Depression of parallel and climbing fiber transmission to Bergmann glia is input specific and correlates with increased precision of synaptic transmission

In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca2+‐permeable AMPA receptors, and the GLAST and GLT‐1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmis...

Full description

Saved in:
Bibliographic Details
Published in:Glia Vol. 57; no. 4; pp. 393 - 401
Main Authors: Balakrishnan, Saju, Bellamy, Tomas C.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01-03-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca2+‐permeable AMPA receptors, and the GLAST and GLT‐1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency‐dependent plasticity, namely long‐term depression, following repetitive stimulation at 0.1–1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron‐glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity. © 2008 Wiley‐Liss, Inc.
AbstractList In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca(2+)-permeable AMPA receptors, and the GLAST and GLT-1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency-dependent plasticity, namely long-term depression, following repetitive stimulation at 0.1-1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron-glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity.
In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca2+‐permeable AMPA receptors, and the GLAST and GLT‐1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency‐dependent plasticity, namely long‐term depression, following repetitive stimulation at 0.1–1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron‐glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity. © 2008 Wiley‐Liss, Inc.
In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca 2+ ‐permeable AMPA receptors, and the GLAST and GLT‐1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency‐dependent plasticity, namely long‐term depression, following repetitive stimulation at 0.1–1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron‐glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity. © 2008 Wiley‐Liss, Inc.
Author Balakrishnan, Saju
Bellamy, Tomas C.
Author_xml – sequence: 1
  givenname: Saju
  surname: Balakrishnan
  fullname: Balakrishnan, Saju
  organization: Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
– sequence: 2
  givenname: Tomas C.
  surname: Bellamy
  fullname: Bellamy, Tomas C.
  email: tom.bellamy@bbsrc.ac.uk
  organization: Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18837050$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi3Uim4LFx4A-cShUlpP_tk-llKWSlE5ACo3y3Emi8Fxgp1V2VfhafGSLXDiNPLo933feOaUHPnRIyEvgF0AY_nlxll9kTNeiydkBUyKDKCoj8iKCVlmUEo4IacxfmUM0oM_JScgRMFZxVbk5xucAsZoR0_Hnk46aOfQUe07apwdWus3tLctBjoH7eNgF3Ye6WsMm0F7T_f51EZq_bSdaZzQ2N6axWIMAZ2eMdIHO39JiAmoI3Y0pRr7GBt3Xk9z0vyb8Ywc99pFfH6oZ-TT25uP1--y5v369vqqyUxRVyIzXSvSX3jd87Y1TJcddDkwXedSM8mrXJa6Sg0mBAeJPS8Bi76XVWmgK6EozsirxXcK4_ctxlmlAQw6pz2O26jqWhSQM0jg-QKaMMYYsFdTsIMOOwVM7S-h9ptQvy-R4JcH1207YPcXPaw-AbAAD9bh7j9Wat3cXj2aZovGxhl__NHo8E3VvOCVur9bq6a6X8vPHxp1V_wCFtqnzg
CitedBy_id crossref_primary_10_1002_glia_21078
crossref_primary_10_1016_j_pneurobio_2013_08_001
crossref_primary_10_1002_iub_536
crossref_primary_10_1371_journal_pone_0200937
crossref_primary_10_3389_fnsyn_2018_00045
crossref_primary_10_1038_s41467_023_37319_w
crossref_primary_10_1371_journal_pone_0011962
crossref_primary_10_1007_s12035_016_9719_3
crossref_primary_10_1002_glia_23451
crossref_primary_10_1177_1073858410368314
crossref_primary_10_1371_journal_pone_0125974
crossref_primary_10_1002_hipo_20843
crossref_primary_10_1007_s12311_019_01046_0
crossref_primary_10_1155_2015_765792
crossref_primary_10_1155_2015_602356
crossref_primary_10_1016_j_neuint_2010_08_017
crossref_primary_10_1111_jnc_12211
crossref_primary_10_1113_jphysiol_2013_267039
Cites_doi 10.1016/0306-4522(94)90558-4
10.1111/j.1460-9568.2005.04588.x
10.1046/j.0022-7722.2002.00021.x
10.1002/jnr.10197
10.1523/JNEUROSCI.0073-05.2005
10.1002/glia.20248
10.1523/JNEUROSCI.1927-05.2005
10.1016/S0896-6273(03)00788-8
10.1038/nn1458
10.1016/0896-6273(94)90448-0
10.1523/JNEUROSCI.23-02-00377.2003
10.1523/JNEUROSCI.4121-05.2006
10.1111/j.1460-9568.2004.03224.x
10.1126/science.1317969
10.1111/j.1469-7793.1997.335bk.x
10.1002/(SICI)1098-1136(199608)17:4<274::AID-GLIA2>3.0.CO;2-#
10.1126/science.1058827
10.1038/nn1907
10.1016/S0166-2236(96)20050-5
10.1113/jphysiol.2006.115014
10.1073/pnas.94.26.14821
10.1016/j.neuron.2004.10.031
10.1523/JNEUROSCI.1020-05.2005
10.1073/pnas.122206399
10.1016/0896-6273(92)90120-3
10.1016/S0896-6273(01)00377-4
10.1016/S0074-7742(08)60530-9
10.1126/science.1709304
10.1111/j.1469-7793.2001.t01-1-00825.x
10.1038/87419
10.1038/385074a0
10.1080/14734220600724569
10.1016/S0166-2236(96)10024-2
10.1016/0896-6273(94)90038-8
10.1523/JNEUROSCI.19-13-05265.1999
10.1016/j.neuropharm.2006.08.009
10.1523/JNEUROSCI.2650-04.2004
10.1126/science.1317970
10.1152/physrev.2001.81.3.1143
10.1113/jphysiol.2003.044263
10.1523/JNEUROSCI.21-17-06666.2001
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/glia.20768
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 401
ExternalDocumentID 10_1002_glia_20768
18837050
GLIA20768
ark_67375_WNG_L5WG9XSL_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council, UK
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/D018501/1
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c3658-cdb870576f7bbc0a4d1d210a629a0975294a5210088719ef741e3ff954c1d4133
IEDL.DBID 33P
ISSN 0894-1491
IngestDate Fri Aug 16 21:18:48 EDT 2024
Fri Nov 22 00:32:52 EST 2024
Tue Aug 27 13:47:07 EDT 2024
Sat Aug 24 00:55:12 EDT 2024
Wed Oct 30 09:55:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3658-cdb870576f7bbc0a4d1d210a629a0975294a5210088719ef741e3ff954c1d4133
Notes istex:2A5C960BFA88185816D2C3696B222E6ED40EAB49
ark:/67375/WNG-L5WG9XSL-N
ArticleID:GLIA20768
Biotechnology and Biological Sciences Research Council, UK
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18837050
PQID 66831201
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_66831201
crossref_primary_10_1002_glia_20768
pubmed_primary_18837050
wiley_primary_10_1002_glia_20768_GLIA20768
istex_primary_ark_67375_WNG_L5WG9XSL_N
PublicationCentury 2000
PublicationDate March 2009
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: March 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Matsui K,Jahr CE. 2004. Differential control of synaptic and ectopic vesicular release of glutamate. J Neurosci 24: 8932-8939.
Barbour B,Hausser M. 1997. Intersynaptic diffusion of neurotransmitter. Trends Neurosci 20: 377-384.
Grosche J,Kettenmann H,Reichenbach A. 2002. Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68: 138-149.
Matsui K,Jahr CE,Rubio ME. 2005. High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci 25: 7538-7547.
Burnashev N,Monyer H,Seeburg PH,Sakmann B. 1992b. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8: 189-198.
Bellamy TC,Ogden D. 2006. Long-term depression of neuron to glial signalling in rat cerebellar cortex. Eur J Neurosci 23: 581-586.
Brasnjo G,Otis TS. 2001. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron 31: 607-616.
Bellamy TC. 2006. Interactions between Purkinje neurones and Bergmann glia. Cerebellum 5: 116-126.
Muller T,Moller T,Neuhaus J,Kettenmann H. 1996. Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia 17: 274-284.
Clements JD. 1996. Transmitter timecourse in the synaptic cleft: Its role in central synaptic function. Trends Neurosci 19: 163-171.
Xu-Friedman MA,Harris KM,Regehr WG. 2001. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21: 6666-6672.
Batchelor AM,Garthwaite J. 1997. Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385: 74-77.
Batchelor AM,Madge DJ,Garthwaite J. 1994. Synaptic activation of metabotropic glutamate receptors in the parallel fiber-Purkinje cell pathway in rat cerebellar slices. Neuroscience 63: 911-915.
Szapiro G,Barbour B. 2007. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10: 735-742.
Sims RE,Hartell NA. 2006. Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells. J Neurosci 26: 5153-5159.
Matsui K,Jahr CE. 2003. Ectopic release of synaptic vesicles. Neuron 40: 1173-1183.
Yamada K,Watanabe M. 2002. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77: 94-108.
Lev-Ram V,Wong ST,Storm DR,Tsien RY. 2002. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA 99: 8389-8393.
Marcaggi P,Billups D,Attwell D. 2003. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fiber synapses. J Physiol 552(Part 1): 89-107.
Bellamy TC. 2007. Presynaptic modulation of parallel fiber signalling to Bergmann glia. Neuropharmacology 52: 368-375.
Clark BA,Barbour B. 1997. Currents evoked in Bergmann glial cells by parallel fiber stimulation in rat cerebellar slices. J Physiol 502(Part 2): 335-350.
Takayasu Y,Iino M,Ozawa S. 2004. Roles of glutamate transporters in shaping excitatory synaptic currents in cerebellar Purkinje cells. Eur J Neurosci 19: 1285-1295.
Ito M. 2001. Cerebellar long-term depression: Characterization, signal transduction, and functional roles. Physiol Rev 81: 1143-1195.
Dzubay JA,Jahr CE. 1999. The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. J Neurosci 19: 5265-5274.
Burnashev N,Khodorova A,Jonas P,Helm PJ,Wisden W,Monyer H,Seeburg PH,Sakmann B. 1992a. Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256: 1566-1570.
Sims RE,Hartell NA. 2005. Differences in transmission properties and susceptibility to long-term depression reveal functional specialization of ascending axon and parallel fiber synapses to Purkinje cells. J Neurosci 25: 3246-3257.
Bellamy TC,Ogden D. 2005. Short-term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum. Glia 52: 325-335.
Marcaggi P,Attwell D. 2007. Short- and long-term depression of rat cerebellar parallel fiber synaptic transmission mediated by synaptic crosstalk. J Physiol 578(Part 2): 545-550.
Grosche J,Matyash V,Moller T,Verkhratsky A,Reichenbach A,Kettenmann H. 1999. Microdomains for neuron-glia interaction: Parallel fiber signaling to Bergmann glial cells. NatNeurosci 2: 139-143.
Hollmann M,Hartley M,Heinemann S. 1991. Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252: 851-853.
Barbour B,Keller BU,Llano I,Marty A. 1994. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12: 1331-1343.
Jacoby S,Sims RE,Hartell NA. 2001. Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J Physiol 535(Part 3): 825-839.
Marcaggi P,Attwell D. 2005. Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nat Neurosci 8: 776-781.
Bergles DE,Dzubay JA,Jahr CE. 1997. Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci USA 94: 14821-14825.
Harrison J,Jahr CE. 2003. Receptor occupancy limits synaptic depression at climbing fiber synapses. J Neurosci 23: 377-383.
Iino M,Goto K,Kakegawa W,Okado H,Sudo M,Ishiuchi S,Miwa A,Takayasu Y,Saito I,Tsuzuki K,Ozawa S. 2001. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292: 926-929.
Rothstein JD,Martin L,Levey AI,Dykes-Hoberg M,Jin L,Wu D,Nash N,Kuncl RW. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13: 713-725.
Muller T,Kettenmann H. 1995. Physiology of Bergmann glial cells. Int Rev Neurobiol 38: 341-359.
Coesmans M,Weber JT,De Zeeuw CI,Hansel C. 2004. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44: 691-700.
Takayasu Y,Iino M,Kakegawa W,Maeno H,Watase K,Wada K,Yanagihara D,Miyazaki T,Komine O,Watanabe M,Tanaka K,Ozawa S. 2005. Differential roles of glial and neuronal glutamate transporters in Purkinje cell synapses. J Neurosci 25: 8788-8793.
Hansel C,Linden DJ,D'Angelo E. 2001. Beyond parallel fiber LTD: The diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4: 467-475.
Muller T,Moller T,Berger T,Schnitzer J,Kettenmann H. 1992. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256: 1563-1566. (Published erratum appears in Science 1992; 257: 1190).
2004; 44
1991; 252
1996; 17
1996; 19
1995; 38
1997; 20
2002; 99
2004; 24
2002; 77
2006; 5
1992a; 256
1999; 2
2007; 52
2007; 10
2003; 552
1994; 63
2005; 25
2001; 21
2001; 81
1997; 502
1997; 94
2007; 578
2006; 23
2004; 19
1999; 19
2001; 292
2001; 4
1997; 385
2002; 68
2005; 8
1992; 256
2006; 26
1994; 12
2005; 52
1994; 13
2003; 40
1992b; 8
2001; 31
2001; 535
2003; 23
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
Harrison J (e_1_2_6_21_1) 2003; 23
e_1_2_6_30_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
Grosche J (e_1_2_6_19_1) 1999; 2
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 578
  start-page: 545
  issue: Part 2
  year: 2007
  end-page: 550
  article-title: Short‐ and long‐term depression of rat cerebellar parallel fiber synaptic transmission mediated by synaptic crosstalk
  publication-title: J Physiol
– volume: 12
  start-page: 1331
  year: 1994
  end-page: 1343
  article-title: Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells
  publication-title: Neuron
– volume: 8
  start-page: 189
  year: 1992b
  end-page: 198
  article-title: Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit
  publication-title: Neuron
– volume: 44
  start-page: 691
  year: 2004
  end-page: 700
  article-title: Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control
  publication-title: Neuron
– volume: 552
  start-page: 89
  issue: Part 1
  year: 2003
  end-page: 107
  article-title: The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fiber synapses
  publication-title: J Physiol
– volume: 19
  start-page: 1285
  year: 2004
  end-page: 1295
  article-title: Roles of glutamate transporters in shaping excitatory synaptic currents in cerebellar Purkinje cells
  publication-title: Eur J Neurosci
– volume: 19
  start-page: 5265
  year: 1999
  end-page: 5274
  article-title: The concentration of synaptically released glutamate outside of the climbing fiber‐Purkinje cell synaptic cleft
  publication-title: J Neurosci
– volume: 52
  start-page: 368
  year: 2007
  end-page: 375
  article-title: Presynaptic modulation of parallel fiber signalling to Bergmann glia
  publication-title: Neuropharmacology
– volume: 94
  start-page: 14821
  year: 1997
  end-page: 14825
  article-title: Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate
  publication-title: Proc Natl Acad Sci USA
– volume: 26
  start-page: 5153
  year: 2006
  end-page: 5159
  article-title: Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells
  publication-title: J Neurosci
– volume: 38
  start-page: 341
  year: 1995
  end-page: 359
  article-title: Physiology of Bergmann glial cells
  publication-title: Int Rev Neurobiol
– volume: 17
  start-page: 274
  year: 1996
  end-page: 284
  article-title: Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation
  publication-title: Glia
– volume: 23
  start-page: 377
  year: 2003
  end-page: 383
  article-title: Receptor occupancy limits synaptic depression at climbing fiber synapses
  publication-title: J Neurosci
– volume: 256
  start-page: 1566
  year: 1992a
  end-page: 1570
  article-title: Calcium‐permeable AMPA‐kainate receptors in fusiform cerebellar glial cells
  publication-title: Science
– volume: 2
  start-page: 139
  year: 1999
  end-page: 143
  article-title: Microdomains for neuron‐glia interaction: Parallel fiber signaling to Bergmann glial cells
  publication-title: NatNeurosci
– volume: 25
  start-page: 8788
  year: 2005
  end-page: 8793
  article-title: Differential roles of glial and neuronal glutamate transporters in Purkinje cell synapses
  publication-title: J Neurosci
– volume: 23
  start-page: 581
  year: 2006
  end-page: 586
  article-title: Long‐term depression of neuron to glial signalling in rat cerebellar cortex
  publication-title: Eur J Neurosci
– volume: 535
  start-page: 825
  issue: Part 3
  year: 2001
  end-page: 839
  article-title: Nitric oxide is required for the induction and heterosynaptic spread of long‐term potentiation in rat cerebellar slices
  publication-title: J Physiol
– volume: 21
  start-page: 6666
  year: 2001
  end-page: 6672
  article-title: Three‐dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells
  publication-title: J Neurosci
– volume: 99
  start-page: 8389
  year: 2002
  end-page: 8393
  article-title: A new form of cerebellar long‐term potentiation is postsynaptic and depends on nitric oxide but not cAMP
  publication-title: Proc Natl Acad Sci USA
– volume: 502
  start-page: 335
  issue: Part 2
  year: 1997
  end-page: 350
  article-title: Currents evoked in Bergmann glial cells by parallel fiber stimulation in rat cerebellar slices
  publication-title: J Physiol
– volume: 19
  start-page: 163
  year: 1996
  end-page: 171
  article-title: Transmitter timecourse in the synaptic cleft: Its role in central synaptic function
  publication-title: Trends Neurosci
– volume: 40
  start-page: 1173
  year: 2003
  end-page: 1183
  article-title: Ectopic release of synaptic vesicles
  publication-title: Neuron
– volume: 20
  start-page: 377
  year: 1997
  end-page: 384
  article-title: Intersynaptic diffusion of neurotransmitter
  publication-title: Trends Neurosci
– volume: 25
  start-page: 3246
  year: 2005
  end-page: 3257
  article-title: Differences in transmission properties and susceptibility to long‐term depression reveal functional specialization of ascending axon and parallel fiber synapses to Purkinje cells
  publication-title: J Neurosci
– volume: 52
  start-page: 325
  year: 2005
  end-page: 335
  article-title: Short‐term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum
  publication-title: Glia
– volume: 252
  start-page: 851
  year: 1991
  end-page: 853
  article-title: Ca permeability of KA‐AMPA–gated glutamate receptor channels depends on subunit composition
  publication-title: Science
– volume: 24
  start-page: 8932
  year: 2004
  end-page: 8939
  article-title: Differential control of synaptic and ectopic vesicular release of glutamate
  publication-title: J Neurosci
– volume: 292
  start-page: 926
  year: 2001
  end-page: 929
  article-title: Glia‐synapse interaction through Ca ‐permeable AMPA receptors in Bergmann glia
  publication-title: Science
– volume: 77
  start-page: 94
  year: 2002
  end-page: 108
  article-title: Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells
  publication-title: Anat Sci Int
– volume: 13
  start-page: 713
  year: 1994
  end-page: 725
  article-title: Localization of neuronal and glial glutamate transporters
  publication-title: Neuron
– volume: 63
  start-page: 911
  year: 1994
  end-page: 915
  article-title: Synaptic activation of metabotropic glutamate receptors in the parallel fiber‐Purkinje cell pathway in rat cerebellar slices
  publication-title: Neuroscience
– volume: 31
  start-page: 607
  year: 2001
  end-page: 616
  article-title: Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long‐term depression
  publication-title: Neuron
– volume: 81
  start-page: 1143
  year: 2001
  end-page: 1195
  article-title: Cerebellar long‐term depression: Characterization, signal transduction, and functional roles
  publication-title: Physiol Rev
– volume: 5
  start-page: 116
  year: 2006
  end-page: 126
  article-title: Interactions between Purkinje neurones and Bergmann glia
  publication-title: Cerebellum
– volume: 10
  start-page: 735
  year: 2007
  end-page: 742
  article-title: Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover
  publication-title: Nat Neurosci
– volume: 385
  start-page: 74
  year: 1997
  end-page: 77
  article-title: Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway
  publication-title: Nature
– volume: 25
  start-page: 7538
  year: 2005
  end-page: 7547
  article-title: High‐concentration rapid transients of glutamate mediate neural‐glial communication via ectopic release
  publication-title: J Neurosci
– volume: 4
  start-page: 467
  year: 2001
  end-page: 475
  article-title: Beyond parallel fiber LTD: The diversity of synaptic and non‐synaptic plasticity in the cerebellum
  publication-title: Nat Neurosci
– volume: 8
  start-page: 776
  year: 2005
  end-page: 781
  article-title: Endocannabinoid signaling depends on the spatial pattern of synapse activation
  publication-title: Nat Neurosci
– volume: 256
  start-page: 1563
  year: 1992
  end-page: 1566
  article-title: Calcium entry through kainate receptors and resulting potassium‐channel blockade in Bergmann glial cells
  publication-title: Science
– volume: 68
  start-page: 138
  year: 2002
  end-page: 149
  article-title: Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons
  publication-title: J Neurosci Res
– ident: e_1_2_6_5_1
  doi: 10.1016/0306-4522(94)90558-4
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1460-9568.2005.04588.x
– ident: e_1_2_6_43_1
  doi: 10.1046/j.0022-7722.2002.00021.x
– ident: e_1_2_6_18_1
  doi: 10.1002/jnr.10197
– ident: e_1_2_6_37_1
  doi: 10.1523/JNEUROSCI.0073-05.2005
– ident: e_1_2_6_8_1
  doi: 10.1002/glia.20248
– ident: e_1_2_6_32_1
  doi: 10.1523/JNEUROSCI.1927-05.2005
– ident: e_1_2_6_30_1
  doi: 10.1016/S0896-6273(03)00788-8
– ident: e_1_2_6_27_1
  doi: 10.1038/nn1458
– ident: e_1_2_6_3_1
  doi: 10.1016/0896-6273(94)90448-0
– volume: 23
  start-page: 377
  year: 2003
  ident: e_1_2_6_21_1
  article-title: Receptor occupancy limits synaptic depression at climbing fiber synapses
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-02-00377.2003
  contributor:
    fullname: Harrison J
– ident: e_1_2_6_38_1
  doi: 10.1523/JNEUROSCI.4121-05.2006
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1460-9568.2004.03224.x
– ident: e_1_2_6_34_1
  doi: 10.1126/science.1317969
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1469-7793.1997.335bk.x
– ident: e_1_2_6_35_1
  doi: 10.1002/(SICI)1098-1136(199608)17:4<274::AID-GLIA2>3.0.CO;2-#
– ident: e_1_2_6_23_1
  doi: 10.1126/science.1058827
– ident: e_1_2_6_39_1
  doi: 10.1038/nn1907
– ident: e_1_2_6_2_1
  doi: 10.1016/S0166-2236(96)20050-5
– ident: e_1_2_6_28_1
  doi: 10.1113/jphysiol.2006.115014
– ident: e_1_2_6_10_1
  doi: 10.1073/pnas.94.26.14821
– ident: e_1_2_6_16_1
  doi: 10.1016/j.neuron.2004.10.031
– ident: e_1_2_6_40_1
  doi: 10.1523/JNEUROSCI.1020-05.2005
– ident: e_1_2_6_26_1
  doi: 10.1073/pnas.122206399
– ident: e_1_2_6_13_1
  doi: 10.1016/0896-6273(92)90120-3
– ident: e_1_2_6_11_1
  doi: 10.1016/S0896-6273(01)00377-4
– ident: e_1_2_6_33_1
  doi: 10.1016/S0074-7742(08)60530-9
– ident: e_1_2_6_22_1
  doi: 10.1126/science.1709304
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1469-7793.2001.t01-1-00825.x
– ident: e_1_2_6_20_1
  doi: 10.1038/87419
– ident: e_1_2_6_4_1
  doi: 10.1038/385074a0
– ident: e_1_2_6_6_1
  doi: 10.1080/14734220600724569
– ident: e_1_2_6_15_1
  doi: 10.1016/S0166-2236(96)10024-2
– ident: e_1_2_6_36_1
  doi: 10.1016/0896-6273(94)90038-8
– ident: e_1_2_6_17_1
  doi: 10.1523/JNEUROSCI.19-13-05265.1999
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuropharm.2006.08.009
– ident: e_1_2_6_31_1
  doi: 10.1523/JNEUROSCI.2650-04.2004
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1317970
– volume: 2
  start-page: 139
  year: 1999
  ident: e_1_2_6_19_1
  article-title: Microdomains for neuron‐glia interaction: Parallel fiber signaling to Bergmann glial cells
  publication-title: NatNeurosci
  contributor:
    fullname: Grosche J
– ident: e_1_2_6_24_1
  doi: 10.1152/physrev.2001.81.3.1143
– ident: e_1_2_6_29_1
  doi: 10.1113/jphysiol.2003.044263
– ident: e_1_2_6_42_1
  doi: 10.1523/JNEUROSCI.21-17-06666.2001
SSID ssj0011497
Score 2.0754771
Snippet In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca2+‐permeable...
In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express...
In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca 2+...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 393
SubjectTerms Animals
Animals, Newborn
astrocyte
Biophysics
cerebellum
Cerebellum - cytology
Electric Stimulation - methods
Excitatory Amino Acid Antagonists - pharmacology
glutamate
In Vitro Techniques
Nerve Fibers - drug effects
Nerve Fibers - physiology
Neural Pathways - drug effects
Neural Pathways - physiology
Neuroglia - physiology
Patch-Clamp Techniques
Purkinje Cells - physiology
Rats
Rats, Wistar
spillover
Synapses - drug effects
Synapses - physiology
synaptic plasticity
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Title Depression of parallel and climbing fiber transmission to Bergmann glia is input specific and correlates with increased precision of synaptic transmission
URI https://api.istex.fr/ark:/67375/WNG-L5WG9XSL-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.20768
https://www.ncbi.nlm.nih.gov/pubmed/18837050
https://search.proquest.com/docview/66831201
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZd-7KXtV231evaCTb6MDCNZSu2YC_pLR2EMOhG-yZkXUKoo4Q4gfWv7NfuHDkXAmVQ-iawbFnSp6PvSEefCPlaFplm8CwWLjUx-BtZrDhzcVszlWclwMiho3hzm_fvi8srlMn5vjwL0-hDrBbccGQEe40DXJX12Vo0dFANUTcI6DIYYHATwvmN9OdqCwGofyPzKbIY0slKm5SdrV_dmI12sGH_PEU1N5lrmHqud1_203vkzYJy0k6DkX2yZf1bctDx4G6PHukpDUGgYXX9gPy9XEbGejp2FIXBq8pWVHlDdTUcgR89oA6jTOgMZzlAScg7G9NzOx2MlPcUS6fDmg79ZD6jeJQTw5GaT-BdIBXSW4oLwJAFSWttDZ1MF5f9YLH1o1dgyvRGGe_I7-urXxc38eL6hlinwGtibUowBuDPuLwsdUtlJjHgYKo2E6olcs5EBrBAcSFw2oR1wG1s6pzgmU4MzK3pe7Ltx94eEgqIYk4ViTYpz2xiFFdCKcVyMOU8NToiX5bdKCeNSods9JiZxErL0OQROQ09vMqipg8Y15Zzedfvyh6_64r7257sR-TzEgIS6ohbKMrb8byW7XaRJsCZIvKhQca6uAJlhHgrIt8CAP7zH7Lb-9EJqY_PyXxEXjdbWRgA94lsz6Zze0xe1WZ-EpD_D7YKCAc
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6a5NBe-kqbbl8RtORQWOJ9eVeHHtwmsUO3ppCU5Ca0ehjTtWy8NjR_pb-2M1o_MJRC6U2w2p2VNBp9Mxp9AnhfFamK8VnIbaJD9DfSUGaxDbsqlnlaoRpZchQHV_nwtjg7J5qcj-uzMC0_xCbgRjPD22ua4BSQPt2yho7qMREHIV7egwMUUvgTHMm3zSYCgv-W6JOnIZajDTtpfLp9d2c9OqCu_fknsLmLXf3ic_HoP3_7MTxcoU7Wa9XkCdwz7ikc9hx63JM7dsJ8HqgPsB_Cr7N1cqxjU8uIG7yuTc2k00zV4wm60iNmKdGELWihQ0XxdRdT9snMRxPpHCPpbNywsZstF4xOc1JGUvsJug6kJoTLKAaMVQi3Nkaz2Xx13w-Jbe6cRGumdmQ8g-8X59efB-HqBodQJQhtQqUrtAfo0ti8qlRHpjrS6GPKbsxlh-dZzFPUDOIXQr-NG4vwxiTW8ixVkcblNXkO-27qzAtgqFSxlUWkdJKlJtIyk1xKGedozbNEqwDercdRzFqiDtFSMseCGi18lwdw4od4U0XOf1BqW56Jm2FflNlNn99elWIYwPFaBwS2kXZRpDPTZSO63SKJEDYFcNSqxlZcQUxCWSeAD14D_vIfol9e9nzp5b9UPob7g-uvpSgvh19ewYN2Z4vy4V7D_mK-NG9gr9HLt34a_AZOEAwv
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WFsZetm7dh7d1FWz0YWAa23Jsw17SpknLQih0o30Tsj5CmKOEOIH1X9lfuzs5HwTGYOxNYNlnSae730mnnwA-lTlXMT4LC5voEOMNHso0tmFbxTLjJaqRpUDx6jYb3ufdS6LJ-bI-C9PwQ2wW3GhmeHtNE3ym7dmWNHRUjYk3COHyHhxwxOHEnJ8kN5s9BMT-Dc9nwUMsRxty0vhs--6OOzqgnv35J6y5C1297-k9-7-_PoSnK8zJOo2SPIdHxr2Ao47DeHvywE6ZzwL1y-tH8Ku7To11bGoZMYNXlamYdJqpajzBQHrELKWZsAW5OVQTX3cxZedmPppI5xhJZ-Oajd1suWB0lpPykZpP0GUgFeFbRivAWIVQa200m81Xt_2Q2PrBSbRlakfGS_jeu_x2cRWu7m8IVYLAJlS6RGuAAY3NylK1JNeRxghTtuNCtoosjQuOekHsQhi1FcYiuDGJtUXKVaTRuSavYN9NnXkDDFUqtjKPlE5SbiItU1lIKeMMbXmaaBXAx_UwillD0yEaQuZYUKOF7_IATv0Ib6rI-Q9KbMtScTfsi0F61y_ubwdiGMDJWgUEtpH2UKQz02Ut2u08iRA0BfC60YytuJx4hNJWAJ-9AvzlP0R_cN3xpbf_UvkEHt90e2JwPfz6Dp4021qUDPce9hfzpTmGvVovP_hJ8BsLQgrV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depression+of+parallel+and+climbing+fiber+transmission+to+Bergmann+glia+is+input+specific+and+correlates+with+increased+precision+of+synaptic+transmission&rft.jtitle=Glia&rft.au=Balakrishnan%2C+Saju&rft.au=Bellamy%2C+Tomas+C.&rft.date=2009-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=57&rft.issue=4&rft.spage=393&rft.epage=401&rft_id=info:doi/10.1002%2Fglia.20768&rft.externalDBID=10.1002%252Fglia.20768&rft.externalDocID=GLIA20768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon