An Investigation of Speech Features, Plant System Alarms, and Operator–System Interaction for the Classification of Operator Cognitive Workload During Dynamic Work
Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. Background Theories and models of cognitive workload are critical for the design and evaluation of human–machine syste...
Saved in:
Published in: | Human factors Vol. 63; no. 5; pp. 736 - 756 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Los Angeles, CA
SAGE Publications
01-08-2021
Human Factors and Ergonomics Society |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Objective
To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios.
Background
Theories and models of cognitive workload are critical for the design and evaluation of human–machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human–machine interaction.
Method
The study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators’ workload based on crew communication, operator–system interaction, and system alarms.
Results
Random Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator–system interaction features were used. The most important features were the number of alarms and amount of operator–system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms.
Conclusion
The results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload.
Application
The approach presented can be developed for nonintrusive workload measurement in real-world human–machine applications, simulator-based training, and research. |
---|---|
AbstractList | Objective
To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios.
Background
Theories and models of cognitive workload are critical for the design and evaluation of human–machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human–machine interaction.
Method
The study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators’ workload based on crew communication, operator–system interaction, and system alarms.
Results
Random Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator–system interaction features were used. The most important features were the number of alarms and amount of operator–system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms.
Conclusion
The results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload.
Application
The approach presented can be developed for nonintrusive workload measurement in real-world human–machine applications, simulator-based training, and research. To investigate speech features, human-machine alarms, and operator-system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. Theories and models of cognitive workload are critical for the design and evaluation of human-machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human-machine interaction. The study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators' workload based on crew communication, operator-system interaction, and system alarms. Random Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator-system interaction features were used. The most important features were the number of alarms and amount of operator-system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms. The results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload. The approach presented can be developed for nonintrusive workload measurement in real-world human-machine applications, simulator-based training, and research. OBJECTIVETo investigate speech features, human-machine alarms, and operator-system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. BACKGROUNDTheories and models of cognitive workload are critical for the design and evaluation of human-machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human-machine interaction. METHODThe study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators' workload based on crew communication, operator-system interaction, and system alarms. RESULTSRandom Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator-system interaction features were used. The most important features were the number of alarms and amount of operator-system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms. CONCLUSIONThe results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload. APPLICATIONThe approach presented can be developed for nonintrusive workload measurement in real-world human-machine applications, simulator-based training, and research. Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale realistic simulated scenarios. Background Theories and models of cognitive workload are critical for the design and evaluation of human–machine systems. Unfortunately, there are very few nonintrusive cognitive workload measures available for realistic dynamic human–machine interaction. Method The study was conducted in a full-scope control room research simulator of an advanced nuclear reactor. Six crews, each consisting of three operators, participated in 12 scenarios. The operators rated their workload every second minute. Machine learning algorithms were trained to estimate operators’ workload based on crew communication, operator–system interaction, and system alarms. Results Random Forest (RF) utilizing speech and system features achieved an accuracy of 67% on test data. Utilizing speech features only, the accuracy achieved was 63%. The most important speech features were pitch, amplitude, and articulation rate. A 61% accuracy was achieved when alarms and operator–system interaction features were used. The most important features were the number of alarms and amount of operator–system interaction. Accuracy for algorithms trained for each operator ranged from 39% to 98%, with an average of 72%. For a majority of analyses performed, RF and extreme gradient boosting (XGB) outperformed other algorithms. Conclusion The results demonstrate that the features investigated and machine learning models developed provide a potential for the dynamic nonintrusive measurement of cognitive workload. Application The approach presented can be developed for nonintrusive workload measurement in real-world human–machine applications, simulator-based training, and research. |
Author | Nystad, Espen Nihlwing, Christer Bodal, Terje Svengren, Håkan Wingstedt, Emil Louka, Michael N. Braarud, Per Ø. Hulsund, John E. |
Author_xml | – sequence: 1 givenname: Per Ø. surname: Braarud fullname: Braarud, Per Ø. email: Per.Oivind.Braarud@ife.no – sequence: 2 givenname: Terje surname: Bodal fullname: Bodal, Terje – sequence: 3 givenname: John E. surname: Hulsund fullname: Hulsund, John E. – sequence: 4 givenname: Michael N. orcidid: 0000-0003-0226-2357 surname: Louka fullname: Louka, Michael N. – sequence: 5 givenname: Christer surname: Nihlwing fullname: Nihlwing, Christer – sequence: 6 givenname: Espen surname: Nystad fullname: Nystad, Espen – sequence: 7 givenname: Håkan surname: Svengren fullname: Svengren, Håkan – sequence: 8 givenname: Emil surname: Wingstedt fullname: Wingstedt, Emil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33054415$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uc1u1DAQtlAR3RbunJAlLhwIjOOfJMfVlsJKlYpUEMfIm4y3Lom92E6lvfEOPAMvxpPg7W6LVImTpe9vxvOdkCPnHRLyksE7xqrqPQCrqxLqEhrFKg5PyIxJURU1q9kRme3oYscfk5MYbwBANVw-I8ecgxSCyRn5PXd06W4xJrvWyXpHvaFXG8Tump6jTlPA-JZ-HrRL9GobE450PugwZlC7nl5uMOjkw5-fvw7s0qUMdXdRxgearpEuBh2jNbZ7mHDvowu_djbZW6TffPg-eN3TsylYt6ZnW6dH293hz8lTo4eILw7vKfl6_uHL4lNxcflxuZhfFB1XMhWVZL1hCqAqhRDIpamN5MAAUEhQEhvTr8TKGFGLTtcNQ65qITujTKlEqfgpebPP3QT_Y8pHaUcbOxzy99FPsS2FZHW-tGJZ-vqR9MZPweXt2lKKpmGgoMwq2Ku64GMMaNpNsKMO25ZBu6uwfVxhtrw6BE-rEfsHw31nWVDsBVGv8d_U_wb-BeYRpnQ |
CitedBy_id | crossref_primary_10_1080_00140139_2024_2302381 crossref_primary_10_1016_j_compchemeng_2023_108526 crossref_primary_10_1080_00140139_2023_2221413 crossref_primary_10_3390_biomedinformatics4020064 |
Cites_doi | 10.1016/j.jairtraman.2014.04.002 10.1037/xhp0000638 10.1145/2395123.2395127 10.18637/jss.v028.i05 10.1109/ICASSP.2010.5494987 10.1177/001872089403600101 10.1016/j.ergon.2018.12.001 10.1177/1541931215591373 10.1016/j.ergon.2006.04.002 10.2345/0899-8205-46.4.268 10.1093/bja/aeq307 10.1016/0001-6918(67)90048-0 10.1016/S0301-0511(96)05223-4 10.1162/089976698300017197 10.1518/hfes.45.4.635.27088 10.1109/ICASSP.2013.6637699 10.1145/1240866.1241057 10.1037/14528-018 10.1109/CCMB.2014.7020692 10.1186/s41235-019-0166-3 10.1177/0018720814539505 10.1016/S0166-4115(08)62386-9 10.1145/2556288.2557068 10.1214/ss/1009213286 10.1007/s10648-005-3951-0 10.1044/1092-4388(2013/12-0103) 10.1097/ACO.0000000000000260 10.1177/001872089103300102 10.1016/j.ergon.2019.102904 10.1121/1.3543948 10.4018/jthi.2013070106 10.1007/978-0-387-21706-2 10.3758/BRM.40.4.988 10.1016/S0166-4115(08)62387-0 10.1177/0018720819825803 10.1007/s002139900335 10.1007/s00421-002-0625-1 10.1080/00140139.2013.790483 10.1177/001872088903100503 10.1080/00140139.2014.956151 10.1007/s10111-019-00553-8 10.1007/978-3-319-61061-0_1 10.1177/0018720818809590 10.1016/j.apergo.2010.08.005 10.1086/509092 10.1016/j.bspc.2019.101634 10.1016/S0967-0661(97)00018-X 10.1007/978-1-4614-7138-7 10.1121/1.405815 10.1109/EMBC.2019.8857501 10.1080/1463922X.2013.869371 10.1016/j.wocn.2018.07.001 10.1016/0301-0511(92)90016-N 10.1016/j.neucom.2015.03.105 10.1016/j.ijhcs.2018.12.003 10.21437/Interspeech.2014-114 10.1016/j.ergon.2016.09.003 10.1177/0018720819856454 10.1007/978-3-540-75555-5_52 10.7551/mitpress/1881.001.0001 10.1007/978-3-642-39143-9_39 |
ContentType | Journal Article |
Copyright | Copyright © 2020, Human Factors and Ergonomics Society |
Copyright_xml | – notice: Copyright © 2020, Human Factors and Ergonomics Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7TK 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
DOI | 10.1177/0018720820961730 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Health and Safety Science Abstracts (Full archive) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Health & Safety Science Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Psychology |
EISSN | 1547-8181 |
EndPage | 756 |
ExternalDocumentID | 10_1177_0018720820961730 33054415 10.1177_0018720820961730 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -MK -TM -TN -~X .2G .2L .2N .4S .55 .DC .GJ 01A 09Z 0R~ 1~K 29I 2FS 31W 31X 31Z 36B 3EH 3V. 4.4 53G 54M 5GY 5VS 7X2 7X7 7XC 85S 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AABOD AACKU AACTG AADIR AADUE AAGGD AAJOX AAJPV AAKTJ AAMFR AAMGE AANSI AAPEO AAQDB AARIX AATAA AATBZ AAWLO AAWTL AAYJJ AAYTG ABAWP ABCCA ABDEX ABDMP ABDWY ABEIX ABFWQ ABFXH ABGFU ABHKI ABIVO ABJCF ABKRH ABLUO ABPNF ABQKF ABQPY ABQXT ABRHV ABUWG ABYTW ACABN ACAEP ACDXX ACFUR ACFZE ACGBL ACGFS ACGOD ACHQT ACIWK ACLZU ACOFE ACOXC ACPRK ACROE ACSIQ ACTQU ACUAV ACUFS ACUIR ACXKE ADBBV ADEIA ADNWM ADPEE ADRRZ ADTBJ ADTOS ADUKL AEDFJ AENEX AEOBU AEONT AEPTA AEQLS AESMA AESZF AEUHG AEUIJ AEVPJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRA AFKRG AFMOU AFQAA AFRAH AFUIA AGDVU AGHSJ AGKLV AGNHF AGNWV AGWFA AHHFK AHMBA AHOJL AHWHD AI. AIOMO AIZZC AJEFB AJUXI AJUZI ALEEW ALFTD ALIPV ALJHS ALMA_UNASSIGNED_HOLDINGS ANDLU AQUVI ARTOV ASPBG ATCPS AUTPY AUVAJ AVQMV AVWKF AYAKG AYPQM AZFZN AZQEC B8T B8Z B94 BBNVY BBRGL BCR BCU BDDNI BDZRT BEC BENPR BES BGLVJ BHPHI BKOMP BKSAR BLC BMVBW BPACV BPHCQ BVXVI BYIEH CAG CBRKF CCGJY CCPQU CEADM CFDXU COF CORYS D1J D1K DD0 DD~ DE- DG~ DH. DO- DOPDO DU5 DV7 DV8 DWQXO D~Y EBS EDH EJD EMOBN F3I F5P FAC FAS FEDTE FHBDP FJW FYUFA G8K GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GUQSH HCIFZ HF~ HMCUK HVGLF HZ~ IAO ICD ICJ IEA IGS IOF IPO IPY ITC J8X JCYGO K.F K50 K6- KQ4 L6V LK5 LK8 LPU M0K M0T M1D M1P M2M M2O M2P M2Q M4V M7P M7R M7S N9A O9- OHT P.B P2P PADUT PATMY PCBAR PEA PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q1R Q2X Q7O Q7P Q7V Q7X Q82 Q83 QN7 ROL S01 S0X SCNPE SFC SGU SGV SGZ SJFOW SPV SSDHQ TN5 U5U UAP UBX UHB UKHRP UPT VH1 VQA WH7 X7M XH6 XOL XZL YNY ZGI ZPLXX ZPPRI ZRKOI ZXP ~02 ~32 ACJER ADMHG AEDXQ AEILP CGR CUY CVF ECM EIF H13 NPM AAYXX ABDPE ADVBO CITATION 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7TK 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c365t-751df160072444e35f8f530100e45065e9fdb4bff484ca891e36845cf6f264263 |
IEDL.DBID | ARPSY |
ISSN | 0018-7208 |
IngestDate | Fri Oct 25 08:32:46 EDT 2024 Tue Nov 19 23:06:06 EST 2024 Fri Nov 22 01:40:28 EST 2024 Wed Oct 16 00:42:26 EDT 2024 Tue Jul 16 20:47:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | cognitive workload dynamic measurement simulator research nonintrusive machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c365t-751df160072444e35f8f530100e45065e9fdb4bff484ca891e36845cf6f264263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0226-2357 |
PMID | 33054415 |
PQID | 2549910602 |
PQPubID | 48481 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2451861761 proquest_journals_2549910602 crossref_primary_10_1177_0018720820961730 pubmed_primary_33054415 sage_journals_10_1177_0018720820961730 |
PublicationCentury | 2000 |
PublicationDate | 20210800 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210800 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Santa Monica |
PublicationTitle | Human factors |
PublicationTitleAlternate | Hum Factors |
PublicationYear | 2021 |
Publisher | SAGE Publications Human Factors and Ergonomics Society |
Publisher_xml | – name: SAGE Publications – name: Human Factors and Ergonomics Society |
References | Hollands, Spivak, Kramkowski 2019; 61 Lieberman 2007; 48 McDonald, Ferris, Wiener 2020; 62 Boersma, van Heuven 2001; 5 Hockey 1997; 45 Vicente 1997; 5 Strayer, Cooper, Goethe, McCarty, Getty, Biondi 2019; 4 Rahman, Ahmed, Barua, Begum 2020; 55 Moray 1967; 27 Schulz, Schneider, Fritz, Vockeroth, Hapfelmeier, Wasmaier, Kochs, Schneider 2011; 106 Nygren 1991; 33 Brown, Cai, Dasgupta 2001; 16 Chen, Ruiz, Choi, Epps, Khawaja, Taib, Yin, Wang 2012; 2 Matthews, Winter, Hancock 2020; 4 van Merriënboer, Sweller 2005; 17 Gao, Wang, Song, Li, Dong 2013; 56 Jadoul, Thompson, de Boer 2018; 71 Burris, Vorperian, Fourakis, Kent, Bolt 2014; 57 Ragab, Craye, Kamel, Karray 2014; 8814 Guastello, Shircel, Malon, Timm 2015; 16 Tobaruela, Schuster, Majumdar, Ochieng, Martinez, Hendrickx 2014; 39 Wilson, Russell 2003; 45 Hancock, Matthews 2019; 61 Dietterich 1998; 10 Braarud 2020; 76 Young, Brookhuis, Wickens, Hancock 2015; 58 Castro, Strayer, Matzke, Heathcote 2019; 45 Vukovic, Sethu, Parker, Cavedon, Lech, Thangarajah 2019; 124 Wittels, Johannes, Enne, Kirsch, Gunga 2002; 87 Ruskin, Hueske-Kraus 2015; 28 Hancock, Warm 1989; 31 Humphrey, Kramer 1994; 36 Cegarra, Chevalier 2008; 40 Rusnock, Borghetti 2018; 63 Lin, Li, Wu, Tang 2013; 9 Grier 2015; 59 Wulvik, Dybvik, Steinert 2020; 22 Brenner, Doherty, Shipp 1994; 65 Reinerman-Jones, Hughes, D’Agostino, Matthews 2019; 69 Huttunen, Keränen, Pääkkönen, Päivikki Eskelinen-Rönkä, Leino 2011; 129 Cvach 2012; 46 Ferreira, Ferreira, Kim, Siirtola, Röning, Forlizzi, Dey 2014; 2014 Kennedy, Scholey 2000; 149 Matthews, Reinerman-Jones, Barber, Abich 2015; 57 Pimenta, Carneiro, Neves, Novais 2016; 172 Lively, Pisoni, Van Summers, Bernacki 1993; 93 Moray 1988; 2 Ahlstrom, Friedman-Berg 2006; 36 Kuhn 2008; 28 Mulder 1992; 34 Huttunen, Keränen, Väyrynen, Pääkkönen, Leino 2011; 42 van Segbroeck M. (bibr74-0018720820961730) 2014 bibr71-0018720820961730 bibr46-0018720820961730 bibr12-0018720820961730 bibr70-0018720820961730 bibr29-0018720820961730 Luig J. (bibr48-0018720820961730) 2010 Byers J. C. (bibr11-0018720820961730) 1989 bibr9-0018720820961730 bibr21-0018720820961730 bibr61-0018720820961730 bibr47-0018720820961730 bibr56-0018720820961730 bibr13-0018720820961730 bibr52-0018720820961730 Matthews G. (bibr89-0018720820961730) 2020; 4 bibr78-0018720820961730 bibr65-0018720820961730 bibr90-0018720820961730 bibr30-0018720820961730 bibr18-0018720820961730 bibr44-0018720820961730 bibr49-0018720820961730 bibr51-0018720820961730 bibr36-0018720820961730 bibr57-0018720820961730 bibr64-0018720820961730 bibr23-0018720820961730 bibr10-0018720820961730 Brenner M. (bibr8-0018720820961730) 1994; 65 bibr28-0018720820961730 R Core Team (bibr60-0018720820961730) 2019 bibr72-0018720820961730 bibr15-0018720820961730 bibr85-0018720820961730 bibr88-0018720820961730 Yin B. (bibr82-0018720820961730) 2007 bibr20-0018720820961730 Jordan C. S (bibr39-0018720820961730) 1992 bibr67-0018720820961730 bibr54-0018720820961730 bibr80-0018720820961730 Boersma P. (bibr3-0018720820961730) 2001; 5 bibr41-0018720820961730 bibr59-0018720820961730 bibr16-0018720820961730 bibr33-0018720820961730 bibr76-0018720820961730 bibr75-0018720820961730 bibr40-0018720820961730 bibr83-0018720820961730 bibr25-0018720820961730 bibr68-0018720820961730 bibr17-0018720820961730 bibr77-0018720820961730 bibr31-0018720820961730 bibr43-0018720820961730 Ragab A. (bibr62-0018720820961730) 2014; 8814 bibr26-0018720820961730 bibr69-0018720820961730 bibr4-0018720820961730 Arshad S. (bibr2-0018720820961730) 2013 Brenner M. (bibr7-0018720820961730) 1985 bibr86-0018720820961730 bibr73-0018720820961730 bibr19-0018720820961730 bibr87-0018720820961730 bibr1-0018720820961730 bibr14-0018720820961730 Moray N (bibr53-0018720820961730) 1988; 2 bibr81-0018720820961730 Braarud P. Ø. (bibr5-0018720820961730) 2011 bibr66-0018720820961730 Gopher D. (bibr22-0018720820961730) 1986 bibr58-0018720820961730 bibr42-0018720820961730 bibr79-0018720820961730 bibr45-0018720820961730 Braarud P. Ø. (bibr6-0018720820961730) 2020 bibr32-0018720820961730 bibr37-0018720820961730 bibr63-0018720820961730 bibr50-0018720820961730 International Organization for Standardization (ISO) (bibr35-0018720820961730) 2016 bibr24-0018720820961730 International Organization for Standardization (ISO) (bibr34-0018720820961730) 2006 |
References_xml | – volume: 46 start-page: 268 year: 2012 end-page: 277 article-title: Monitor alarm fatigue: An integrative review publication-title: Biomedical Instrumentation & Technology contributor: fullname: Cvach – volume: 27 start-page: 84 year: 1967 end-page: 92 article-title: Where is capacity limited? A survey and a model publication-title: Acta Psychologica contributor: fullname: Moray – volume: 16 start-page: 20 year: 2015 end-page: 52 article-title: Individual differences in the experience of cognitive workload publication-title: Theoretical Issues in Ergonomics Science contributor: fullname: Timm – volume: 45 start-page: 73 year: 1997 end-page: 93 article-title: Compensatory control in the regulation of human performance under stress and high workload; a cognitive-energetical framework publication-title: Biological Psychology contributor: fullname: Hockey – volume: 17 start-page: 147 year: 2005 end-page: 177 article-title: Cognitive load theory and complex learning: Recent developments and future directions publication-title: Educational Psychology Review contributor: fullname: Sweller – volume: 57 start-page: 26 year: 2014 end-page: 45 article-title: Quantitative and descriptive comparison of four acoustic analysis systems: Vowel measurements publication-title: Journal of Speech, Language, and Hearing Research contributor: fullname: Bolt – volume: 2014 start-page: 39 year: 2014 end-page: 48 article-title: Assessing real-time cognitive load based on psycho-physiological measures for younger and older adults [Symposium] publication-title: 2014 IEEE Symposium of Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Orlando, FL contributor: fullname: Dey – volume: 48 start-page: 39 year: 2007 end-page: 66 article-title: The evolution of human speech: Its anatomical and neural bases publication-title: Current anthropology contributor: fullname: Lieberman – volume: 2 start-page: 123 year: 1988 end-page: 150 article-title: Mental workload since 1979 publication-title: International Review of Ergonomics contributor: fullname: Moray – volume: 61 start-page: 374 year: 2019 end-page: 392 article-title: Workload and performance: Associations, Insensitivities, and dissociations publication-title: Human Factors: The Journal of the Human Factors and Ergonomics Society contributor: fullname: Matthews – volume: 28 start-page: 1 year: 2008 end-page: 26 article-title: Building predictive models in using the caret package publication-title: Journal of Statistical Software contributor: fullname: Kuhn – volume: 4 year: 2020 article-title: What do subjective workload scales really measure? Operational and representational solutions to divergence of workload measures publication-title: Theoretical Issues in Ergonomics Science contributor: fullname: Hancock – volume: 36 start-page: 623 year: 2006 end-page: 636 article-title: Using eye movement activity as a correlate of cognitive workload publication-title: International Journal of Industrial Ergonomics contributor: fullname: Friedman-Berg – volume: 172 start-page: 413 year: 2016 end-page: 426 article-title: A neural network to classify fatigue from human–computer interaction publication-title: Neurocomputing contributor: fullname: Novais – volume: 5 start-page: 407 year: 1997 end-page: 416 article-title: Operator adaptation in process control: A three-year research program publication-title: Control Engineering Practice contributor: fullname: Vicente – volume: 55 start-page: 1 year: 2020 end-page: 13 article-title: Non-contact-based driver’s cognitive load classification using physiological and vehicular parameters publication-title: Biomedical Signal Processing and Control contributor: fullname: Begum – volume: 93 start-page: 2962 year: 1993 end-page: 2973 article-title: Effects of cognitive workload on speech production: Acoustic analyses and perceptual consequences publication-title: The Journal of the Acoustical Society of America contributor: fullname: Bernacki – volume: 69 start-page: 217 year: 2019 end-page: 227 article-title: Human performance metrics for the nuclear domain: A tool for evaluating measures of workload, situation awareness and teamwork publication-title: International Journal of Industrial Ergonomics contributor: fullname: Matthews – volume: 62 start-page: 1019 year: 2020 end-page: 1035 article-title: Classification of driver distraction: A comprehensive analysis of feature generation, machine learning, and input measures publication-title: Human Factors contributor: fullname: Wiener – volume: 40 start-page: 988 year: 2008 end-page: 1000 article-title: The use of tholos software for combining measures of mental workload: Toward theoretical and methodological improvements publication-title: Behavior Research Methods contributor: fullname: Chevalier – volume: 129 start-page: 1580 year: 2011 end-page: 1593 article-title: Effect of cognitive load on articulation rate and formant frequencies during simulator flights publication-title: The Journal of the Acoustical Society of America contributor: fullname: Leino – volume: 39 start-page: 59 year: 2014 end-page: 71 article-title: A method to estimate air traffic controller mental workload based on traffic clearances publication-title: Journal of Air Transport Management contributor: fullname: Hendrickx – volume: 5 start-page: 341 year: 2001 end-page: 345 article-title: Praat, a system for doing phonetics by computer publication-title: Glot International contributor: fullname: van Heuven – volume: 16 start-page: 101 year: 2001 end-page: 133 article-title: Interval estimation for a binomial proportion publication-title: Statistical Science contributor: fullname: Dasgupta – volume: 45 start-page: 826 year: 2019 end-page: 839 article-title: Cognitive workload measurement and modeling under divided attention publication-title: Journal of Experimental Psychology: Human Perception and Performance contributor: fullname: Heathcote – volume: 34 start-page: 205 year: 1992 end-page: 236 article-title: Measurement and analysis methods of heart rate and respiration for use in applied environments publication-title: Biological Psychology contributor: fullname: Mulder – volume: 124 start-page: 116 year: 2019 end-page: 133 article-title: Estimating cognitive load from speech gathered in a complex real-life training exercise publication-title: International Journal of Human-Computer Studies contributor: fullname: Thangarajah – volume: 65 start-page: 21 year: 1994 end-page: 26 article-title: Speech measures indicating workload demand publication-title: Aviation, Space, and Environmental Medicine contributor: fullname: Shipp – volume: 106 start-page: 44 year: 2011 end-page: 50 article-title: Eye tracking for assessment of workload: A pilot study in an anaesthesia simulator environment publication-title: British Journal of Anaesthesia contributor: fullname: Schneider – volume: 45 start-page: 635 year: 2003 end-page: 644 article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks publication-title: Human Factors contributor: fullname: Russell – volume: 4 start-page: 18 year: 2019 article-title: Assessing the visual and cognitive demands of in-vehicle information systems publication-title: Cognitive Research: Principles and Implications contributor: fullname: Biondi – volume: 71 start-page: 1 year: 2018 end-page: 15 article-title: Introducing parselmouth: A python interface to praat publication-title: Journal of Phonetics contributor: fullname: de Boer – volume: 42 start-page: 348 year: 2011 end-page: 357 article-title: Effect of cognitive load on speech prosody in aviation: Evidence from military simulator flights publication-title: Applied Ergonomics contributor: fullname: Leino – volume: 59 start-page: 1727 year: 2015 end-page: 1731 article-title: How high is high? A meta-analysis of NASA-TLX global workload scores publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting contributor: fullname: Grier – volume: 149 start-page: 63 year: 2000 end-page: 71 article-title: Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort publication-title: Psychopharmacology contributor: fullname: Scholey – volume: 8814 start-page: 256 year: 2014 end-page: 265 article-title: A visual-based driver distraction recognition and detection using random forest publication-title: Proceedings of the International Conference on Image Analysis and Recognition contributor: fullname: Karray – volume: 36 start-page: 3 year: 1994 end-page: 26 article-title: Toward a psychophysiological assessment of dynamic changes in mental workload publication-title: Human Factors contributor: fullname: Kramer – volume: 63 start-page: 49 year: 2018 end-page: 64 article-title: Workload profiles: A continuous measure of mental workload publication-title: International Journal of Industrial Ergonomics contributor: fullname: Borghetti – volume: 10 start-page: 1895 year: 1998 end-page: 1923 article-title: Approximate statistical tests for comparing supervised classification learning algorithms publication-title: Neural Computation contributor: fullname: Dietterich – volume: 58 start-page: 1 year: 2015 end-page: 17 article-title: State of science: Mental workload in ergonomics publication-title: Ergonomics contributor: fullname: Hancock – volume: 87 start-page: 278 year: 2002 end-page: 282 article-title: Voice monitoring to measure emotional load during short-term stress publication-title: European Journal of Applied Physiology contributor: fullname: Gunga – volume: 22 start-page: 95 year: 2020 end-page: 108 article-title: Investigating the relationship between mental state (workload and affect) and physiology in a control room setting (SHIP bridge simulator) publication-title: Cognition, Technology & Work contributor: fullname: Steinert – volume: 56 start-page: 1070 year: 2013 end-page: 1085 article-title: Mental workload measurement for emergency operating procedures in digital nuclear power plants publication-title: Ergonomics contributor: fullname: Dong – volume: 9 start-page: 73 year: 2013 end-page: 88 article-title: Automatic cognitive load classification using high-frequency interaction events publication-title: International Journal of Technology and Human Interaction contributor: fullname: Tang – volume: 57 start-page: 125 year: 2015 end-page: 143 article-title: The psychometrics of mental workload: Multiple measures are sensitive but divergent publication-title: Human Factors contributor: fullname: Abich – volume: 33 start-page: 17 year: 1991 end-page: 33 article-title: Psychometric properties of subjective workload measurement techniques: Implications for their use in the assessment of perceived mental workload publication-title: Human Factors contributor: fullname: Nygren – volume: 2 start-page: 1 year: 2012 end-page: 36 article-title: Multimodal behavior and interaction as indicators of cognitive load publication-title: ACM Transactions on Interactive Intelligent Systems contributor: fullname: Wang – volume: 76 year: 2020 article-title: An efficient screening technique for acceptable mental workload based on the NASA task load Index—development and application to control room validation publication-title: International Journal of Industrial Ergonomics contributor: fullname: Braarud – volume: 31 start-page: 519 year: 1989 end-page: 537 article-title: A dynamic model of stress and sustained attention publication-title: Human Factors: The Journal of the Human Factors and Ergonomics Society contributor: fullname: Warm – volume: 28 start-page: 685 year: 2015 end-page: 690 article-title: Alarm fatigue: Impacts on patient safety publication-title: Current Opinion in Anesthesiology contributor: fullname: Hueske-Kraus – volume: 61 start-page: 763 year: 2019 end-page: 773 article-title: Cognitive load and situation awareness for soldiers: Effects of message presentation rate and sensory modality publication-title: Human Factors contributor: fullname: Kramkowski – volume-title: Handbook of perception and human performance, vol II, cognitive processes and performance year: 1986 ident: bibr22-0018720820961730 contributor: fullname: Gopher D. – volume-title: DRA Technical Memorandum (CAD5) 92011. DRA Maritime Command Control Division year: 1992 ident: bibr39-0018720820961730 contributor: fullname: Jordan C. S – ident: bibr72-0018720820961730 doi: 10.1016/j.jairtraman.2014.04.002 – ident: bibr12-0018720820961730 doi: 10.1037/xhp0000638 – start-page: 481 volume-title: Advances in industrial ergonomics and safety I year: 1989 ident: bibr11-0018720820961730 contributor: fullname: Byers J. C. – ident: bibr15-0018720820961730 doi: 10.1145/2395123.2395127 – volume-title: Human-system validation experiment 2018: Multistage assessment, operators self-evaluation, and mental workload assessment year: 2020 ident: bibr6-0018720820961730 contributor: fullname: Braarud P. Ø. – volume-title: ISO 11064-7, 2006. Ergonomic design of control centres part 7: Principles for the evaluation of control centres year: 2006 ident: bibr34-0018720820961730 contributor: fullname: International Organization for Standardization (ISO) – ident: bibr42-0018720820961730 doi: 10.18637/jss.v028.i05 – ident: bibr81-0018720820961730 doi: 10.1109/ICASSP.2010.5494987 – ident: bibr29-0018720820961730 doi: 10.1177/001872089403600101 – ident: bibr64-0018720820961730 doi: 10.1016/j.ergon.2018.12.001 – ident: bibr23-0018720820961730 doi: 10.1177/1541931215591373 – ident: bibr1-0018720820961730 doi: 10.1016/j.ergon.2006.04.002 – ident: bibr17-0018720820961730 doi: 10.2345/0899-8205-46.4.268 – ident: bibr68-0018720820961730 doi: 10.1093/bja/aeq307 – ident: bibr54-0018720820961730 doi: 10.1016/0001-6918(67)90048-0 – ident: bibr88-0018720820961730 doi: 10.1016/S0301-0511(96)05223-4 – ident: bibr18-0018720820961730 doi: 10.1162/089976698300017197 – ident: bibr79-0018720820961730 doi: 10.1518/hfes.45.4.635.27088 – ident: bibr57-0018720820961730 – ident: bibr14-0018720820961730 doi: 10.1109/ICASSP.2013.6637699 – ident: bibr69-0018720820961730 doi: 10.1145/1240866.1241057 – ident: bibr78-0018720820961730 doi: 10.1037/14528-018 – ident: bibr20-0018720820961730 doi: 10.1109/CCMB.2014.7020692 – ident: bibr71-0018720820961730 doi: 10.1186/s41235-019-0166-3 – ident: bibr50-0018720820961730 doi: 10.1177/0018720814539505 – ident: bibr26-0018720820961730 doi: 10.1016/S0166-4115(08)62386-9 – start-page: 2041 volume-title: Proceedings IEEE ICASSP, year: 2007 ident: bibr82-0018720820961730 contributor: fullname: Yin B. – volume-title: Road vehicles—Transport information and control systems—Detection-response task (DRT) for assessing attentional effects of cognitive load in driving year: 2016 ident: bibr35-0018720820961730 contributor: fullname: International Organization for Standardization (ISO) – ident: bibr70-0018720820961730 doi: 10.1145/2556288.2557068 – ident: bibr9-0018720820961730 doi: 10.1214/ss/1009213286 – ident: bibr73-0018720820961730 doi: 10.1007/s10648-005-3951-0 – volume-title: Proceedings of the 27th International Congress on the Aeronautical Sciences year: 2010 ident: bibr48-0018720820961730 contributor: fullname: Luig J. – volume: 2 start-page: 123 year: 1988 ident: bibr53-0018720820961730 publication-title: International Review of Ergonomics contributor: fullname: Moray N – ident: bibr10-0018720820961730 doi: 10.1044/1092-4388(2013/12-0103) – ident: bibr66-0018720820961730 doi: 10.1097/ACO.0000000000000260 – ident: bibr58-0018720820961730 doi: 10.1177/001872089103300102 – ident: bibr43-0018720820961730 – ident: bibr65-0018720820961730 – ident: bibr4-0018720820961730 doi: 10.1016/j.ergon.2019.102904 – ident: bibr32-0018720820961730 doi: 10.1121/1.3543948 – ident: bibr46-0018720820961730 doi: 10.4018/jthi.2013070106 – ident: bibr75-0018720820961730 doi: 10.1007/978-0-387-21706-2 – volume: 8814 start-page: 256 year: 2014 ident: bibr62-0018720820961730 publication-title: Proceedings of the International Conference on Image Analysis and Recognition contributor: fullname: Ragab A. – ident: bibr13-0018720820961730 doi: 10.3758/BRM.40.4.988 – ident: bibr63-0018720820961730 doi: 10.1016/S0166-4115(08)62387-0 – ident: bibr28-0018720820961730 doi: 10.1177/0018720819825803 – ident: bibr41-0018720820961730 doi: 10.1007/s002139900335 – ident: bibr85-0018720820961730 doi: 10.1007/s00421-002-0625-1 – start-page: 233 volume-title: Simulator-based human factors studies across 25 years: The history of the Halden Man-Machine Laboratory year: 2011 ident: bibr5-0018720820961730 contributor: fullname: Braarud P. Ø. – volume: 65 start-page: 21 year: 1994 ident: bibr8-0018720820961730 publication-title: Aviation, Space, and Environmental Medicine contributor: fullname: Brenner M. – ident: bibr21-0018720820961730 doi: 10.1080/00140139.2013.790483 – ident: bibr87-0018720820961730 doi: 10.1177/001872088903100503 – ident: bibr83-0018720820961730 doi: 10.1080/00140139.2014.956151 – ident: bibr80-0018720820961730 doi: 10.1007/s10111-019-00553-8 – ident: bibr16-0018720820961730 – ident: bibr25-0018720820961730 doi: 10.1007/978-3-319-61061-0_1 – ident: bibr90-0018720820961730 doi: 10.1177/0018720818809590 – ident: bibr49-0018720820961730 – ident: bibr31-0018720820961730 doi: 10.1016/j.apergo.2010.08.005 – ident: bibr45-0018720820961730 doi: 10.1086/509092 – ident: bibr33-0018720820961730 – ident: bibr61-0018720820961730 doi: 10.1016/j.bspc.2019.101634 – ident: bibr76-0018720820961730 doi: 10.1016/S0967-0661(97)00018-X – ident: bibr37-0018720820961730 doi: 10.1007/978-1-4614-7138-7 – ident: bibr44-0018720820961730 – ident: bibr47-0018720820961730 doi: 10.1121/1.405815 – ident: bibr52-0018720820961730 doi: 10.1109/EMBC.2019.8857501 – ident: bibr24-0018720820961730 doi: 10.1080/1463922X.2013.869371 – ident: bibr36-0018720820961730 doi: 10.1016/j.wocn.2018.07.001 – start-page: 239 volume-title: Vocal fold physiology, biomechanics, acoustics, and phonatory control year: 1985 ident: bibr7-0018720820961730 contributor: fullname: Brenner M. – ident: bibr56-0018720820961730 doi: 10.1016/0301-0511(92)90016-N – volume-title: R: A language and environment for statistical computing year: 2019 ident: bibr60-0018720820961730 contributor: fullname: R Core Team – ident: bibr59-0018720820961730 doi: 10.1016/j.neucom.2015.03.105 – volume: 5 start-page: 341 year: 2001 ident: bibr3-0018720820961730 publication-title: Glot International contributor: fullname: Boersma P. – ident: bibr77-0018720820961730 doi: 10.1016/j.ijhcs.2018.12.003 – volume-title: Classification of cognitive load from speech using an I-Vector framework year: 2014 ident: bibr74-0018720820961730 doi: 10.21437/Interspeech.2014-114 contributor: fullname: van Segbroeck M. – ident: bibr67-0018720820961730 doi: 10.1016/j.ergon.2016.09.003 – ident: bibr51-0018720820961730 doi: 10.1177/0018720819856454 – start-page: 115 volume-title: Proceedings of the 25th Australian Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration, ACM year: 2013 ident: bibr2-0018720820961730 contributor: fullname: Arshad S. – ident: bibr40-0018720820961730 – ident: bibr19-0018720820961730 doi: 10.1007/978-3-540-75555-5_52 – ident: bibr30-0018720820961730 doi: 10.7551/mitpress/1881.001.0001 – volume: 4 year: 2020 ident: bibr89-0018720820961730 publication-title: Theoretical Issues in Ergonomics Science contributor: fullname: Matthews G. – ident: bibr86-0018720820961730 doi: 10.1007/978-3-642-39143-9_39 |
SSID | ssj0006935 |
Score | 2.4027352 |
Snippet | Objective
To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale... To investigate speech features, human-machine alarms, and operator-system interaction for the estimation of cognitive workload in full-scale realistic... Objective To investigate speech features, human–machine alarms, and operator–system interaction for the estimation of cognitive workload in full-scale... OBJECTIVETo investigate speech features, human-machine alarms, and operator-system interaction for the estimation of cognitive workload in full-scale realistic... |
SourceID | proquest crossref pubmed sage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 736 |
SubjectTerms | Accuracy Alarms Algorithms Cognition Cognitive ability Communications systems Control rooms Frequency Humans Investigations Learning algorithms Machine Learning Nonintrusive measurement Nuclear reactors Operators Simulation Speech Workload Workloads |
Title | An Investigation of Speech Features, Plant System Alarms, and Operator–System Interaction for the Classification of Operator Cognitive Workload During Dynamic Work |
URI | https://journals.sagepub.com/doi/full/10.1177/0018720820961730 https://www.ncbi.nlm.nih.gov/pubmed/33054415 https://www.proquest.com/docview/2549910602 https://search.proquest.com/docview/2451861761 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvR3LbtQwcETbSzkUKK9AQUZCSEiEJrGTtU9o1W3FCRALEpyixLFVJNZZdTeHvfUf-AZ-jC9hxonTlgqJE1c78TjxPD0vgOeFrk2uhIoLU9tYaNnEStUcrRShE53qymrfxHY-efdFzo6pTI4LuTDDH1y9prAq3JFn1kTddBt9ODgZD30ruYykl0IJzJM33XpR9rfdoakGjZB7uluQZ1tTPOQmDtltW7BDhfOQInamHz_Mv468u1B86HkgYwJw4di8BvOqILumnV6JDPPC6uTW__7M27A3qLVs2uPhHbhh3D7cvFTscB92R167uQs_p45dKvHROtZaNl8ao08ZaaXdmVm9YtRRac36oupsijb4Agcr17D3S-PDA36d_xhm_c1mn6TBUA9nqNcy3_CTQqFGCOE9dhSiphh5C763VcNmPmGTzTauWnzTfvwefD45_nT0Nh46RsSaF_k6nuRpY1MquY9aizA8t9LmyMKSxIgclS2jbFOL2lohha6kSg0vpMi1LSwqhlnB78O2a515CAzxA5FByazCtSZGIT7XUnNboAWmJ0JG8DIcf7nsC4OUaaid_se5RXAQ8KMMJ196yxwN8iSL4Nk4jcRNHpvKmbbDZ0SeSlyiSCN40OPVCIwjpyZjOIIXhEQXC_9tF4_-9cHHsJtR5I4PczyA7fVZZ57A1qrpng708htWYSms |
link.rule.ids | 315,782,786,27926,27933,27934,44981,45369 |
linkProvider | SAGE Publications |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5Be2g5AC0_DRQ6lRASEkGb-Cf2cdVtVUQpiC0SnKLEsQVSm6zo7qG3vkOfgRfjSRg7P22pkJC42vHYyoxn5rPHMwAvpCmt0FzH0pYu5kZVsdYlI5TCzcgkpnAmFLGdZodf1GTXp8kZSn11f_D0jQ-rohUFZT3sbp8pyVeRS73h0mR8GaH1ZS6YJIFeHn_6OP06qGGpWVe-QMV-wOUd5Q0a123SDUfzWpBXsDt79_5jxffhbuds4riVjjW4Zet1uHMlBeE6rA4a8OwB_BzXeCXxRlNj43A6s9Z8Q-8rLgibv0Zf52iObapzHBMyPqHGoq7ww8yGS_tf5xddbzhvbJ9OIHnHSN4mhjKcPkBpmKEfhzt9LBP6M_zjpqhwEp5R4uSsLk6-m9D-ED7v7R7t7MddHYfYMCnmcSaSyiU-ET75Etwy4ZQTpFhGI8sFuUBWu6rkpXNccVMonVgmFRfGSUfuWirZI1iqm9puAKaZJr5qlRZEK7OapKxUhjlJuMhkXEXwqudkPmvTdeRJn9H8Dz5EsNmzOu-ZmAe8TDB5lEawPXTTlvP3KEVtmwV9w0WiiIRMInjcisgwGSP96SFqBC-9PFwS_tsqnvzrh1uwsn_0_iA_eHv47imspj62JgQibsLS_MfCPoPbp9XiebcNfgP1pQGV |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcASthNoD0EIhUNqphJCQSHcTO4594LDqdgWiKhULEpyixLFFJZqs6O6hN_6h39Af40sYO4--hITE1Y7HVubtGc8AvBS6MIniKhSmsCHXsgyVKhh5KVwPdaRzq30T22l6-FWO912ZnLfdW5j2D57uurQqOpEX1o67Z6UdtDHGge8kFzvlpUgBM_LYlzlXkvhyefTpaPqtF8VCsbaFgQzdgss45S0Y1_XSLWPzWqKX1z2TB_956odwvzU6cdRQyRrcMdU6rF4pRbgOK70kPHsEF6MKrxTgqCusLU5nxujv6GzGBfnob9D1O5pjU_IcR-Qhn9BgXpX4cWZ88P73r_N21t87Nk8okKxkJKsTfTtOl6jU79Ctw70upwndXf6POi9x7J9T4visyk-OtR9_DF8m-5_33oVtP4dQM5HMwzSJShu5gvhkU3DDEittQgJmODQ8IVPIKFsWvLCWS65zqSLDhOSJtsKS2RYLtgFLVV2Zp4Bxqgi3SsY5wUqNImorpGZWkH-kUy4DeN1hM5s1ZTuyqKtsfgMPAWx26M46RGbebyZ3eRgHsNNPE-u5eEpemXpB3_AkkgRCRAE8acik34yRHHWuagCvHE1cAv7bKZ7964fbcO9oPMkO3h9-eA4rsUux8fmIm7A0_7kwL-DuabnYajnhD4J_BBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Investigation+of+Speech+Features%2C+Plant+System+Alarms%2C+and+Operator%E2%80%93System+Interaction+for+the+Classification+of+Operator+Cognitive+Workload+During+Dynamic+Work&rft.jtitle=Human+factors&rft.au=Braarud%2C+Per+%C3%98&rft.au=Bodal+Terje&rft.au=Hulsund%2C+John+E&rft.au=Louka%2C+Michael+N&rft.date=2021-08-01&rft.pub=Human+Factors+and+Ergonomics+Society&rft.issn=0018-7208&rft.eissn=1547-8181&rft.volume=63&rft.issue=5&rft.spage=736&rft.epage=756&rft_id=info:doi/10.1177%2F0018720820961730&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-7208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-7208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-7208&client=summon |