Depression of parallel and climbing fiber transmission to Bergmann glia is input specific and correlates with increased precision of synaptic transmission
In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca2+‐permeable AMPA receptors, and the GLAST and GLT‐1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmis...
Saved in:
Published in: | Glia Vol. 57; no. 4; pp. 393 - 401 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-03-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca2+‐permeable AMPA receptors, and the GLAST and GLT‐1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency‐dependent plasticity, namely long‐term depression, following repetitive stimulation at 0.1–1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron‐glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca(2+)-permeable AMPA receptors, and the GLAST and GLT-1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency-dependent plasticity, namely long-term depression, following repetitive stimulation at 0.1-1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron-glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity. In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca2+‐permeable AMPA receptors, and the GLAST and GLT‐1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency‐dependent plasticity, namely long‐term depression, following repetitive stimulation at 0.1–1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron‐glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity. © 2008 Wiley‐Liss, Inc. In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca 2+ ‐permeable AMPA receptors, and the GLAST and GLT‐1 classes of glutamate transporter, which are activated by glutamate released during synaptic transmission. We have previously reported that parallel fiber to Bergmann glial transmission in rat cerebellar slices exhibits a form of frequency‐dependent plasticity, namely long‐term depression, following repetitive stimulation at 0.1–1 Hz. Here, we report that this form of plasticity is also present at the climbing fiber input, that climbing and parallel fibers can be depressed independently, that discrete parallel fiber inputs can also be depressed independently, and that depression is maintained when a distributed array of parallel fibers are stimulated (in contrast to several forms of synaptic plasticity at the Purkinje neuron). Depression of glutamate transporter currents does not correlate with a decrease in the stringency with which Purkinje neuron synapses are isolated. Rather, postsynaptic currents in Purkinje neurons decay more rapidly and perisynaptic metabotropic glutamate receptors are activated less effectively after stimulation at 0.2 and 1 Hz, suggesting that depression arises from a decrease in extrasynaptic glutamate concentration and not from impairment of glutamate clearance in and around the synapse. These results indicate that neuron‐glial plasticity is activity dependent, input specific and does not require spillover between adjacent synapses to manifest. They also argue against a withdrawal of the glial sheath from synaptic regions as the putative mechanism of plasticity. © 2008 Wiley‐Liss, Inc. |
Author | Balakrishnan, Saju Bellamy, Tomas C. |
Author_xml | – sequence: 1 givenname: Saju surname: Balakrishnan fullname: Balakrishnan, Saju organization: Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom – sequence: 2 givenname: Tomas C. surname: Bellamy fullname: Bellamy, Tomas C. email: tom.bellamy@bbsrc.ac.uk organization: Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18837050$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9u1DAQxi3Uim4LFx4A-cShUlpP_tk-llKWSlE5ACo3y3Emi8Fxgp1V2VfhafGSLXDiNPLo933feOaUHPnRIyEvgF0AY_nlxll9kTNeiydkBUyKDKCoj8iKCVlmUEo4IacxfmUM0oM_JScgRMFZxVbk5xucAsZoR0_Hnk46aOfQUe07apwdWus3tLctBjoH7eNgF3Ye6WsMm0F7T_f51EZq_bSdaZzQ2N6axWIMAZ2eMdIHO39JiAmoI3Y0pRr7GBt3Xk9z0vyb8Ywc99pFfH6oZ-TT25uP1--y5v369vqqyUxRVyIzXSvSX3jd87Y1TJcddDkwXedSM8mrXJa6Sg0mBAeJPS8Bi76XVWmgK6EozsirxXcK4_ctxlmlAQw6pz2O26jqWhSQM0jg-QKaMMYYsFdTsIMOOwVM7S-h9ptQvy-R4JcH1207YPcXPaw-AbAAD9bh7j9Wat3cXj2aZovGxhl__NHo8E3VvOCVur9bq6a6X8vPHxp1V_wCFtqnzg |
CitedBy_id | crossref_primary_10_1002_glia_21078 crossref_primary_10_1016_j_pneurobio_2013_08_001 crossref_primary_10_1002_iub_536 crossref_primary_10_1371_journal_pone_0200937 crossref_primary_10_3389_fnsyn_2018_00045 crossref_primary_10_1038_s41467_023_37319_w crossref_primary_10_1371_journal_pone_0011962 crossref_primary_10_1007_s12035_016_9719_3 crossref_primary_10_1002_glia_23451 crossref_primary_10_1177_1073858410368314 crossref_primary_10_1371_journal_pone_0125974 crossref_primary_10_1002_hipo_20843 crossref_primary_10_1007_s12311_019_01046_0 crossref_primary_10_1155_2015_765792 crossref_primary_10_1155_2015_602356 crossref_primary_10_1016_j_neuint_2010_08_017 crossref_primary_10_1111_jnc_12211 crossref_primary_10_1113_jphysiol_2013_267039 |
Cites_doi | 10.1016/0306-4522(94)90558-4 10.1111/j.1460-9568.2005.04588.x 10.1046/j.0022-7722.2002.00021.x 10.1002/jnr.10197 10.1523/JNEUROSCI.0073-05.2005 10.1002/glia.20248 10.1523/JNEUROSCI.1927-05.2005 10.1016/S0896-6273(03)00788-8 10.1038/nn1458 10.1016/0896-6273(94)90448-0 10.1523/JNEUROSCI.23-02-00377.2003 10.1523/JNEUROSCI.4121-05.2006 10.1111/j.1460-9568.2004.03224.x 10.1126/science.1317969 10.1111/j.1469-7793.1997.335bk.x 10.1002/(SICI)1098-1136(199608)17:4<274::AID-GLIA2>3.0.CO;2-# 10.1126/science.1058827 10.1038/nn1907 10.1016/S0166-2236(96)20050-5 10.1113/jphysiol.2006.115014 10.1073/pnas.94.26.14821 10.1016/j.neuron.2004.10.031 10.1523/JNEUROSCI.1020-05.2005 10.1073/pnas.122206399 10.1016/0896-6273(92)90120-3 10.1016/S0896-6273(01)00377-4 10.1016/S0074-7742(08)60530-9 10.1126/science.1709304 10.1111/j.1469-7793.2001.t01-1-00825.x 10.1038/87419 10.1038/385074a0 10.1080/14734220600724569 10.1016/S0166-2236(96)10024-2 10.1016/0896-6273(94)90038-8 10.1523/JNEUROSCI.19-13-05265.1999 10.1016/j.neuropharm.2006.08.009 10.1523/JNEUROSCI.2650-04.2004 10.1126/science.1317970 10.1152/physrev.2001.81.3.1143 10.1113/jphysiol.2003.044263 10.1523/JNEUROSCI.21-17-06666.2001 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/glia.20768 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-1136 |
EndPage | 401 |
ExternalDocumentID | 10_1002_glia_20768 18837050 GLIA20768 ark_67375_WNG_L5WG9XSL_N |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council, UK – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/D018501/1 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c3658-cdb870576f7bbc0a4d1d210a629a0975294a5210088719ef741e3ff954c1d4133 |
IEDL.DBID | 33P |
ISSN | 0894-1491 |
IngestDate | Fri Aug 16 21:18:48 EDT 2024 Fri Nov 22 00:32:52 EST 2024 Tue Aug 27 13:47:07 EDT 2024 Sat Aug 24 00:55:12 EDT 2024 Wed Oct 30 09:55:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3658-cdb870576f7bbc0a4d1d210a629a0975294a5210088719ef741e3ff954c1d4133 |
Notes | istex:2A5C960BFA88185816D2C3696B222E6ED40EAB49 ark:/67375/WNG-L5WG9XSL-N ArticleID:GLIA20768 Biotechnology and Biological Sciences Research Council, UK ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18837050 |
PQID | 66831201 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_66831201 crossref_primary_10_1002_glia_20768 pubmed_primary_18837050 wiley_primary_10_1002_glia_20768_GLIA20768 istex_primary_ark_67375_WNG_L5WG9XSL_N |
PublicationCentury | 2000 |
PublicationDate | March 2009 |
PublicationDateYYYYMMDD | 2009-03-01 |
PublicationDate_xml | – month: 03 year: 2009 text: March 2009 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Glia |
PublicationTitleAlternate | Glia |
PublicationYear | 2009 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Matsui K,Jahr CE. 2004. Differential control of synaptic and ectopic vesicular release of glutamate. J Neurosci 24: 8932-8939. Barbour B,Hausser M. 1997. Intersynaptic diffusion of neurotransmitter. Trends Neurosci 20: 377-384. Grosche J,Kettenmann H,Reichenbach A. 2002. Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68: 138-149. Matsui K,Jahr CE,Rubio ME. 2005. High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci 25: 7538-7547. Burnashev N,Monyer H,Seeburg PH,Sakmann B. 1992b. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8: 189-198. Bellamy TC,Ogden D. 2006. Long-term depression of neuron to glial signalling in rat cerebellar cortex. Eur J Neurosci 23: 581-586. Brasnjo G,Otis TS. 2001. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron 31: 607-616. Bellamy TC. 2006. Interactions between Purkinje neurones and Bergmann glia. Cerebellum 5: 116-126. Muller T,Moller T,Neuhaus J,Kettenmann H. 1996. Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia 17: 274-284. Clements JD. 1996. Transmitter timecourse in the synaptic cleft: Its role in central synaptic function. Trends Neurosci 19: 163-171. Xu-Friedman MA,Harris KM,Regehr WG. 2001. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21: 6666-6672. Batchelor AM,Garthwaite J. 1997. Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385: 74-77. Batchelor AM,Madge DJ,Garthwaite J. 1994. Synaptic activation of metabotropic glutamate receptors in the parallel fiber-Purkinje cell pathway in rat cerebellar slices. Neuroscience 63: 911-915. Szapiro G,Barbour B. 2007. Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10: 735-742. Sims RE,Hartell NA. 2006. Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells. J Neurosci 26: 5153-5159. Matsui K,Jahr CE. 2003. Ectopic release of synaptic vesicles. Neuron 40: 1173-1183. Yamada K,Watanabe M. 2002. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77: 94-108. Lev-Ram V,Wong ST,Storm DR,Tsien RY. 2002. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA 99: 8389-8393. Marcaggi P,Billups D,Attwell D. 2003. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fiber synapses. J Physiol 552(Part 1): 89-107. Bellamy TC. 2007. Presynaptic modulation of parallel fiber signalling to Bergmann glia. Neuropharmacology 52: 368-375. Clark BA,Barbour B. 1997. Currents evoked in Bergmann glial cells by parallel fiber stimulation in rat cerebellar slices. J Physiol 502(Part 2): 335-350. Takayasu Y,Iino M,Ozawa S. 2004. Roles of glutamate transporters in shaping excitatory synaptic currents in cerebellar Purkinje cells. Eur J Neurosci 19: 1285-1295. Ito M. 2001. Cerebellar long-term depression: Characterization, signal transduction, and functional roles. Physiol Rev 81: 1143-1195. Dzubay JA,Jahr CE. 1999. The concentration of synaptically released glutamate outside of the climbing fiber-Purkinje cell synaptic cleft. J Neurosci 19: 5265-5274. Burnashev N,Khodorova A,Jonas P,Helm PJ,Wisden W,Monyer H,Seeburg PH,Sakmann B. 1992a. Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256: 1566-1570. Sims RE,Hartell NA. 2005. Differences in transmission properties and susceptibility to long-term depression reveal functional specialization of ascending axon and parallel fiber synapses to Purkinje cells. J Neurosci 25: 3246-3257. Bellamy TC,Ogden D. 2005. Short-term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum. Glia 52: 325-335. Marcaggi P,Attwell D. 2007. Short- and long-term depression of rat cerebellar parallel fiber synaptic transmission mediated by synaptic crosstalk. J Physiol 578(Part 2): 545-550. Grosche J,Matyash V,Moller T,Verkhratsky A,Reichenbach A,Kettenmann H. 1999. Microdomains for neuron-glia interaction: Parallel fiber signaling to Bergmann glial cells. NatNeurosci 2: 139-143. Hollmann M,Hartley M,Heinemann S. 1991. Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252: 851-853. Barbour B,Keller BU,Llano I,Marty A. 1994. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12: 1331-1343. Jacoby S,Sims RE,Hartell NA. 2001. Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J Physiol 535(Part 3): 825-839. Marcaggi P,Attwell D. 2005. Endocannabinoid signaling depends on the spatial pattern of synapse activation. Nat Neurosci 8: 776-781. Bergles DE,Dzubay JA,Jahr CE. 1997. Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. Proc Natl Acad Sci USA 94: 14821-14825. Harrison J,Jahr CE. 2003. Receptor occupancy limits synaptic depression at climbing fiber synapses. J Neurosci 23: 377-383. Iino M,Goto K,Kakegawa W,Okado H,Sudo M,Ishiuchi S,Miwa A,Takayasu Y,Saito I,Tsuzuki K,Ozawa S. 2001. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292: 926-929. Rothstein JD,Martin L,Levey AI,Dykes-Hoberg M,Jin L,Wu D,Nash N,Kuncl RW. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13: 713-725. Muller T,Kettenmann H. 1995. Physiology of Bergmann glial cells. Int Rev Neurobiol 38: 341-359. Coesmans M,Weber JT,De Zeeuw CI,Hansel C. 2004. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44: 691-700. Takayasu Y,Iino M,Kakegawa W,Maeno H,Watase K,Wada K,Yanagihara D,Miyazaki T,Komine O,Watanabe M,Tanaka K,Ozawa S. 2005. Differential roles of glial and neuronal glutamate transporters in Purkinje cell synapses. J Neurosci 25: 8788-8793. Hansel C,Linden DJ,D'Angelo E. 2001. Beyond parallel fiber LTD: The diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4: 467-475. Muller T,Moller T,Berger T,Schnitzer J,Kettenmann H. 1992. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256: 1563-1566. (Published erratum appears in Science 1992; 257: 1190). 2004; 44 1991; 252 1996; 17 1996; 19 1995; 38 1997; 20 2002; 99 2004; 24 2002; 77 2006; 5 1992a; 256 1999; 2 2007; 52 2007; 10 2003; 552 1994; 63 2005; 25 2001; 21 2001; 81 1997; 502 1997; 94 2007; 578 2006; 23 2004; 19 1999; 19 2001; 292 2001; 4 1997; 385 2002; 68 2005; 8 1992; 256 2006; 26 1994; 12 2005; 52 1994; 13 2003; 40 1992b; 8 2001; 31 2001; 535 2003; 23 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 Harrison J (e_1_2_6_21_1) 2003; 23 e_1_2_6_30_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 Grosche J (e_1_2_6_19_1) 1999; 2 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 578 start-page: 545 issue: Part 2 year: 2007 end-page: 550 article-title: Short‐ and long‐term depression of rat cerebellar parallel fiber synaptic transmission mediated by synaptic crosstalk publication-title: J Physiol – volume: 12 start-page: 1331 year: 1994 end-page: 1343 article-title: Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells publication-title: Neuron – volume: 8 start-page: 189 year: 1992b end-page: 198 article-title: Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit publication-title: Neuron – volume: 44 start-page: 691 year: 2004 end-page: 700 article-title: Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control publication-title: Neuron – volume: 552 start-page: 89 issue: Part 1 year: 2003 end-page: 107 article-title: The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fiber synapses publication-title: J Physiol – volume: 19 start-page: 1285 year: 2004 end-page: 1295 article-title: Roles of glutamate transporters in shaping excitatory synaptic currents in cerebellar Purkinje cells publication-title: Eur J Neurosci – volume: 19 start-page: 5265 year: 1999 end-page: 5274 article-title: The concentration of synaptically released glutamate outside of the climbing fiber‐Purkinje cell synaptic cleft publication-title: J Neurosci – volume: 52 start-page: 368 year: 2007 end-page: 375 article-title: Presynaptic modulation of parallel fiber signalling to Bergmann glia publication-title: Neuropharmacology – volume: 94 start-page: 14821 year: 1997 end-page: 14825 article-title: Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate publication-title: Proc Natl Acad Sci USA – volume: 26 start-page: 5153 year: 2006 end-page: 5159 article-title: Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells publication-title: J Neurosci – volume: 38 start-page: 341 year: 1995 end-page: 359 article-title: Physiology of Bergmann glial cells publication-title: Int Rev Neurobiol – volume: 17 start-page: 274 year: 1996 end-page: 284 article-title: Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation publication-title: Glia – volume: 23 start-page: 377 year: 2003 end-page: 383 article-title: Receptor occupancy limits synaptic depression at climbing fiber synapses publication-title: J Neurosci – volume: 256 start-page: 1566 year: 1992a end-page: 1570 article-title: Calcium‐permeable AMPA‐kainate receptors in fusiform cerebellar glial cells publication-title: Science – volume: 2 start-page: 139 year: 1999 end-page: 143 article-title: Microdomains for neuron‐glia interaction: Parallel fiber signaling to Bergmann glial cells publication-title: NatNeurosci – volume: 25 start-page: 8788 year: 2005 end-page: 8793 article-title: Differential roles of glial and neuronal glutamate transporters in Purkinje cell synapses publication-title: J Neurosci – volume: 23 start-page: 581 year: 2006 end-page: 586 article-title: Long‐term depression of neuron to glial signalling in rat cerebellar cortex publication-title: Eur J Neurosci – volume: 535 start-page: 825 issue: Part 3 year: 2001 end-page: 839 article-title: Nitric oxide is required for the induction and heterosynaptic spread of long‐term potentiation in rat cerebellar slices publication-title: J Physiol – volume: 21 start-page: 6666 year: 2001 end-page: 6672 article-title: Three‐dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells publication-title: J Neurosci – volume: 99 start-page: 8389 year: 2002 end-page: 8393 article-title: A new form of cerebellar long‐term potentiation is postsynaptic and depends on nitric oxide but not cAMP publication-title: Proc Natl Acad Sci USA – volume: 502 start-page: 335 issue: Part 2 year: 1997 end-page: 350 article-title: Currents evoked in Bergmann glial cells by parallel fiber stimulation in rat cerebellar slices publication-title: J Physiol – volume: 19 start-page: 163 year: 1996 end-page: 171 article-title: Transmitter timecourse in the synaptic cleft: Its role in central synaptic function publication-title: Trends Neurosci – volume: 40 start-page: 1173 year: 2003 end-page: 1183 article-title: Ectopic release of synaptic vesicles publication-title: Neuron – volume: 20 start-page: 377 year: 1997 end-page: 384 article-title: Intersynaptic diffusion of neurotransmitter publication-title: Trends Neurosci – volume: 25 start-page: 3246 year: 2005 end-page: 3257 article-title: Differences in transmission properties and susceptibility to long‐term depression reveal functional specialization of ascending axon and parallel fiber synapses to Purkinje cells publication-title: J Neurosci – volume: 52 start-page: 325 year: 2005 end-page: 335 article-title: Short‐term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum publication-title: Glia – volume: 252 start-page: 851 year: 1991 end-page: 853 article-title: Ca permeability of KA‐AMPA–gated glutamate receptor channels depends on subunit composition publication-title: Science – volume: 24 start-page: 8932 year: 2004 end-page: 8939 article-title: Differential control of synaptic and ectopic vesicular release of glutamate publication-title: J Neurosci – volume: 292 start-page: 926 year: 2001 end-page: 929 article-title: Glia‐synapse interaction through Ca ‐permeable AMPA receptors in Bergmann glia publication-title: Science – volume: 77 start-page: 94 year: 2002 end-page: 108 article-title: Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells publication-title: Anat Sci Int – volume: 13 start-page: 713 year: 1994 end-page: 725 article-title: Localization of neuronal and glial glutamate transporters publication-title: Neuron – volume: 63 start-page: 911 year: 1994 end-page: 915 article-title: Synaptic activation of metabotropic glutamate receptors in the parallel fiber‐Purkinje cell pathway in rat cerebellar slices publication-title: Neuroscience – volume: 31 start-page: 607 year: 2001 end-page: 616 article-title: Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long‐term depression publication-title: Neuron – volume: 81 start-page: 1143 year: 2001 end-page: 1195 article-title: Cerebellar long‐term depression: Characterization, signal transduction, and functional roles publication-title: Physiol Rev – volume: 5 start-page: 116 year: 2006 end-page: 126 article-title: Interactions between Purkinje neurones and Bergmann glia publication-title: Cerebellum – volume: 10 start-page: 735 year: 2007 end-page: 742 article-title: Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover publication-title: Nat Neurosci – volume: 385 start-page: 74 year: 1997 end-page: 77 article-title: Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway publication-title: Nature – volume: 25 start-page: 7538 year: 2005 end-page: 7547 article-title: High‐concentration rapid transients of glutamate mediate neural‐glial communication via ectopic release publication-title: J Neurosci – volume: 4 start-page: 467 year: 2001 end-page: 475 article-title: Beyond parallel fiber LTD: The diversity of synaptic and non‐synaptic plasticity in the cerebellum publication-title: Nat Neurosci – volume: 8 start-page: 776 year: 2005 end-page: 781 article-title: Endocannabinoid signaling depends on the spatial pattern of synapse activation publication-title: Nat Neurosci – volume: 256 start-page: 1563 year: 1992 end-page: 1566 article-title: Calcium entry through kainate receptors and resulting potassium‐channel blockade in Bergmann glial cells publication-title: Science – volume: 68 start-page: 138 year: 2002 end-page: 149 article-title: Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons publication-title: J Neurosci Res – ident: e_1_2_6_5_1 doi: 10.1016/0306-4522(94)90558-4 – ident: e_1_2_6_9_1 doi: 10.1111/j.1460-9568.2005.04588.x – ident: e_1_2_6_43_1 doi: 10.1046/j.0022-7722.2002.00021.x – ident: e_1_2_6_18_1 doi: 10.1002/jnr.10197 – ident: e_1_2_6_37_1 doi: 10.1523/JNEUROSCI.0073-05.2005 – ident: e_1_2_6_8_1 doi: 10.1002/glia.20248 – ident: e_1_2_6_32_1 doi: 10.1523/JNEUROSCI.1927-05.2005 – ident: e_1_2_6_30_1 doi: 10.1016/S0896-6273(03)00788-8 – ident: e_1_2_6_27_1 doi: 10.1038/nn1458 – ident: e_1_2_6_3_1 doi: 10.1016/0896-6273(94)90448-0 – volume: 23 start-page: 377 year: 2003 ident: e_1_2_6_21_1 article-title: Receptor occupancy limits synaptic depression at climbing fiber synapses publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-02-00377.2003 contributor: fullname: Harrison J – ident: e_1_2_6_38_1 doi: 10.1523/JNEUROSCI.4121-05.2006 – ident: e_1_2_6_41_1 doi: 10.1111/j.1460-9568.2004.03224.x – ident: e_1_2_6_34_1 doi: 10.1126/science.1317969 – ident: e_1_2_6_14_1 doi: 10.1111/j.1469-7793.1997.335bk.x – ident: e_1_2_6_35_1 doi: 10.1002/(SICI)1098-1136(199608)17:4<274::AID-GLIA2>3.0.CO;2-# – ident: e_1_2_6_23_1 doi: 10.1126/science.1058827 – ident: e_1_2_6_39_1 doi: 10.1038/nn1907 – ident: e_1_2_6_2_1 doi: 10.1016/S0166-2236(96)20050-5 – ident: e_1_2_6_28_1 doi: 10.1113/jphysiol.2006.115014 – ident: e_1_2_6_10_1 doi: 10.1073/pnas.94.26.14821 – ident: e_1_2_6_16_1 doi: 10.1016/j.neuron.2004.10.031 – ident: e_1_2_6_40_1 doi: 10.1523/JNEUROSCI.1020-05.2005 – ident: e_1_2_6_26_1 doi: 10.1073/pnas.122206399 – ident: e_1_2_6_13_1 doi: 10.1016/0896-6273(92)90120-3 – ident: e_1_2_6_11_1 doi: 10.1016/S0896-6273(01)00377-4 – ident: e_1_2_6_33_1 doi: 10.1016/S0074-7742(08)60530-9 – ident: e_1_2_6_22_1 doi: 10.1126/science.1709304 – ident: e_1_2_6_25_1 doi: 10.1111/j.1469-7793.2001.t01-1-00825.x – ident: e_1_2_6_20_1 doi: 10.1038/87419 – ident: e_1_2_6_4_1 doi: 10.1038/385074a0 – ident: e_1_2_6_6_1 doi: 10.1080/14734220600724569 – ident: e_1_2_6_15_1 doi: 10.1016/S0166-2236(96)10024-2 – ident: e_1_2_6_36_1 doi: 10.1016/0896-6273(94)90038-8 – ident: e_1_2_6_17_1 doi: 10.1523/JNEUROSCI.19-13-05265.1999 – ident: e_1_2_6_7_1 doi: 10.1016/j.neuropharm.2006.08.009 – ident: e_1_2_6_31_1 doi: 10.1523/JNEUROSCI.2650-04.2004 – ident: e_1_2_6_12_1 doi: 10.1126/science.1317970 – volume: 2 start-page: 139 year: 1999 ident: e_1_2_6_19_1 article-title: Microdomains for neuron‐glia interaction: Parallel fiber signaling to Bergmann glial cells publication-title: NatNeurosci contributor: fullname: Grosche J – ident: e_1_2_6_24_1 doi: 10.1152/physrev.2001.81.3.1143 – ident: e_1_2_6_29_1 doi: 10.1113/jphysiol.2003.044263 – ident: e_1_2_6_42_1 doi: 10.1523/JNEUROSCI.21-17-06666.2001 |
SSID | ssj0011497 |
Score | 2.0754771 |
Snippet | In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca2+‐permeable... In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express... In the cerebellar cortex, Bergmann glia enclose the synapses of both parallel and climbing fiber inputs to the Purkinje neuron. The glia express Ca 2+... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 393 |
SubjectTerms | Animals Animals, Newborn astrocyte Biophysics cerebellum Cerebellum - cytology Electric Stimulation - methods Excitatory Amino Acid Antagonists - pharmacology glutamate In Vitro Techniques Nerve Fibers - drug effects Nerve Fibers - physiology Neural Pathways - drug effects Neural Pathways - physiology Neuroglia - physiology Patch-Clamp Techniques Purkinje Cells - physiology Rats Rats, Wistar spillover Synapses - drug effects Synapses - physiology synaptic plasticity Synaptic Transmission - drug effects Synaptic Transmission - physiology |
Title | Depression of parallel and climbing fiber transmission to Bergmann glia is input specific and correlates with increased precision of synaptic transmission |
URI | https://api.istex.fr/ark:/67375/WNG-L5WG9XSL-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.20768 https://www.ncbi.nlm.nih.gov/pubmed/18837050 https://search.proquest.com/docview/66831201 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZd-7KXtV231evaCTb6MDCNZSu2YC_pLR2EMOhG-yZkXUKoo4Q4gfWv7NfuHDkXAmVQ-iawbFnSp6PvSEefCPlaFplm8CwWLjUx-BtZrDhzcVszlWclwMiho3hzm_fvi8srlMn5vjwL0-hDrBbccGQEe40DXJX12Vo0dFANUTcI6DIYYHATwvmN9OdqCwGofyPzKbIY0slKm5SdrV_dmI12sGH_PEU1N5lrmHqud1_203vkzYJy0k6DkX2yZf1bctDx4G6PHukpDUGgYXX9gPy9XEbGejp2FIXBq8pWVHlDdTUcgR89oA6jTOgMZzlAScg7G9NzOx2MlPcUS6fDmg79ZD6jeJQTw5GaT-BdIBXSW4oLwJAFSWttDZ1MF5f9YLH1o1dgyvRGGe_I7-urXxc38eL6hlinwGtibUowBuDPuLwsdUtlJjHgYKo2E6olcs5EBrBAcSFw2oR1wG1s6pzgmU4MzK3pe7Ltx94eEgqIYk4ViTYpz2xiFFdCKcVyMOU8NToiX5bdKCeNSods9JiZxErL0OQROQ09vMqipg8Y15Zzedfvyh6_64r7257sR-TzEgIS6ohbKMrb8byW7XaRJsCZIvKhQca6uAJlhHgrIt8CAP7zH7Lb-9EJqY_PyXxEXjdbWRgA94lsz6Zze0xe1WZ-EpD_D7YKCAc |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6a5NBe-kqbbl8RtORQWOJ9eVeHHtwmsUO3ppCU5Ca0ehjTtWy8NjR_pb-2M1o_MJRC6U2w2p2VNBp9Mxp9AnhfFamK8VnIbaJD9DfSUGaxDbsqlnlaoRpZchQHV_nwtjg7J5qcj-uzMC0_xCbgRjPD22ua4BSQPt2yho7qMREHIV7egwMUUvgTHMm3zSYCgv-W6JOnIZajDTtpfLp9d2c9OqCu_fknsLmLXf3ic_HoP3_7MTxcoU7Wa9XkCdwz7ikc9hx63JM7dsJ8HqgPsB_Cr7N1cqxjU8uIG7yuTc2k00zV4wm60iNmKdGELWihQ0XxdRdT9snMRxPpHCPpbNywsZstF4xOc1JGUvsJug6kJoTLKAaMVQi3Nkaz2Xx13w-Jbe6cRGumdmQ8g-8X59efB-HqBodQJQhtQqUrtAfo0ti8qlRHpjrS6GPKbsxlh-dZzFPUDOIXQr-NG4vwxiTW8ixVkcblNXkO-27qzAtgqFSxlUWkdJKlJtIyk1xKGedozbNEqwDercdRzFqiDtFSMseCGi18lwdw4od4U0XOf1BqW56Jm2FflNlNn99elWIYwPFaBwS2kXZRpDPTZSO63SKJEDYFcNSqxlZcQUxCWSeAD14D_vIfol9e9nzp5b9UPob7g-uvpSgvh19ewYN2Z4vy4V7D_mK-NG9gr9HLt34a_AZOEAwv |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WFsZetm7dh7d1FWz0YWAa23Jsw17SpknLQih0o30Tsj5CmKOEOIH1X9lfuzs5HwTGYOxNYNlnSae730mnnwA-lTlXMT4LC5voEOMNHso0tmFbxTLjJaqRpUDx6jYb3ufdS6LJ-bI-C9PwQ2wW3GhmeHtNE3ym7dmWNHRUjYk3COHyHhxwxOHEnJ8kN5s9BMT-Dc9nwUMsRxty0vhs--6OOzqgnv35J6y5C1297-k9-7-_PoSnK8zJOo2SPIdHxr2Ao47DeHvywE6ZzwL1y-tH8Ku7To11bGoZMYNXlamYdJqpajzBQHrELKWZsAW5OVQTX3cxZedmPppI5xhJZ-Oajd1suWB0lpPykZpP0GUgFeFbRivAWIVQa200m81Xt_2Q2PrBSbRlakfGS_jeu_x2cRWu7m8IVYLAJlS6RGuAAY3NylK1JNeRxghTtuNCtoosjQuOekHsQhi1FcYiuDGJtUXKVaTRuSavYN9NnXkDDFUqtjKPlE5SbiItU1lIKeMMbXmaaBXAx_UwillD0yEaQuZYUKOF7_IATv0Ib6rI-Q9KbMtScTfsi0F61y_ubwdiGMDJWgUEtpH2UKQz02Ut2u08iRA0BfC60YytuJx4hNJWAJ-9AvzlP0R_cN3xpbf_UvkEHt90e2JwPfz6Dp4021qUDPce9hfzpTmGvVovP_hJ8BsLQgrV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depression+of+parallel+and+climbing+fiber+transmission+to+Bergmann+glia+is+input+specific+and+correlates+with+increased+precision+of+synaptic+transmission&rft.jtitle=Glia&rft.au=Balakrishnan%2C+Saju&rft.au=Bellamy%2C+Tomas+C.&rft.date=2009-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=57&rft.issue=4&rft.spage=393&rft.epage=401&rft_id=info:doi/10.1002%2Fglia.20768&rft.externalDBID=10.1002%252Fglia.20768&rft.externalDocID=GLIA20768 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |