A Non-Linear BEM–FEM Coupled Scheme for the Performance of Flexible Flapping-Foil Thrusters
Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the underlying physics of the fluid–structure interaction (FSI) is essential to improve the efficiency of existing devices and pave the way for nove...
Saved in:
Published in: | Journal of marine science and engineering Vol. 8; no. 1; p. 56 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-01-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the underlying physics of the fluid–structure interaction (FSI) is essential to improve the efficiency of existing devices and pave the way for novel energy-efficient marine thrusters. In the present work, we investigate the effect of chord-wise flexibility on the propulsive performance of flapping-foil thrusters. For this purpose, a numerical method has been developed to simulate the time-dependent structural response of the flexible foil that undergoes prescribed large general motions. The fluid flow model is based on potential theory, whereas the elastic response of the foil is approximated by means of the classical Kirchhoff–Love theory for thin plates under cylindrical bending. The fully coupled FSI problem is treated numerically with a non-linear BEM–FEM scheme. The validity of the proposed scheme is established through comparisons against existing works. The performance of the flapping-foil thrusters over a range of design parameters, including flexural rigidity, Strouhal number, heaving and pitching amplitudes is also studied. The results show a propulsive efficiency enhancement of up to 6% for such systems with moderate loss in thrust, compared to rigid foils. Finally, the present model after enhancement could serve as a useful tool in the design, assessment and control of flexible biomimetic flapping-foil thrusters. |
---|---|
AbstractList | Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the underlying physics of the fluid–structure interaction (FSI) is essential to improve the efficiency of existing devices and pave the way for novel energy-efficient marine thrusters. In the present work, we investigate the effect of chord-wise flexibility on the propulsive performance of flapping-foil thrusters. For this purpose, a numerical method has been developed to simulate the time-dependent structural response of the flexible foil that undergoes prescribed large general motions. The fluid flow model is based on potential theory, whereas the elastic response of the foil is approximated by means of the classical Kirchhoff–Love theory for thin plates under cylindrical bending. The fully coupled FSI problem is treated numerically with a non-linear BEM–FEM scheme. The validity of the proposed scheme is established through comparisons against existing works. The performance of the flapping-foil thrusters over a range of design parameters, including flexural rigidity, Strouhal number, heaving and pitching amplitudes is also studied. The results show a propulsive efficiency enhancement of up to 6% for such systems with moderate loss in thrust, compared to rigid foils. Finally, the present model after enhancement could serve as a useful tool in the design, assessment and control of flexible biomimetic flapping-foil thrusters. Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the underlying physics of the fluid−structure interaction (FSI) is essential to improve the efficiency of existing devices and pave the way for novel energy-efficient marine thrusters. In the present work, we investigate the effect of chord-wise flexibility on the propulsive performance of flapping-foil thrusters. For this purpose, a numerical method has been developed to simulate the time-dependent structural response of the flexible foil that undergoes prescribed large general motions. The fluid flow model is based on potential theory, whereas the elastic response of the foil is approximated by means of the classical Kirchhoff−Love theory for thin plates under cylindrical bending. The fully coupled FSI problem is treated numerically with a non-linear BEM−FEM scheme. The validity of the proposed scheme is established through comparisons against existing works. The performance of the flapping-foil thrusters over a range of design parameters, including flexural rigidity, Strouhal number, heaving and pitching amplitudes is also studied. The results show a propulsive efficiency enhancement of up to 6% for such systems with moderate loss in thrust, compared to rigid foils. Finally, the present model after enhancement could serve as a useful tool in the design, assessment and control of flexible biomimetic flapping-foil thrusters. |
Author | Anevlavi, Dimitra E. Filippas, Evangelos S. Karperaki, Angeliki E. Belibassakis, Kostas A. |
Author_xml | – sequence: 1 givenname: Dimitra E. surname: Anevlavi fullname: Anevlavi, Dimitra E. – sequence: 2 givenname: Evangelos S. surname: Filippas fullname: Filippas, Evangelos S. – sequence: 3 givenname: Angeliki E. surname: Karperaki fullname: Karperaki, Angeliki E. – sequence: 4 givenname: Kostas A. surname: Belibassakis fullname: Belibassakis, Kostas A. |
BookMark | eNpNkd1KAzEQhYNUsP5c-QIBL2U12Z8ke1lLq0L9AfVSwjSZtFu2mzXZgt75Dr6hT-JqRZybOQyHbw6cfTJofIOEHHN2lmUlO1-tIyrGGSvEDhmmTMqEZzwd_NN75CjGFetHpYIzMSTPI3rrm2RWNQiBXkxuPt8_ppMbOvabtkZLH8wS10idD7RbIr3H0Ms1NAapd3Ra42s1r7EX0LZVs0imvqrp4zJsYochHpJdB3XEo999QJ6mk8fxVTK7u7wej2aJyUTeJUaWioGTmRTGOWmkQWtdwZTlWGYpqhTm3Oal4qjmogAQwhZS8blgjKe5yA7I9ZZrPax0G6o1hDftodI_Bx8WGkJXmRo1B5BgsYTcqNyBLAvB0UqEUjnklvWsky2rDf5lg7HTK78JTR9fp0Wh8rzgpexdp1uXCT7GgO7vK2f6uw79r47sC-pUfs4 |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_115305 crossref_primary_10_1007_s10409_021_01073_3 crossref_primary_10_3390_jmse11081559 crossref_primary_10_1016_j_oceaneng_2024_117513 crossref_primary_10_1016_j_oceaneng_2021_110157 crossref_primary_10_1063_5_0169938 crossref_primary_10_3390_en16083420 crossref_primary_10_1016_j_oceaneng_2021_110061 crossref_primary_10_1016_j_rser_2023_113589 crossref_primary_10_1016_j_jfluidstructs_2021_103255 crossref_primary_10_3390_jmse8050357 crossref_primary_10_3390_jmse10060773 crossref_primary_10_1016_j_oceaneng_2021_109331 |
Cites_doi | 10.1016/j.oceaneng.2013.06.028 10.1016/j.jfluidstructs.2016.03.010 10.1016/j.oceaneng.2017.08.055 10.1007/978-3-642-97146-4 10.1016/j.jfluidstructs.2011.10.005 10.1016/j.oceaneng.2018.02.028 10.1109/48.757275 10.1016/j.paerosci.2010.01.001 10.1063/1.4709477 10.1016/j.enganabound.2008.08.001 10.1016/S0376-0421(03)00077-0 10.1016/j.crme.2014.06.004 10.1016/j.oceaneng.2019.106712 10.2514/1.28565 10.1016/j.enganabound.2018.06.016 10.1016/j.jfluidstructs.2009.10.005 10.1016/j.jfluidstructs.2016.04.002 10.3390/jmse7120424 10.1146/annurev.fluid.32.1.33 10.1016/j.engstruct.2015.06.020 10.1016/j.apor.2015.04.009 10.1016/j.jfluidstructs.2017.01.009 10.1017/S0022112008003297 10.1121/1.1914673 10.1063/1.4939499 10.1016/j.enganabound.2003.10.004 10.14355/daoe.2016.05.001 10.1016/j.enganabound.2014.01.008 10.1017/S0022112079002494 10.1016/j.compfluid.2019.104325 10.1016/j.jfluidstructs.2017.04.003 10.1016/j.jfluidstructs.2016.09.003 10.1016/j.jfluidstructs.2015.07.003 10.1016/j.jfluidstructs.2014.09.006 10.1242/jeb.016279 10.1007/s00773-012-0169-y 10.1016/j.oceaneng.2014.04.002 10.1016/j.jfluidstructs.2014.01.002 10.1109/OCEANSE.2019.8867084 10.1016/j.jfluidstructs.2017.02.001 10.1016/j.apor.2016.02.002 10.1016/j.joes.2017.03.003 10.1201/9780849384165 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7ST 7TN 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
DOI | 10.3390/jmse8010056 |
DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography Physics |
EISSN | 2077-1312 |
ExternalDocumentID | oai_doaj_org_article_1aa7ade9a4c84fa79561ed7ea98fe1d0 10_3390_jmse8010056 |
GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PIMPY PROAC PTHSS PYCSY 7ST 7TN ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 L.G PQEST PQQKQ PQUKI PRINS SOI |
ID | FETCH-LOGICAL-c364t-c7980af7376cff7c7ceddf508d1e932e82ab1d4981e8b65aa66d5781b60012463 |
IEDL.DBID | DOA |
ISSN | 2077-1312 |
IngestDate | Tue Oct 22 15:11:29 EDT 2024 Thu Oct 10 16:29:18 EDT 2024 Fri Nov 22 03:09:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c364t-c7980af7376cff7c7ceddf508d1e932e82ab1d4981e8b65aa66d5781b60012463 |
OpenAccessLink | https://doaj.org/article/1aa7ade9a4c84fa79561ed7ea98fe1d0 |
PQID | 2558445197 |
PQPubID | 2032377 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1aa7ade9a4c84fa79561ed7ea98fe1d0 proquest_journals_2558445197 crossref_primary_10_3390_jmse8010056 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of marine science and engineering |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Garg (ref_20) 2017; 71 Egan (ref_29) 2015; 67 ref_13 ref_10 Cleaver (ref_31) 2014; 51 ref_52 Weihs (ref_21) 1978; 8 Zhu (ref_26) 2008; 11 Alben (ref_23) 2008; 614 Barannyk (ref_33) 2012; 28 Alben (ref_24) 2012; 24 Politis (ref_41) 2004; 28 Belibassakis (ref_6) 2013; 72 Xiao (ref_11) 2014; 46 Jeanmonod (ref_12) 2017; 70 Chowdhury (ref_45) 2003; 43 Filippas (ref_49) 2014; 41 (ref_30) 2017; 145 Belibassakis (ref_7) 2015; 52 (ref_53) 2016; 64 Olivier (ref_19) 2016; 63 Paraz (ref_35) 2016; 28 Mabie (ref_50) 1974; 55 Shyy (ref_17) 2010; 46 Politis (ref_4) 2014; 84 Katz (ref_22) 1979; 90 Paraz (ref_34) 2014; 342 Richards (ref_28) 2015; 57 Triantafyllou (ref_15) 2000; 32 Papadakis (ref_37) 2019; 195 ref_32 Mantia (ref_43) 2009; 33 Tay (ref_18) 2010; 26 ref_39 Filippas (ref_14) 2018; 154 ref_38 Rozhdestvensky (ref_16) 2003; 39 Priovolos (ref_27) 2018; 95 Sfakiotakis (ref_3) 1999; 24 Steen (ref_8) 2016; 57 Gharib (ref_36) 2017; 71 ref_47 ref_46 ref_44 ref_42 ref_40 ref_2 Silva (ref_5) 2012; 17 ref_48 ref_9 Zhu (ref_25) 2007; 45 Bhattacharyya (ref_1) 2017; 2 Beltempo (ref_51) 2015; 101 |
References_xml | – volume: 8 start-page: 486 year: 1978 ident: ref_21 article-title: Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility publication-title: J. Fluid Mech. contributor: fullname: Weihs – ident: ref_9 – volume: 72 start-page: 227 year: 2013 ident: ref_6 article-title: Hydrodyanamic performance of flapping wings for augmenting ship propulsion publication-title: J. Ocean Eng. doi: 10.1016/j.oceaneng.2013.06.028 contributor: fullname: Belibassakis – ident: ref_32 – volume: 63 start-page: 201 year: 2016 ident: ref_19 article-title: A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2016.03.010 contributor: fullname: Olivier – volume: 145 start-page: 24 year: 2017 ident: ref_30 article-title: Effect of chordwise flexibility on pitching foil propulsion in a uniform current publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.08.055 – ident: ref_47 doi: 10.1007/978-3-642-97146-4 – volume: 28 start-page: 152 year: 2012 ident: ref_33 article-title: On the performance of an oscillating plate underwater propulsion system with variable chordwise flexibility at different depths of submergence publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2011.10.005 contributor: fullname: Barannyk – volume: 154 start-page: 396 year: 2018 ident: ref_14 article-title: Semi-activated oscillating hydrofoil as a nearshore biomimetic energy device system in waves and currents publication-title: J. Ocean Eng. doi: 10.1016/j.oceaneng.2018.02.028 contributor: fullname: Filippas – volume: 24 start-page: 237 year: 1999 ident: ref_3 article-title: Review of Fish Swimming Modes for Aquatic Locomotion publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.757275 contributor: fullname: Sfakiotakis – volume: 46 start-page: 284 year: 2010 ident: ref_17 article-title: Recent progress in flapping wing aerodynamics and aeroelasticity publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2010.01.001 contributor: fullname: Shyy – volume: 24 start-page: 051901 year: 2012 ident: ref_24 article-title: Dynamics of freely swimming flexible bodies publication-title: Phys. Fluids doi: 10.1063/1.4709477 contributor: fullname: Alben – volume: 33 start-page: 572 year: 2009 ident: ref_43 article-title: Unsteady panel method for flapping foil publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2008.08.001 contributor: fullname: Mantia – volume: 39 start-page: 585 year: 2003 ident: ref_16 article-title: Aerodynamics of flapping-wing propulsors publication-title: Prog. Aerosp. Sci. doi: 10.1016/S0376-0421(03)00077-0 contributor: fullname: Rozhdestvensky – volume: 342 start-page: 532 year: 2014 ident: ref_34 article-title: Experimental study of the response of a flexible plate to a harmonic forcing in a flow publication-title: Comptes Rendus Mec. doi: 10.1016/j.crme.2014.06.004 contributor: fullname: Paraz – ident: ref_52 – ident: ref_2 doi: 10.1016/j.oceaneng.2019.106712 – volume: 45 start-page: 2448 year: 2007 ident: ref_25 article-title: Numerical Simulation of a flapping foil with chordwise and spanwise flexibility publication-title: AIAA J. doi: 10.2514/1.28565 contributor: fullname: Zhu – volume: 95 start-page: 69 year: 2018 ident: ref_27 article-title: A vortex-based method for improved flexible flapping-foil thruster performance publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2018.06.016 contributor: fullname: Priovolos – ident: ref_48 – ident: ref_10 – volume: 26 start-page: 74 year: 2010 ident: ref_18 article-title: Numerical analysis of active chordwise flexibility on the performance of non-symmetrical flapping airfoils publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2009.10.005 contributor: fullname: Tay – volume: 64 start-page: 46 year: 2016 ident: ref_53 article-title: Effect of mass and chordwise flexibility on 2D self-propelled flapping wings publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2016.04.002 – ident: ref_13 doi: 10.3390/jmse7120424 – volume: 32 start-page: 33 year: 2000 ident: ref_15 article-title: Hydrodynamics of fishlike swimming publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.32.1.33 contributor: fullname: Triantafyllou – volume: 101 start-page: 88 year: 2015 ident: ref_51 article-title: Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger-Reissner principle publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.06.020 contributor: fullname: Beltempo – volume: 52 start-page: 1 year: 2015 ident: ref_7 article-title: Ship propulsion in waves by actively controlled flapping foils publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.04.009 contributor: fullname: Belibassakis – volume: 70 start-page: 327 year: 2017 ident: ref_12 article-title: Effects of chordwise flexibility on 2D flapping foils used as an energy extraction device publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.01.009 contributor: fullname: Jeanmonod – volume: 614 start-page: 355 year: 2008 ident: ref_23 article-title: Optimal flexibility of a flapping appendage in an inviscid fluid publication-title: J. Fluid Mech. doi: 10.1017/S0022112008003297 contributor: fullname: Alben – volume: 55 start-page: 986 year: 1974 ident: ref_50 article-title: Transverse vibrations of double-tapered cantilever beams with end support and with end mass publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1914673 contributor: fullname: Mabie – volume: 43 start-page: 6855 year: 2003 ident: ref_45 article-title: Computation of Rayleigh Damping Coefficients for Large Systems publication-title: Electron. J. Geotech. Eng. contributor: fullname: Chowdhury – volume: 28 start-page: 011903 year: 2016 ident: ref_35 article-title: Thrust generation by a heaving flexible foil: Resonance, nonlinearities and optimality publication-title: Phys. Fluids doi: 10.1063/1.4939499 contributor: fullname: Paraz – volume: 28 start-page: 633 year: 2004 ident: ref_41 article-title: Simulation of unsteady motion of a propeller in a fluid including free wake modelling publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2003.10.004 contributor: fullname: Politis – ident: ref_40 – ident: ref_42 doi: 10.14355/daoe.2016.05.001 – volume: 41 start-page: 47 year: 2014 ident: ref_49 article-title: Hydrodynamic analysis of flapping-foil thrusters operating beneath the free surface and in waves publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2014.01.008 contributor: fullname: Filippas – ident: ref_44 – volume: 90 start-page: 713 year: 1979 ident: ref_22 article-title: Large amplitude unsteady motion of a flexible slender propulsor publication-title: J. Fluid Mech. doi: 10.1017/S0022112079002494 contributor: fullname: Katz – volume: 195 start-page: 104325 year: 2019 ident: ref_37 article-title: A strongly coupled Eulerian Lagrangian method verified in 2D external compressible flows publication-title: J. Comput. Fluids doi: 10.1016/j.compfluid.2019.104325 contributor: fullname: Papadakis – volume: 71 start-page: 217 year: 2017 ident: ref_36 article-title: On the effects of tip deflection in flapping propulsion publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.04.003 contributor: fullname: Gharib – volume: 67 start-page: 22 year: 2015 ident: ref_29 article-title: Experimental assessment of performance characteristics for pitching flexible propulsors publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2016.09.003 contributor: fullname: Egan – volume: 57 start-page: 357 year: 2015 ident: ref_28 article-title: Effects of the stiffness, inertia and oscillation kinematics on the thrust generation and efficiency of an oscillating-foil propulsion system publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2015.07.003 contributor: fullname: Richards – volume: 51 start-page: 402 year: 2014 ident: ref_31 article-title: Thrust enhancement due to flexible trailing-edge of plunging foils publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.09.006 contributor: fullname: Cleaver – ident: ref_46 – volume: 11 start-page: 2087 year: 2008 ident: ref_26 article-title: Propulsion performance of a skeleton-strengthened fin publication-title: J. Exp. Biol. doi: 10.1242/jeb.016279 contributor: fullname: Zhu – volume: 17 start-page: 261 year: 2012 ident: ref_5 article-title: Numerical study on active wave devouring propulsion publication-title: J. Mar. Technol. (Jpn.) doi: 10.1007/s00773-012-0169-y contributor: fullname: Silva – volume: 84 start-page: 98 year: 2014 ident: ref_4 article-title: Flapping wing propulsor design: An approach based on systematic 3D-BEM publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.04.002 contributor: fullname: Politis – volume: 46 start-page: 174 year: 2014 ident: ref_11 article-title: A review on flow energy harvesters based on flapping foils publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.01.002 contributor: fullname: Xiao – ident: ref_38 doi: 10.1109/OCEANSE.2019.8867084 – volume: 71 start-page: 15 year: 2017 ident: ref_20 article-title: High-fidelity multipoint hydrostructural optimization of a 3-D hydrofoil publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.02.001 contributor: fullname: Garg – volume: 57 start-page: 8 year: 2016 ident: ref_8 article-title: Model test and simulation of a ship with wavefoils publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2016.02.002 contributor: fullname: Steen – volume: 2 start-page: 90 year: 2017 ident: ref_1 article-title: Idichandy, “CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results” publication-title: J. Ocean Eng. Sci. doi: 10.1016/j.joes.2017.03.003 contributor: fullname: Bhattacharyya – ident: ref_39 doi: 10.1201/9780849384165 |
SSID | ssj0000826106 |
Score | 2.259751 |
Snippet | Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 56 |
SubjectTerms | Autonomous underwater vehicles Biomimetics Computational fluid dynamics coupled bem–fem Deformation Design parameters Efficiency Energy efficiency Finite element method Flapping Flexibility flexible flapping foils Fluid flow Fluid-structure interaction hydroelasticity Investigations Kirchhoff theory Mathematical models Methods Numerical analysis Numerical methods Physics Pitching Potential theory Propulsive efficiency Rigidity Simulation Strouhal number Swimming Thin plates Thrusters unsteady marine thruster |
Title | A Non-Linear BEM–FEM Coupled Scheme for the Performance of Flexible Flapping-Foil Thrusters |
URI | https://www.proquest.com/docview/2558445197 https://doaj.org/article/1aa7ade9a4c84fa79561ed7ea98fe1d0 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagE0JCPEWhIA9doyZNGsdjWxqx8JBaJBYUXewzD5UEUbrzH_iH_BLOTlqKGFjYIitKojvf3ffFvs-MtREMUBkTdp-f9iLtKw-gqzypoh4arXroTm84H4vL2-RsZGVylkd92T1hlTxwZbhOACBAo4RIJZEBYRsxUQsEmRgMdMXW_XiFTLkcTKiZRquGvJB4fefpeYaUja305Y8S5JT6fyViV13SbbZVw0Lerz5nh61hscs2rxRCUWtK77G7Pr8sC4_YI81OPhhdfL5_pKMLPiznL1PUfEz2f0ZOKJQTquPX3y0BvDQ8tcqX-RTpAqwmw72Xlo9TPnmwTReEAffZTTqaDM-9-nQET4Vx9OYpIRMfjKAMoYwRSijU2hDe0gESKMOkC3mgI5kEmORxDyCONYVnkDuIE8XhAWsUZYGHjMsQKPCj2C366S49Qoa-BRI-SAM6b7L2wmDZSyWCkRF5sHbNVuzaZANrzOUtVrnaDZA_s9qf2V_-bLLWwhVZHU6zjHhPYpXUpDj6j3ccs42upc3uT0qLNd5e53jC1md6fuqm0Rdf8M8A |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Non-Linear+BEM%E2%80%93FEM+Coupled+Scheme+for+the+Performance+of+Flexible+Flapping-Foil+Thrusters&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Anevlavi%2C+Dimitra+E&rft.au=Filippas%2C+Evangelos+S&rft.au=Karperaki%2C+Angeliki+E&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=8&rft.issue=1&rft.spage=56&rft_id=info:doi/10.3390%2Fjmse8010056&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |