-title: Handbook of perception and human performance, vol II, cognitive processes and performance
  year: 1986
  ident: bibr22-0018720820961730
  contributor:
    fullname: Gopher D.
– volume-title: DRA Technical Memorandum (CAD5) 92011. DRA Maritime Command Control Division
  year: 1992
  ident: bibr39-0018720820961730
  contributor:
    fullname: Jordan C. S
– ident: bibr72-0018720820961730
  doi: 10.1016/j.jairtraman.2014.04.002
– ident: bibr12-0018720820961730
  doi: 10.1037/xhp0000638
– start-page: 481
  volume-title: Advances in industrial ergonomics and safety I
  year: 1989
  ident: bibr11-0018720820961730
  contributor:
    fullname: Byers J. C.
– ident: bibr15-0018720820961730
  doi: 10.1145/2395123.2395127
– volume-title: Human-system validation experiment 2018: Multistage assessment, operators self-evaluation, and mental workload assessment
  year: 2020
  ident: bibr6-0018720820961730
  contributor:
    fullname: Braarud P. Ø.
– volume-title: ISO 11064-7, 2006. Ergonomic design of control centres part 7: Principles for the evaluation of control centres
  year: 2006
  ident: bibr34-0018720820961730
  contributor:
    fullname: International Organization for Standardization (ISO)
– ident: bibr42-0018720820961730
  doi: 10.18637/jss.v028.i05
– ident: bibr81-0018720820961730
  doi: 10.1109/ICASSP.2010.5494987
– ident: bibr29-0018720820961730
  doi: 10.1177/001872089403600101
– ident: bibr64-0018720820961730
  doi: 10.1016/j.ergon.2018.12.001
– ident: bibr23-0018720820961730
  doi: 10.1177/1541931215591373
– ident: bibr1-0018720820961730
  doi: 10.1016/j.ergon.2006.04.002
– ident: bibr17-0018720820961730
  doi: 10.2345/0899-8205-46.4.268
– ident: bibr68-0018720820961730
  doi: 10.1093/bja/aeq307
– ident: bibr54-0018720820961730
  doi: 10.1016/0001-6918(67)90048-0
– ident: bibr88-0018720820961730
  doi: 10.1016/S0301-0511(96)05223-4
– ident: bibr18-0018720820961730
  doi: 10.1162/089976698300017197
– ident: bibr79-0018720820961730
  doi: 10.1518/hfes.45.4.635.27088
– ident: bibr57-0018720820961730
– ident: bibr14-0018720820961730
  doi: 10.1109/ICASSP.2013.6637699
– ident: bibr69-0018720820961730
  doi: 10.1145/1240866.1241057
– ident: bibr78-0018720820961730
  doi: 10.1037/14528-018
– ident: bibr20-0018720820961730
  doi: 10.1109/CCMB.2014.7020692
– ident: bibr71-0018720820961730
  doi: 10.1186/s41235-019-0166-3
– ident: bibr50-0018720820961730
  doi: 10.1177/0018720814539505
– ident: bibr26-0018720820961730
  doi: 10.1016/S0166-4115(08)62386-9
– start-page: 2041
  volume-title: Proceedings IEEE ICASSP,
  year: 2007
  ident: bibr82-0018720820961730
  contributor:
    fullname: Yin B.
– volume-title: Road vehicles—Transport information and control systems—Detection-response task (DRT) for assessing attentional effects of cognitive load in driving
  year: 2016
  ident: bibr35-0018720820961730
  contributor:
    fullname: International Organization for Standardization (ISO)
– ident: bibr70-0018720820961730
  doi: 10.1145/2556288.2557068
– ident: bibr9-0018720820961730
  doi: 10.1214/ss/1009213286
– ident: bibr73-0018720820961730
  doi: 10.1007/s10648-005-3951-0
– volume-title: Proceedings of the 27th International Congress on the Aeronautical Sciences
  year: 2010
  ident: bibr48-0018720820961730
  contributor:
    fullname: Luig J.
– volume: 2
  start-page: 123
  year: 1988
  ident: bibr53-0018720820961730
  publication-title: International Review of Ergonomics
  contributor:
    fullname: Moray N
– ident: bibr10-0018720820961730
  doi: 10.1044/1092-4388(2013/12-0103)
– ident: bibr66-0018720820961730
  doi: 10.1097/ACO.0000000000000260
– ident: bibr58-0018720820961730
  doi: 10.1177/001872089103300102
– ident: bibr43-0018720820961730
– ident: bibr65-0018720820961730
– ident: bibr4-0018720820961730
  doi: 10.1016/j.ergon.2019.102904
– ident: bibr32-0018720820961730
  doi: 10.1121/1.3543948
– ident: bibr46-0018720820961730
  doi: 10.4018/jthi.2013070106
– ident: bibr75-0018720820961730
  doi: 10.1007/978-0-387-21706-2
– volume: 8814
  start-page: 256
  year: 2014
  ident: bibr62-0018720820961730
  publication-title: Proceedings of the International Conference on Image Analysis and Recognition
  contributor:
    fullname: Ragab A.
– ident: bibr13-0018720820961730
  doi: 10.3758/BRM.40.4.988
– ident: bibr63-0018720820961730
  doi: 10.1016/S0166-4115(08)62387-0
– ident: bibr28-0018720820961730
  doi: 10.1177/0018720819825803
– ident: bibr41-0018720820961730
  doi: 10.1007/s002139900335
– ident: bibr85-0018720820961730
  doi: 10.1007/s00421-002-0625-1
– start-page: 233
  volume-title: Simulator-based human factors studies across 25 years: The history of the Halden Man-Machine Laboratory
  year: 2011
  ident: bibr5-0018720820961730
  contributor:
    fullname: Braarud P. Ø.
– volume: 65
  start-page: 21
  year: 1994
  ident: bibr8-0018720820961730
  publication-title: Aviation, Space, and Environmental Medicine
  contributor:
    fullname: Brenner M.
– ident: bibr21-0018720820961730
  doi: 10.1080/00140139.2013.790483
– ident: bibr87-0018720820961730
  doi: 10.1177/001872088903100503
– ident: bibr83-0018720820961730
  doi: 10.1080/00140139.2014.956151
– ident: bibr80-0018720820961730
  doi: 10.1007/s10111-019-00553-8
– ident: bibr16-0018720820961730
– ident: bibr25-0018720820961730
  doi: 10.1007/978-3-319-61061-0_1
– ident: bibr90-0018720820961730
  doi: 10.1177/0018720818809590
– ident: bibr49-0018720820961730
– ident: bibr31-0018720820961730
  doi: 10.1016/j.apergo.2010.08.005
– ident: bibr45-0018720820961730
  doi: 10.1086/509092
– ident: bibr33-0018720820961730
– ident: bibr61-0018720820961730
  doi: 10.1016/j.bspc.2019.101634
– ident: bibr76-0018720820961730
  doi: 10.1016/S0967-0661(97)00018-X
– ident: bibr37-0018720820961730
  doi: 10.1007/978-1-4614-7138-7
– ident: bibr44-0018720820961730
– ident: bibr47-0018720820961730
  doi: 10.1121/1.405815
– ident: bibr52-0018720820961730
  doi: 10.1109/EMBC.2019.8857501
– ident: bibr24-0018720820961730
  doi: 10.1080/1463922X.2013.869371
– ident: bibr36-0018720820961730
  doi: 10.1016/j.wocn.2018.07.001
– start-page: 239
  volume-title: Vocal fold physiology, biomechanics, acoustics, and phonatory control
  year: 1985
  ident: bibr7-0018720820961730
  contributor:
    fullname: Brenner M.
– ident: bibr56-0018720820961730
  doi: 10.1016/0301-0511(92)90016-N
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: bibr60-0018720820961730
  contributor:
    fullname: R Core Team
– ident: bibr59-0018720820961730
  doi: 10.1016/j.neucom.2015.03.105
– volume: 5
  start-page: 341
  year: 2001
  ident: bibr3-0018720820961730
  publication-title: Glot International
  contributor:
    fullname: Boersma P.
– ident: bibr77-0018720820961730
  doi: 10.1016/j.ijhcs.2018.12.003
– volume-title: Classification of cognitive load from speech using an I-Vector framework
  year: 2014
  ident: bibr74-0018720820961730
  doi: 10.21437/Interspeech.2014-114
  contributor:
    fullname: van Segbroeck M.
– ident: bibr67-0018720820961730
  doi: 10.1016/j.ergon.2016.09.003
– ident: bibr51-0018720820961730
  doi: 10.1177/0018720819856454
– start-page: 115
  volume-title: Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, ACM
  year: 2013
  ident: bibr2-0018720820961730
  contributor:
    fullname: Arshad S.
– ident: bibr40-0018720820961730
– ident: bibr19-0018720820961730
  doi: 10.1007/978-3-540-75555-5_52
– ident: bibr30-0018720820961730
  doi: 10.7551/mitpress/1881.001.0001
– volume: 4
  year: 2020
  ident: bibr89-0018720820961730
  publication-title: Theoretical Issues in Ergonomics Science
  contributor:
    fullname: Matthews G.
– ident: bibr86-0018720820961730
  doi: 10.1007/978-3-642-39143-9_39
SSID ssj0006935
Score 2.4027352
Snippet Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale...
To investigate speech features, human-machine alarms, and operator-system interaction for the estimation of cognitive workload in full-scale realistic...
Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale...
OBJECTIVETo investigate speech features, human-machine alarms, and operator-system interaction for the estimation of cognitive workload in full-scale realistic...
SourceID proquest
crossref
pubmed
sage
SourceType Aggregation Database
Index Database
Publisher
StartPage 736
SubjectTerms Accuracy
Alarms
Algorithms
Cognition
Cognitive ability
Communications systems
Control rooms
Frequency
Humans
Investigations
Learning algorithms
Machine Learning
Nonintrusive measurement
Nuclear reactors
Operators
Simulation
Speech
Workload
Workloads
Title An Investigation of Speech Features, Plant System Alarms, and Operator–System Interaction for the Classification of Operator Cognitive Workload During Dynamic Work
URI https://journals.sagepub.com/doi/full/10.1177/0018720820961730
https://www.ncbi.nlm.nih.gov/pubmed/33054415
https://www.proquest.com/docview/2549910602
https://search.proquest.com/docview/2451861761
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvR3LbtQwcETbSzkUKK9AQUZCSEiEJrGTtU9o1W3FCRALEpyixLFVJNZZdTeHvfUf-AZ-jC9hxonTlgqJE1c78TjxPD0vgOeFrk2uhIoLU9tYaNnEStUcrRShE53qymrfxHY-efdFzo6pTI4LuTDDH1y9prAq3JFn1kTddBt9ODgZD30ruYykl0IJzJM33XpR9rfdoakGjZB7uluQZ1tTPOQmDtltW7BDhfOQInamHz_Mv468u1B86HkgYwJw4di8BvOqILumnV6JDPPC6uTW__7M27A3qLVs2uPhHbhh3D7cvFTscB92R167uQs_p45dKvHROtZaNl8ao08ZaaXdmVm9YtRRac36oupsijb4Agcr17D3S-PDA36d_xhm_c1mn6TBUA9nqNcy3_CTQqFGCOE9dhSiphh5C763VcNmPmGTzTauWnzTfvwefD45_nT0Nh46RsSaF_k6nuRpY1MquY9aizA8t9LmyMKSxIgclS2jbFOL2lohha6kSg0vpMi1LSwqhlnB78O2a515CAzxA5FByazCtSZGIT7XUnNboAWmJ0JG8DIcf7nsC4OUaaid_se5RXAQ8KMMJ196yxwN8iSL4Nk4jcRNHpvKmbbDZ0SeSlyiSCN40OPVCIwjpyZjOIIXhEQXC_9tF4_-9cHHsJtR5I4PczyA7fVZZ57A1qrpng708htWYSms
link.rule.ids 315,782,786,27926,27933,27934,44981,45369
linkProvider SAGE Publications
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5Be2g5AC0_DRQ6lRASEkGb-Cf2cdVtVUQpiC0SnKLEsQVSm6zo7qG3vkOfgRfjSRg7P22pkJC42vHYyoxn5rPHMwAvpCmt0FzH0pYu5kZVsdYlI5TCzcgkpnAmFLGdZodf1GTXp8kZSn11f_D0jQ-rohUFZT3sbp8pyVeRS73h0mR8GaH1ZS6YJIFeHn_6OP06qGGpWVe-QMV-wOUd5Q0a123SDUfzWpBXsDt79_5jxffhbuds4riVjjW4Zet1uHMlBeE6rA4a8OwB_BzXeCXxRlNj43A6s9Z8Q-8rLgibv0Zf52iObapzHBMyPqHGoq7ww8yGS_tf5xddbzhvbJ9OIHnHSN4mhjKcPkBpmKEfhzt9LBP6M_zjpqhwEp5R4uSsLk6-m9D-ED7v7R7t7MddHYfYMCnmcSaSyiU-ET75Etwy4ZQTpFhGI8sFuUBWu6rkpXNccVMonVgmFRfGSUfuWirZI1iqm9puAKaZJr5qlRZEK7OapKxUhjlJuMhkXEXwqudkPmvTdeRJn9H8Dz5EsNmzOu-ZmAe8TDB5lEawPXTTlvP3KEVtmwV9w0WiiIRMInjcisgwGSP96SFqBC-9PFwS_tsqnvzrh1uwsn_0_iA_eHv47imspj62JgQibsLS_MfCPoPbp9XiebcNfgP1pQGV
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcASthNoD0EIhUNqphJCQSHcTO4594LDqdgWiKhULEpyixLFFJZqs6O6hN_6h39Af40sYO4--hITE1Y7HVubtGc8AvBS6MIniKhSmsCHXsgyVKhh5KVwPdaRzq30T22l6-FWO912ZnLfdW5j2D57uurQqOpEX1o67Z6UdtDHGge8kFzvlpUgBM_LYlzlXkvhyefTpaPqtF8VCsbaFgQzdgss45S0Y1_XSLWPzWqKX1z2TB_956odwvzU6cdRQyRrcMdU6rF4pRbgOK70kPHsEF6MKrxTgqCusLU5nxujv6GzGBfnob9D1O5pjU_IcR-Qhn9BgXpX4cWZ88P73r_N21t87Nk8okKxkJKsTfTtOl6jU79Ctw70upwndXf6POi9x7J9T4visyk-OtR9_DF8m-5_33oVtP4dQM5HMwzSJShu5gvhkU3DDEittQgJmODQ8IVPIKFsWvLCWS65zqSLDhOSJtsKS2RYLtgFLVV2Zp4Bxqgi3SsY5wUqNImorpGZWkH-kUy4DeN1hM5s1ZTuyqKtsfgMPAWx26M46RGbebyZ3eRgHsNNPE-u5eEpemXpB3_AkkgRCRAE8acik34yRHHWuagCvHE1cAv7bKZ7964fbcO9oPMkO3h9-eA4rsUux8fmIm7A0_7kwL-DuabnYajnhD4J_BBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Investigation+of+Speech+Features%2C+Plant+System+Alarms%2C+and+Operator%E2%80%93System+Interaction+for+the+Classification+of+Operator+Cognitive+Workload+During+Dynamic+Work&rft.jtitle=Human+factors&rft.au=Braarud%2C+Per+%C3%98&rft.au=Bodal+Terje&rft.au=Hulsund%2C+John+E&rft.au=Louka%2C+Michael+N&rft.date=2021-08-01&rft.pub=Human+Factors+and+Ergonomics+Society&rft.issn=0018-7208&rft.eissn=1547-8181&rft.volume=63&rft.issue=5&rft.spage=736&rft.epage=756&rft_id=info:doi/10.1177%2F0018720820961730&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-7208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-7208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-7208&client=summon