A Non-Linear BEM–FEM Coupled Scheme for the Performance of Flexible Flapping-Foil Thrusters

Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the underlying physics of the fluid–structure interaction (FSI) is essential to improve the efficiency of existing devices and pave the way for nove...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering Vol. 8; no. 1; p. 56
Main Authors: Anevlavi, Dimitra E., Filippas, Evangelos S., Karperaki, Angeliki E., Belibassakis, Kostas A.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-01-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the underlying physics of the fluid–structure interaction (FSI) is essential to improve the efficiency of existing devices and pave the way for novel energy-efficient marine thrusters. In the present work, we investigate the effect of chord-wise flexibility on the propulsive performance of flapping-foil thrusters. For this purpose, a numerical method has been developed to simulate the time-dependent structural response of the flexible foil that undergoes prescribed large general motions. The fluid flow model is based on potential theory, whereas the elastic response of the foil is approximated by means of the classical Kirchhoff–Love theory for thin plates under cylindrical bending. The fully coupled FSI problem is treated numerically with a non-linear BEM–FEM scheme. The validity of the proposed scheme is established through comparisons against existing works. The performance of the flapping-foil thrusters over a range of design parameters, including flexural rigidity, Strouhal number, heaving and pitching amplitudes is also studied. The results show a propulsive efficiency enhancement of up to 6% for such systems with moderate loss in thrust, compared to rigid foils. Finally, the present model after enhancement could serve as a useful tool in the design, assessment and control of flexible biomimetic flapping-foil thrusters.
AbstractList Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the underlying physics of the fluid–structure interaction (FSI) is essential to improve the efficiency of existing devices and pave the way for novel energy-efficient marine thrusters. In the present work, we investigate the effect of chord-wise flexibility on the propulsive performance of flapping-foil thrusters. For this purpose, a numerical method has been developed to simulate the time-dependent structural response of the flexible foil that undergoes prescribed large general motions. The fluid flow model is based on potential theory, whereas the elastic response of the foil is approximated by means of the classical Kirchhoff–Love theory for thin plates under cylindrical bending. The fully coupled FSI problem is treated numerically with a non-linear BEM–FEM scheme. The validity of the proposed scheme is established through comparisons against existing works. The performance of the flapping-foil thrusters over a range of design parameters, including flexural rigidity, Strouhal number, heaving and pitching amplitudes is also studied. The results show a propulsive efficiency enhancement of up to 6% for such systems with moderate loss in thrust, compared to rigid foils. Finally, the present model after enhancement could serve as a useful tool in the design, assessment and control of flexible biomimetic flapping-foil thrusters.
Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the underlying physics of the fluid−structure interaction (FSI) is essential to improve the efficiency of existing devices and pave the way for novel energy-efficient marine thrusters. In the present work, we investigate the effect of chord-wise flexibility on the propulsive performance of flapping-foil thrusters. For this purpose, a numerical method has been developed to simulate the time-dependent structural response of the flexible foil that undergoes prescribed large general motions. The fluid flow model is based on potential theory, whereas the elastic response of the foil is approximated by means of the classical Kirchhoff−Love theory for thin plates under cylindrical bending. The fully coupled FSI problem is treated numerically with a non-linear BEM−FEM scheme. The validity of the proposed scheme is established through comparisons against existing works. The performance of the flapping-foil thrusters over a range of design parameters, including flexural rigidity, Strouhal number, heaving and pitching amplitudes is also studied. The results show a propulsive efficiency enhancement of up to 6% for such systems with moderate loss in thrust, compared to rigid foils. Finally, the present model after enhancement could serve as a useful tool in the design, assessment and control of flexible biomimetic flapping-foil thrusters.
Author Anevlavi, Dimitra E.
Filippas, Evangelos S.
Karperaki, Angeliki E.
Belibassakis, Kostas A.
Author_xml – sequence: 1
  givenname: Dimitra E.
  surname: Anevlavi
  fullname: Anevlavi, Dimitra E.
– sequence: 2
  givenname: Evangelos S.
  surname: Filippas
  fullname: Filippas, Evangelos S.
– sequence: 3
  givenname: Angeliki E.
  surname: Karperaki
  fullname: Karperaki, Angeliki E.
– sequence: 4
  givenname: Kostas A.
  surname: Belibassakis
  fullname: Belibassakis, Kostas A.
BookMark eNpNkd1KAzEQhYNUsP5c-QIBL2U12Z8ke1lLq0L9AfVSwjSZtFu2mzXZgt75Dr6hT-JqRZybOQyHbw6cfTJofIOEHHN2lmUlO1-tIyrGGSvEDhmmTMqEZzwd_NN75CjGFetHpYIzMSTPI3rrm2RWNQiBXkxuPt8_ppMbOvabtkZLH8wS10idD7RbIr3H0Ms1NAapd3Ra42s1r7EX0LZVs0imvqrp4zJsYochHpJdB3XEo999QJ6mk8fxVTK7u7wej2aJyUTeJUaWioGTmRTGOWmkQWtdwZTlWGYpqhTm3Oal4qjmogAQwhZS8blgjKe5yA7I9ZZrPax0G6o1hDftodI_Bx8WGkJXmRo1B5BgsYTcqNyBLAvB0UqEUjnklvWsky2rDf5lg7HTK78JTR9fp0Wh8rzgpexdp1uXCT7GgO7vK2f6uw79r47sC-pUfs4
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_115305
crossref_primary_10_1007_s10409_021_01073_3
crossref_primary_10_3390_jmse11081559
crossref_primary_10_1016_j_oceaneng_2024_117513
crossref_primary_10_1016_j_oceaneng_2021_110157
crossref_primary_10_1063_5_0169938
crossref_primary_10_3390_en16083420
crossref_primary_10_1016_j_oceaneng_2021_110061
crossref_primary_10_1016_j_rser_2023_113589
crossref_primary_10_1016_j_jfluidstructs_2021_103255
crossref_primary_10_3390_jmse8050357
crossref_primary_10_3390_jmse10060773
crossref_primary_10_1016_j_oceaneng_2021_109331
Cites_doi 10.1016/j.oceaneng.2013.06.028
10.1016/j.jfluidstructs.2016.03.010
10.1016/j.oceaneng.2017.08.055
10.1007/978-3-642-97146-4
10.1016/j.jfluidstructs.2011.10.005
10.1016/j.oceaneng.2018.02.028
10.1109/48.757275
10.1016/j.paerosci.2010.01.001
10.1063/1.4709477
10.1016/j.enganabound.2008.08.001
10.1016/S0376-0421(03)00077-0
10.1016/j.crme.2014.06.004
10.1016/j.oceaneng.2019.106712
10.2514/1.28565
10.1016/j.enganabound.2018.06.016
10.1016/j.jfluidstructs.2009.10.005
10.1016/j.jfluidstructs.2016.04.002
10.3390/jmse7120424
10.1146/annurev.fluid.32.1.33
10.1016/j.engstruct.2015.06.020
10.1016/j.apor.2015.04.009
10.1016/j.jfluidstructs.2017.01.009
10.1017/S0022112008003297
10.1121/1.1914673
10.1063/1.4939499
10.1016/j.enganabound.2003.10.004
10.14355/daoe.2016.05.001
10.1016/j.enganabound.2014.01.008
10.1017/S0022112079002494
10.1016/j.compfluid.2019.104325
10.1016/j.jfluidstructs.2017.04.003
10.1016/j.jfluidstructs.2016.09.003
10.1016/j.jfluidstructs.2015.07.003
10.1016/j.jfluidstructs.2014.09.006
10.1242/jeb.016279
10.1007/s00773-012-0169-y
10.1016/j.oceaneng.2014.04.002
10.1016/j.jfluidstructs.2014.01.002
10.1109/OCEANSE.2019.8867084
10.1016/j.jfluidstructs.2017.02.001
10.1016/j.apor.2016.02.002
10.1016/j.joes.2017.03.003
10.1201/9780849384165
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse8010056
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
Physics
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_1aa7ade9a4c84fa79561ed7ea98fe1d0
10_3390_jmse8010056
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PTHSS
PYCSY
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c364t-c7980af7376cff7c7ceddf508d1e932e82ab1d4981e8b65aa66d5781b60012463
IEDL.DBID DOA
ISSN 2077-1312
IngestDate Tue Oct 22 15:11:29 EDT 2024
Thu Oct 10 16:29:18 EDT 2024
Fri Nov 22 03:09:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c7980af7376cff7c7ceddf508d1e932e82ab1d4981e8b65aa66d5781b60012463
OpenAccessLink https://doaj.org/article/1aa7ade9a4c84fa79561ed7ea98fe1d0
PQID 2558445197
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_1aa7ade9a4c84fa79561ed7ea98fe1d0
proquest_journals_2558445197
crossref_primary_10_3390_jmse8010056
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Garg (ref_20) 2017; 71
Egan (ref_29) 2015; 67
ref_13
ref_10
Cleaver (ref_31) 2014; 51
ref_52
Weihs (ref_21) 1978; 8
Zhu (ref_26) 2008; 11
Alben (ref_23) 2008; 614
Barannyk (ref_33) 2012; 28
Alben (ref_24) 2012; 24
Politis (ref_41) 2004; 28
Belibassakis (ref_6) 2013; 72
Xiao (ref_11) 2014; 46
Jeanmonod (ref_12) 2017; 70
Chowdhury (ref_45) 2003; 43
Filippas (ref_49) 2014; 41
(ref_30) 2017; 145
Belibassakis (ref_7) 2015; 52
(ref_53) 2016; 64
Olivier (ref_19) 2016; 63
Paraz (ref_35) 2016; 28
Mabie (ref_50) 1974; 55
Shyy (ref_17) 2010; 46
Politis (ref_4) 2014; 84
Katz (ref_22) 1979; 90
Paraz (ref_34) 2014; 342
Richards (ref_28) 2015; 57
Triantafyllou (ref_15) 2000; 32
Papadakis (ref_37) 2019; 195
ref_32
Mantia (ref_43) 2009; 33
Tay (ref_18) 2010; 26
ref_39
Filippas (ref_14) 2018; 154
ref_38
Rozhdestvensky (ref_16) 2003; 39
Priovolos (ref_27) 2018; 95
Sfakiotakis (ref_3) 1999; 24
Steen (ref_8) 2016; 57
Gharib (ref_36) 2017; 71
ref_47
ref_46
ref_44
ref_42
ref_40
ref_2
Silva (ref_5) 2012; 17
ref_48
ref_9
Zhu (ref_25) 2007; 45
Bhattacharyya (ref_1) 2017; 2
Beltempo (ref_51) 2015; 101
References_xml – volume: 8
  start-page: 486
  year: 1978
  ident: ref_21
  article-title: Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility
  publication-title: J. Fluid Mech.
  contributor:
    fullname: Weihs
– ident: ref_9
– volume: 72
  start-page: 227
  year: 2013
  ident: ref_6
  article-title: Hydrodyanamic performance of flapping wings for augmenting ship propulsion
  publication-title: J. Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.06.028
  contributor:
    fullname: Belibassakis
– ident: ref_32
– volume: 63
  start-page: 201
  year: 2016
  ident: ref_19
  article-title: A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2016.03.010
  contributor:
    fullname: Olivier
– volume: 145
  start-page: 24
  year: 2017
  ident: ref_30
  article-title: Effect of chordwise flexibility on pitching foil propulsion in a uniform current
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.08.055
– ident: ref_47
  doi: 10.1007/978-3-642-97146-4
– volume: 28
  start-page: 152
  year: 2012
  ident: ref_33
  article-title: On the performance of an oscillating plate underwater propulsion system with variable chordwise flexibility at different depths of submergence
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2011.10.005
  contributor:
    fullname: Barannyk
– volume: 154
  start-page: 396
  year: 2018
  ident: ref_14
  article-title: Semi-activated oscillating hydrofoil as a nearshore biomimetic energy device system in waves and currents
  publication-title: J. Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.02.028
  contributor:
    fullname: Filippas
– volume: 24
  start-page: 237
  year: 1999
  ident: ref_3
  article-title: Review of Fish Swimming Modes for Aquatic Locomotion
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/48.757275
  contributor:
    fullname: Sfakiotakis
– volume: 46
  start-page: 284
  year: 2010
  ident: ref_17
  article-title: Recent progress in flapping wing aerodynamics and aeroelasticity
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2010.01.001
  contributor:
    fullname: Shyy
– volume: 24
  start-page: 051901
  year: 2012
  ident: ref_24
  article-title: Dynamics of freely swimming flexible bodies
  publication-title: Phys. Fluids
  doi: 10.1063/1.4709477
  contributor:
    fullname: Alben
– volume: 33
  start-page: 572
  year: 2009
  ident: ref_43
  article-title: Unsteady panel method for flapping foil
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2008.08.001
  contributor:
    fullname: Mantia
– volume: 39
  start-page: 585
  year: 2003
  ident: ref_16
  article-title: Aerodynamics of flapping-wing propulsors
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/S0376-0421(03)00077-0
  contributor:
    fullname: Rozhdestvensky
– volume: 342
  start-page: 532
  year: 2014
  ident: ref_34
  article-title: Experimental study of the response of a flexible plate to a harmonic forcing in a flow
  publication-title: Comptes Rendus Mec.
  doi: 10.1016/j.crme.2014.06.004
  contributor:
    fullname: Paraz
– ident: ref_52
– ident: ref_2
  doi: 10.1016/j.oceaneng.2019.106712
– volume: 45
  start-page: 2448
  year: 2007
  ident: ref_25
  article-title: Numerical Simulation of a flapping foil with chordwise and spanwise flexibility
  publication-title: AIAA J.
  doi: 10.2514/1.28565
  contributor:
    fullname: Zhu
– volume: 95
  start-page: 69
  year: 2018
  ident: ref_27
  article-title: A vortex-based method for improved flexible flapping-foil thruster performance
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2018.06.016
  contributor:
    fullname: Priovolos
– ident: ref_48
– ident: ref_10
– volume: 26
  start-page: 74
  year: 2010
  ident: ref_18
  article-title: Numerical analysis of active chordwise flexibility on the performance of non-symmetrical flapping airfoils
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2009.10.005
  contributor:
    fullname: Tay
– volume: 64
  start-page: 46
  year: 2016
  ident: ref_53
  article-title: Effect of mass and chordwise flexibility on 2D self-propelled flapping wings
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2016.04.002
– ident: ref_13
  doi: 10.3390/jmse7120424
– volume: 32
  start-page: 33
  year: 2000
  ident: ref_15
  article-title: Hydrodynamics of fishlike swimming
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.32.1.33
  contributor:
    fullname: Triantafyllou
– volume: 101
  start-page: 88
  year: 2015
  ident: ref_51
  article-title: Analytical derivation of a general 2D non-prismatic beam model based on the Hellinger-Reissner principle
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.06.020
  contributor:
    fullname: Beltempo
– volume: 52
  start-page: 1
  year: 2015
  ident: ref_7
  article-title: Ship propulsion in waves by actively controlled flapping foils
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2015.04.009
  contributor:
    fullname: Belibassakis
– volume: 70
  start-page: 327
  year: 2017
  ident: ref_12
  article-title: Effects of chordwise flexibility on 2D flapping foils used as an energy extraction device
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.01.009
  contributor:
    fullname: Jeanmonod
– volume: 614
  start-page: 355
  year: 2008
  ident: ref_23
  article-title: Optimal flexibility of a flapping appendage in an inviscid fluid
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008003297
  contributor:
    fullname: Alben
– volume: 55
  start-page: 986
  year: 1974
  ident: ref_50
  article-title: Transverse vibrations of double-tapered cantilever beams with end support and with end mass
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1914673
  contributor:
    fullname: Mabie
– volume: 43
  start-page: 6855
  year: 2003
  ident: ref_45
  article-title: Computation of Rayleigh Damping Coefficients for Large Systems
  publication-title: Electron. J. Geotech. Eng.
  contributor:
    fullname: Chowdhury
– volume: 28
  start-page: 011903
  year: 2016
  ident: ref_35
  article-title: Thrust generation by a heaving flexible foil: Resonance, nonlinearities and optimality
  publication-title: Phys. Fluids
  doi: 10.1063/1.4939499
  contributor:
    fullname: Paraz
– volume: 28
  start-page: 633
  year: 2004
  ident: ref_41
  article-title: Simulation of unsteady motion of a propeller in a fluid including free wake modelling
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2003.10.004
  contributor:
    fullname: Politis
– ident: ref_40
– ident: ref_42
  doi: 10.14355/daoe.2016.05.001
– volume: 41
  start-page: 47
  year: 2014
  ident: ref_49
  article-title: Hydrodynamic analysis of flapping-foil thrusters operating beneath the free surface and in waves
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2014.01.008
  contributor:
    fullname: Filippas
– ident: ref_44
– volume: 90
  start-page: 713
  year: 1979
  ident: ref_22
  article-title: Large amplitude unsteady motion of a flexible slender propulsor
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112079002494
  contributor:
    fullname: Katz
– volume: 195
  start-page: 104325
  year: 2019
  ident: ref_37
  article-title: A strongly coupled Eulerian Lagrangian method verified in 2D external compressible flows
  publication-title: J. Comput. Fluids
  doi: 10.1016/j.compfluid.2019.104325
  contributor:
    fullname: Papadakis
– volume: 71
  start-page: 217
  year: 2017
  ident: ref_36
  article-title: On the effects of tip deflection in flapping propulsion
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.04.003
  contributor:
    fullname: Gharib
– volume: 67
  start-page: 22
  year: 2015
  ident: ref_29
  article-title: Experimental assessment of performance characteristics for pitching flexible propulsors
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2016.09.003
  contributor:
    fullname: Egan
– volume: 57
  start-page: 357
  year: 2015
  ident: ref_28
  article-title: Effects of the stiffness, inertia and oscillation kinematics on the thrust generation and efficiency of an oscillating-foil propulsion system
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2015.07.003
  contributor:
    fullname: Richards
– volume: 51
  start-page: 402
  year: 2014
  ident: ref_31
  article-title: Thrust enhancement due to flexible trailing-edge of plunging foils
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.09.006
  contributor:
    fullname: Cleaver
– ident: ref_46
– volume: 11
  start-page: 2087
  year: 2008
  ident: ref_26
  article-title: Propulsion performance of a skeleton-strengthened fin
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.016279
  contributor:
    fullname: Zhu
– volume: 17
  start-page: 261
  year: 2012
  ident: ref_5
  article-title: Numerical study on active wave devouring propulsion
  publication-title: J. Mar. Technol. (Jpn.)
  doi: 10.1007/s00773-012-0169-y
  contributor:
    fullname: Silva
– volume: 84
  start-page: 98
  year: 2014
  ident: ref_4
  article-title: Flapping wing propulsor design: An approach based on systematic 3D-BEM
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.04.002
  contributor:
    fullname: Politis
– volume: 46
  start-page: 174
  year: 2014
  ident: ref_11
  article-title: A review on flow energy harvesters based on flapping foils
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.01.002
  contributor:
    fullname: Xiao
– ident: ref_38
  doi: 10.1109/OCEANSE.2019.8867084
– volume: 71
  start-page: 15
  year: 2017
  ident: ref_20
  article-title: High-fidelity multipoint hydrostructural optimization of a 3-D hydrofoil
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.02.001
  contributor:
    fullname: Garg
– volume: 57
  start-page: 8
  year: 2016
  ident: ref_8
  article-title: Model test and simulation of a ship with wavefoils
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2016.02.002
  contributor:
    fullname: Steen
– volume: 2
  start-page: 90
  year: 2017
  ident: ref_1
  article-title: Idichandy, “CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results”
  publication-title: J. Ocean Eng. Sci.
  doi: 10.1016/j.joes.2017.03.003
  contributor:
    fullname: Bhattacharyya
– ident: ref_39
  doi: 10.1201/9780849384165
SSID ssj0000826106
Score 2.259751
Snippet Recent studies indicate that nature-inspired thrusters based on flexible oscillating foils show enhanced propulsive performance. However, understanding the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 56
SubjectTerms Autonomous underwater vehicles
Biomimetics
Computational fluid dynamics
coupled bem–fem
Deformation
Design parameters
Efficiency
Energy efficiency
Finite element method
Flapping
Flexibility
flexible flapping foils
Fluid flow
Fluid-structure interaction
hydroelasticity
Investigations
Kirchhoff theory
Mathematical models
Methods
Numerical analysis
Numerical methods
Physics
Pitching
Potential theory
Propulsive efficiency
Rigidity
Simulation
Strouhal number
Swimming
Thin plates
Thrusters
unsteady marine thruster
Title A Non-Linear BEM–FEM Coupled Scheme for the Performance of Flexible Flapping-Foil Thrusters
URI https://www.proquest.com/docview/2558445197
https://doaj.org/article/1aa7ade9a4c84fa79561ed7ea98fe1d0
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagE0JCPEWhIA9doyZNGsdjWxqx8JBaJBYUXewzD5UEUbrzH_iH_BLOTlqKGFjYIitKojvf3ffFvs-MtREMUBkTdp-f9iLtKw-gqzypoh4arXroTm84H4vL2-RsZGVylkd92T1hlTxwZbhOACBAo4RIJZEBYRsxUQsEmRgMdMXW_XiFTLkcTKiZRquGvJB4fefpeYaUja305Y8S5JT6fyViV13SbbZVw0Lerz5nh61hscs2rxRCUWtK77G7Pr8sC4_YI81OPhhdfL5_pKMLPiznL1PUfEz2f0ZOKJQTquPX3y0BvDQ8tcqX-RTpAqwmw72Xlo9TPnmwTReEAffZTTqaDM-9-nQET4Vx9OYpIRMfjKAMoYwRSijU2hDe0gESKMOkC3mgI5kEmORxDyCONYVnkDuIE8XhAWsUZYGHjMsQKPCj2C366S49Qoa-BRI-SAM6b7L2wmDZSyWCkRF5sHbNVuzaZANrzOUtVrnaDZA_s9qf2V_-bLLWwhVZHU6zjHhPYpXUpDj6j3ccs42upc3uT0qLNd5e53jC1md6fuqm0Rdf8M8A
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Non-Linear+BEM%E2%80%93FEM+Coupled+Scheme+for+the+Performance+of+Flexible+Flapping-Foil+Thrusters&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Anevlavi%2C+Dimitra+E&rft.au=Filippas%2C+Evangelos+S&rft.au=Karperaki%2C+Angeliki+E&rft.date=2020-01-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=8&rft.issue=1&rft.spage=56&rft_id=info:doi/10.3390%2Fjmse8010056&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon