Artificial Jellyfish Optimization with Deep-Learning-Driven Decision Support System for Energy Management in Smart Cities

A smart city is a sustainable and effectual urban center which offers a maximal quality of life to its inhabitants with the optimal management of their resources. Energy management is the most difficult problem in such urban centers because of the difficulty of energy models and their important role...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 12; no. 15; p. 7457
Main Authors: Al-Qarafi, A., Alsolai, Hadeel, Alzahrani, Jaber S., Negm, Noha, Alharbi, Lubna A., Al Duhayyim, Mesfer, Mohsen, Heba, Al-Shabi, M., Al-Wesabi, Fahd N.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-08-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A smart city is a sustainable and effectual urban center which offers a maximal quality of life to its inhabitants with the optimal management of their resources. Energy management is the most difficult problem in such urban centers because of the difficulty of energy models and their important role. The recent developments of machine learning (ML) and deep learning (DL) models pave the way to design effective energy management schemes. In this respect, this study introduces an artificial jellyfish optimization with deep learning-driven decision support system (AJODL-DSSEM) model for energy management in smart cities. The proposed AJODL-DSSEM model predicts the energy in the smart city environment. To do so, the proposed AJODL-DSSEM model primarily performs data preprocessing at the initial stage to normalize the data. Besides, the AJODL-DSSEM model involves the attention-based convolutional neural network-bidirectional long short-term memory (CNN-ABLSTM) model for the prediction of energy. For the hyperparameter tuning of the CNN-ABLSTM model, the AJO algorithm was applied. The experimental validation of the proposed AJODL-DSSEM model was tested using two open-access datasets, namely the IHEPC and ISO-NE datasets. The comparative study reported the improved outcomes of the AJODL-DSSEM model over recent approaches.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12157457