Abiotic stress-triggered oxidative challenges: Where does H2S act?
Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adapta...
Saved in:
Published in: | Journal of genetics and genomics Vol. 49; no. 8; pp. 748 - 755 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-08-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues. |
---|---|
AbstractList | Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues. |
Author | Han, Yi de Bont, Linda Mu, Xiujie Wei, Bo |
Author_xml | – sequence: 1 givenname: Linda surname: de Bont fullname: de Bont, Linda organization: National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China – sequence: 2 givenname: Xiujie surname: Mu fullname: Mu, Xiujie organization: School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China – sequence: 3 givenname: Bo orcidid: 0000-0001-7042-8078 surname: Wei fullname: Wei, Bo organization: School of Biology, Food and Environment, Hefei University, Hefei, Anhui 230601, China – sequence: 4 givenname: Yi orcidid: 0000-0002-4424-1485 surname: Han fullname: Han, Yi email: yi.han@ahau.edu.cn organization: National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China |
BookMark | eNp9kDFPwzAQhT0UibbwA9gysqTYTu3EMKBSAUWqxACI0XLsS-oojYvtVvDvcVVmpCfdcN97unsTNBrcAAhdETwjmPCbbta17YxiSmc4iYgRGhNeFnnFaHmOJiF0GLNKEDZGD4vaumh1FqKHEPLobduCB5O5b2tUtAfI9Eb1PQwthNvsc5OWmXEQshV9y5SO9xforFF9gMu_OUUfT4_vy1W-fn1-WS7WuS74POZ11YiiKjEIAWpOy3SCEIJTKFTFWM1KQQwQDrjhTNWJMnPTVGXdcMrqWohiiq5PuTvvvvYQotzaoKHv1QBuHyTlKZ4mGieUnFDtXQgeGrnzdqv8jyRYHjuSnUwdyWNHEieRY_zdyQPph4MFL4O2MGgw1oOO0jj7j_sXOvJxwQ |
CitedBy_id | crossref_primary_10_1016_j_scienta_2023_112368 crossref_primary_10_1007_s00299_024_03238_3 crossref_primary_10_1007_s10661_024_12763_3 crossref_primary_10_1007_s11356_024_33298_7 crossref_primary_10_1016_j_stress_2024_100396 crossref_primary_10_1016_j_scitotenv_2023_168712 crossref_primary_10_3389_fnut_2023_1143511 crossref_primary_10_1016_j_redox_2023_102805 crossref_primary_10_1016_j_foodchem_2022_133940 crossref_primary_10_1016_j_jplph_2022_153892 crossref_primary_10_1016_j_envpol_2023_122816 crossref_primary_10_3390_ijms23105666 crossref_primary_10_1016_j_envexpbot_2022_105075 crossref_primary_10_1111_jipb_13611 crossref_primary_10_1007_s10895_023_03187_2 crossref_primary_10_1016_j_rsci_2023_05_001 crossref_primary_10_1080_10643389_2023_2210985 |
Cites_doi | 10.1016/j.jbc.2021.100429 10.1007/s00425-020-03362-w 10.1016/j.molp.2020.01.004 10.1016/j.cub.2021.06.055 10.1093/jxb/erab239 10.1016/j.bbrc.2011.09.090 10.1111/ppl.12976 10.1089/ars.2019.7777 10.1105/tpc.19.00826 10.1093/jxb/erx294 10.1104/pp.123.3.1163 10.1111/pce.13727 10.1016/j.niox.2021.04.002 10.1186/s12870-017-1110-7 10.1021/jacs.1c06372 10.1111/j.1744-7909.2009.00885.x 10.1007/s10265-020-01182-3 10.1016/j.jplph.2014.12.018 10.1007/s00425-014-2209-9 10.1016/j.semcdb.2017.07.013 10.1021/j100290a060 10.1111/jipb.13022 10.1104/pp.15.00009 10.1093/jxb/ert055 10.1016/j.tplants.2019.08.003 10.1111/tpj.13627 10.1111/jipb.12004 10.1016/j.plaphy.2020.08.006 10.1111/j.1365-3040.2011.02376.x 10.1104/pp.17.01636 10.1016/j.freeradbiomed.2010.10.705 10.1111/j.1469-8137.2007.02251.x 10.1111/pce.13736 10.1007/s11738-011-0746-4 10.1104/pp.126.1.445 10.1104/pp.114.245373 10.1016/j.niox.2014.06.003 10.1093/jxb/err145 10.1016/j.jplph.2013.08.009 10.1038/nature10427 10.1016/j.envexpbot.2018.06.036 10.1016/B978-0-12-405881-1.00001-X 10.1002/anie.201305876 10.1104/pp.114.255216 10.3389/fpls.2016.00930 10.1071/FP20205 10.1038/srep12516 10.1016/j.niox.2017.09.008 10.1016/j.plaphy.2020.09.020 10.3389/fpls.2020.00108 10.3389/fpls.2016.01669 10.3390/antiox10010108 10.1146/annurev-arplant-042110-103921 10.1007/s00425-019-03334-9 10.1038/s41438-020-00439-1 10.1016/j.febslet.2009.08.033 10.1104/pp.19.01504 10.1371/journal.pone.0077047 10.1093/jxb/ert006 10.1016/j.plaphy.2013.05.042 10.1111/jipb.12779 10.3390/ijms21010118 10.1016/j.plaphy.2020.08.014 10.1111/pce.13685 10.1371/journal.pone.0109669 10.1006/abbi.1994.1444 10.1093/pcp/pcaa144 10.1111/nph.12380 10.1073/pnas.1906768116 10.1016/j.plaphy.2020.06.002 10.1016/j.molcel.2018.05.024 10.1111/jipb.12302 10.3390/antiox10040508 10.1016/j.niox.2018.10.002 10.1111/pce.12092 10.1093/jxb/eraa093 10.1038/s41438-020-00453-3 10.1104/pp.104.040121 10.1073/pnas.1423481112 10.1146/annurev-arplant-050718-095955 10.1111/j.1742-4658.2005.04567.x 10.1038/s41598-017-02872-0 10.1104/pp.109.147975 10.1016/j.plaphy.2021.09.004 10.1104/pp.108.122465 |
ContentType | Journal Article |
Copyright | 2022 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China |
Copyright_xml | – notice: 2022 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.jgg.2022.02.019 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EndPage | 755 |
ExternalDocumentID | 10_1016_j_jgg_2022_02_019 S1673852722000716 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 2B. 2C. 4.4 457 4G. 53G 5GY 5VR 5VS 7-5 71M 8P~ 92E 92I AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFUIB AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CCEZO CHBEP CHDYS CIEJG CS3 CW9 DOVZS DU5 EBS EFJIC EFLBG EJD EO9 EP2 EP3 F5P FA0 FDB FIRID FNPLU FYGXN GBLVA HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDF SDG SES SSU SSZ T5K TCJ TGP ~G- -SA -S~ 5XA 5XB AAHBH AAXDM AAXKI AAYXX AFJKZ AKRWK CAJEA CITATION Q-- U1G U5K 7X8 |
ID | FETCH-LOGICAL-c364t-b8f93870e99ea42700599962e3a855b5791de16e0f65abe99d4df87bf625bb993 |
ISSN | 1673-8527 |
IngestDate | Sat Oct 26 00:18:46 EDT 2024 Thu Sep 26 17:02:38 EDT 2024 Fri Feb 23 02:40:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Hydrogen sulfide Oxidative stress Redox signaling Nitric oxide ROS |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c364t-b8f93870e99ea42700599962e3a855b5791de16e0f65abe99d4df87bf625bb993 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0001-7042-8078 0000-0002-4424-1485 |
PQID | 2638726250 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2638726250 crossref_primary_10_1016_j_jgg_2022_02_019 elsevier_sciencedirect_doi_10_1016_j_jgg_2022_02_019 |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of genetics and genomics |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shi, Ye, Han, Bian, Liu, Chan (bib65) 2015; 57 Wedmann, Bertlein, Macinkovic, Böltz, Miljkovic, Muñoz, Herrmann, Filipovic (bib71) 2014; 41 Li, Shi, Wang, Liu, Ding, Ma, Wang, Jia (bib41) 2020; 156 Shimizu, Hayashi, Arai, McGlynn, Masuda, Masuda (bib66) 2021; 62 Zhang, Cai, Ji, Ye, Lu, Yuan (bib84) 2020; 183 Ma, Zhang, Pei, Zhang, Liu, Liu, Hao, Jin, Pei (bib48) 2021; 8 Zhang, Tang, Liu, Wang, Yu, Peng, Fang, Ma, Wei, Hu (bib80) 2009; 51 Aroca, Serna, Gotor, Romero (bib3) 2015; 168 Jin, Shen, Qiao, Yang, Wang, Pei (bib34) 2011; 414 Ma, Shao, Zhang, Zheng (bib49) 2021; 48 Zhang, Zhou, Ge, Shen, Zhou, Gotor, Romero, Duan, Liu, Wu (bib81) 2020; 43 Zhao, Liu, Zhang, Yang, Wu, Li, Wang (bib88) 2020; 133 Noctor, Reichheld, Foyer (bib56) 2018; 80 Winterbourn (bib74) 2013; 528 Chen, Wang, Wu, He, Liu, Shangguan, Zheng (bib10) 2015; 5 Hatzfeld, Maruyama, Schmidt, Noji, Ishizawa, Saito (bib29) 2000; 123 Liu, Shen, Simon, Li, Ma, Zhu, Zheng (bib46) 2019; 21 Chaki, Valderrama, Fernández-Ocaña, Carreras, Gómez-Rodríguez, López-Jaramillo, Begara-Morales, Sánchez-Calvo, Luque, Leterrier (bib9) 2011; 34 Ni, Li, Shen, Qian, Xian (bib54) 2021; 143 Chen, Jia, Wang, Shi, Wang, Ma, Wang, Ren, Li (bib13) 2020; 13 Li, Yang, Long, Yang, Shen (bib43) 2013; 36 Bauer, Dietrich, Nowak, Sierralta, Papenbrock (bib6) 2004; 135 Yun, Feechan, Yin, Saidi, Le Bihan, Yu, Moore, Kang, Kwon, Spoel (bib77) 2011; 478 Zhang, Macinkovic, Devarie-Baez, Pan, Park, Carroll, Filipovic, Xian (bib79) 2014; 53 Baudouin, Poilevey, Hewage, Cochet, Puyaubert, Bailly (bib5) 2016; 7 Zhang, Ma, Chen, Zhang, Fan, Zhang, Wei, Li, Xuan, Noctor (bib85) 2020; 43 Wang, Du, Hou, Zhao, Hsu, Yuan, Zhu, Tao, Song, Zhu (bib70) 2015; 112 Nishizawa, Yabuta, Shigeoka (bib55) 2008; 147 Winterbourn, Metodiewa (bib75) 1994; 314 Mei, Chen, Shen, Shen, Huang (bib50) 2017; 17 Zhang, Zou, Lin, Pan, Zhang, Zhang, Wei, Shangguan, Chen (bib83) 2020; 43 Kaya, Higgs, Ashraf, Alyemeni, Ahmad (bib36) 2020; 168 Laureano-Marín, Moreno, Romero, Gotor (bib40) 2016; 171 Chen, Wu, Wang, Zheng, Lin, Dong, He, Pei, Zheng (bib11) 2011; 62 Deng, Zhou, Wang, Zhang, Chen (bib22) 2020; 251 Hu, Zhang, Yao, Rong, Ding, Tang, Yang, Huang, Xu, Chen (bib31) 2020; 7 Wei, Zhang, Chao, Zhang, Zhao, Noctor, Liu, Han (bib72) 2017; 7 Christou, Manganaris, Papadopoulos, Fotopoulos (bib16) 2013; 64 Corpas, Barroso, González-Gordo, Muñoz-Vargas, Palma (bib19) 2019; 61 Li, Xie, Li (bib42) 2015; 177 Shen, Zhang, Zhou, Zhou, Cui, Gotor, Romero, Fu, Yang, Foyer (bib64) 2020; 32 Iqbal, Umar, Khan, Corpas (bib33) 2021; 10 Kharbech, Ben Massoud, Sakouhi, Djebali, Jose Mur, Chaoui (bib37) 2020; 154 Shan, Zhang, Li, Zhao, Tian, Zhao, Wu, Wei, Liu (bib62) 2011; 33 Aroca, Benito, Gotor, Romero (bib2) 2017; 68 Cheng, Zhang, Jiao, Su, Yang, Zhou, Peng, Wang, Wang (bib15) 2013; 70 Takahashi, Kopriva, Giordano, Saito, Hell (bib68) 2011; 62 Moseler, Dhalleine, Rouhier, Couturier (bib52) 2021; 296 Shen, Xing, Yuan, Liu, Jin, Zhang, Pei (bib63) 2013; 8 Yang, Mu, Chen, Feng, Hu, Li, Zhou, Zuo (bib76) 2015; 167 Carballal, Trujillo, Cuevasanta, Bartesaghi, Möller, Folkes, García-Bereguiaín, Gutiérrez-Merino, Wardman, Denicola (bib8) 2011; 50 Tang, An, Cao, Xu, Wang, Zhang, Liu, Sun (bib69) 2020; 11 Fu, Liu, He, Tian, Yu, Yang (bib26) 2020; 33 Kovacs, Holzmeister, Wirtz, Geerlof, Fröhlich, Römling, Kuruthukulangarakoola, Linster, Hell, Arnold (bib38) 2016; 7 Li, Zhu, He, Yong, Peng, Zhang, Ma, Yan, Huang, Nie (bib44) 2019; 161 Alvarez, Calo, Romero, García, Gotor (bib1) 2010; 152 Sirichandra, Gu, Hu, Davanture, Lee, Djaoui, Valot, Zivy, Leung, Merlot (bib67) 2009; 583 Fang, Liu, Long, Liang, Jin, Zhang, Liu, Li, Zhai, Pei (bib24) 2017; 91 Jurado-Flores, Romero, Gotor (bib35) 2021; 10 Duan, Xu, Xie, Li, Qi, Parizot, Zhang, Chen, Han, Van Breusegem (bib23) 2021; 31 Scuffi, Álvarez, Laspina, Gotor, Lamattina, García-Mata (bib59) 2014; 166 Shan, Dai, Sun (bib61) 2012; 6 Muñoz-Vargas, González-Gordo, Cañas, López-Jaramillo, Palma, Corpas (bib53) 2018; 81 Wei, Liu, Li, Hu, Shen, Qiao, Zhu, Chen, Liu, Zheng (bib73) 2021; 111–112 Zhang, Zhou, Zhou, Zhao, Gotor, Romero, Shen, Ge, Zhang, Shen (bib82) 2021; 63 da-Silva, Mollica, Vicente, Peres, Modolo (bib21) 2018; 76 Mills, Schmidt, Matheson, Meisel (bib51) 1987; 91 Scuffi, Nietzel, Di Fino, Meyer, Lamattina, Schwarzländer, Laxalt, García-Mata (bib60) 2018; 176 Riemenschneider, Wegele, Schmidt, Papenbrock (bib58) 2005; 272 Polle (bib57) 2001; 126 Zhao, Zhang, Zhou, Zhou, Gotor, Romero, Shen, Yuan, Xie (bib87) 2020; 155 Foyer, Noctor (bib25) 2020; 71 Hou, Wang, Liu, Hou, Liu (bib30) 2013; 55 Huang, Willems, Wei, Tian, Ferreira, Bodra, Martínez Gache, Wahni, Liu, Vertommen (bib32) 2019; 116 Lin, Zhang, Qi, Cui, Xie, Shen (bib45) 2014; 171 Ma, Yang, Zhao, Wei, Kong, Wang, Zhang, Yang, Hu (bib47) 2015; 241 Chen, Tian, Han (bib14) 2020; 71 González-Gordo, Palma, Corpas (bib27) 2020; 155 Chen, Yang, Wen, Jin, Liu (bib12) 2021; 167 Corpas (bib17) 2019; 24 Han, Zhang, Chen, Gao, Xuan, Xu, Ding, Shen (bib28) 2008; 177 Begara-Morales, Chaki, Sánchez-Calvo, Mata-Pérez, Leterrier, Palma, Barroso, Corpas (bib7) 2013; 64 Corpas, Barroso (bib18) 2013; 199 Cui, Chen, Zhu, Jin, Xie, Cui, Xia, Zhang, Shen (bib20) 2014; 9 Zhang, Liu, Zhai, Li, Bi, Ai (bib86) 2020; 251 Aroca, Zhang, Xie, Romero, Gotor (bib4) 2021; 72 Zhan, Wang, Chen, Yang, Feng, Gong, Ren, Wu, Mu, Li (bib78) 2018; 71 Laureano-Marín, García, Romero, Gotor (bib39) 2014; 5 Ni (10.1016/j.jgg.2022.02.019_bib54) 2021; 143 Takahashi (10.1016/j.jgg.2022.02.019_bib68) 2011; 62 Yang (10.1016/j.jgg.2022.02.019_bib76) 2015; 167 Lin (10.1016/j.jgg.2022.02.019_bib45) 2014; 171 Scuffi (10.1016/j.jgg.2022.02.019_bib59) 2014; 166 Jurado-Flores (10.1016/j.jgg.2022.02.019_bib35) 2021; 10 Noctor (10.1016/j.jgg.2022.02.019_bib56) 2018; 80 Ma (10.1016/j.jgg.2022.02.019_bib48) 2021; 8 Sirichandra (10.1016/j.jgg.2022.02.019_bib67) 2009; 583 Foyer (10.1016/j.jgg.2022.02.019_bib25) 2020; 71 Zhang (10.1016/j.jgg.2022.02.019_bib86) 2020; 251 Cheng (10.1016/j.jgg.2022.02.019_bib15) 2013; 70 Shan (10.1016/j.jgg.2022.02.019_bib62) 2011; 33 Riemenschneider (10.1016/j.jgg.2022.02.019_bib58) 2005; 272 Jin (10.1016/j.jgg.2022.02.019_bib34) 2011; 414 Corpas (10.1016/j.jgg.2022.02.019_bib18) 2013; 199 Aroca (10.1016/j.jgg.2022.02.019_bib4) 2021; 72 Han (10.1016/j.jgg.2022.02.019_bib28) 2008; 177 Bauer (10.1016/j.jgg.2022.02.019_bib6) 2004; 135 Zhang (10.1016/j.jgg.2022.02.019_bib83) 2020; 43 Hu (10.1016/j.jgg.2022.02.019_bib31) 2020; 7 Chen (10.1016/j.jgg.2022.02.019_bib10) 2015; 5 Chen (10.1016/j.jgg.2022.02.019_bib11) 2011; 62 Corpas (10.1016/j.jgg.2022.02.019_bib19) 2019; 61 Fu (10.1016/j.jgg.2022.02.019_bib26) 2020; 33 Shen (10.1016/j.jgg.2022.02.019_bib64) 2020; 32 Mei (10.1016/j.jgg.2022.02.019_bib50) 2017; 17 Winterbourn (10.1016/j.jgg.2022.02.019_bib74) 2013; 528 Alvarez (10.1016/j.jgg.2022.02.019_bib1) 2010; 152 Hatzfeld (10.1016/j.jgg.2022.02.019_bib29) 2000; 123 Scuffi (10.1016/j.jgg.2022.02.019_bib60) 2018; 176 Zhang (10.1016/j.jgg.2022.02.019_bib80) 2009; 51 Winterbourn (10.1016/j.jgg.2022.02.019_bib75) 1994; 314 Iqbal (10.1016/j.jgg.2022.02.019_bib33) 2021; 10 Fang (10.1016/j.jgg.2022.02.019_bib24) 2017; 91 Li (10.1016/j.jgg.2022.02.019_bib42) 2015; 177 Laureano-Marín (10.1016/j.jgg.2022.02.019_bib40) 2016; 171 Zhao (10.1016/j.jgg.2022.02.019_bib87) 2020; 155 Aroca (10.1016/j.jgg.2022.02.019_bib3) 2015; 168 Chen (10.1016/j.jgg.2022.02.019_bib12) 2021; 167 Wang (10.1016/j.jgg.2022.02.019_bib70) 2015; 112 Mills (10.1016/j.jgg.2022.02.019_bib51) 1987; 91 Chen (10.1016/j.jgg.2022.02.019_bib13) 2020; 13 Shimizu (10.1016/j.jgg.2022.02.019_bib66) 2021; 62 Shi (10.1016/j.jgg.2022.02.019_bib65) 2015; 57 Polle (10.1016/j.jgg.2022.02.019_bib57) 2001; 126 Wei (10.1016/j.jgg.2022.02.019_bib72) 2017; 7 Begara-Morales (10.1016/j.jgg.2022.02.019_bib7) 2013; 64 Kharbech (10.1016/j.jgg.2022.02.019_bib37) 2020; 154 Carballal (10.1016/j.jgg.2022.02.019_bib8) 2011; 50 Zhang (10.1016/j.jgg.2022.02.019_bib82) 2021; 63 Zhao (10.1016/j.jgg.2022.02.019_bib88) 2020; 133 Hou (10.1016/j.jgg.2022.02.019_bib30) 2013; 55 Ma (10.1016/j.jgg.2022.02.019_bib49) 2021; 48 Liu (10.1016/j.jgg.2022.02.019_bib46) 2019; 21 Chen (10.1016/j.jgg.2022.02.019_bib14) 2020; 71 Kovacs (10.1016/j.jgg.2022.02.019_bib38) 2016; 7 Li (10.1016/j.jgg.2022.02.019_bib43) 2013; 36 Baudouin (10.1016/j.jgg.2022.02.019_bib5) 2016; 7 Zhang (10.1016/j.jgg.2022.02.019_bib79) 2014; 53 Zhang (10.1016/j.jgg.2022.02.019_bib84) 2020; 183 Deng (10.1016/j.jgg.2022.02.019_bib22) 2020; 251 Laureano-Marín (10.1016/j.jgg.2022.02.019_bib39) 2014; 5 da-Silva (10.1016/j.jgg.2022.02.019_bib21) 2018; 76 Tang (10.1016/j.jgg.2022.02.019_bib69) 2020; 11 Li (10.1016/j.jgg.2022.02.019_bib41) 2020; 156 González-Gordo (10.1016/j.jgg.2022.02.019_bib27) 2020; 155 Shan (10.1016/j.jgg.2022.02.019_bib61) 2012; 6 Christou (10.1016/j.jgg.2022.02.019_bib16) 2013; 64 Moseler (10.1016/j.jgg.2022.02.019_bib52) 2021; 296 Yun (10.1016/j.jgg.2022.02.019_bib77) 2011; 478 Muñoz-Vargas (10.1016/j.jgg.2022.02.019_bib53) 2018; 81 Kaya (10.1016/j.jgg.2022.02.019_bib36) 2020; 168 Li (10.1016/j.jgg.2022.02.019_bib44) 2019; 161 Zhang (10.1016/j.jgg.2022.02.019_bib85) 2020; 43 Chaki (10.1016/j.jgg.2022.02.019_bib9) 2011; 34 Huang (10.1016/j.jgg.2022.02.019_bib32) 2019; 116 Wei (10.1016/j.jgg.2022.02.019_bib73) 2021; 111–112 Shen (10.1016/j.jgg.2022.02.019_bib63) 2013; 8 Duan (10.1016/j.jgg.2022.02.019_bib23) 2021; 31 Zhan (10.1016/j.jgg.2022.02.019_bib78) 2018; 71 Zhang (10.1016/j.jgg.2022.02.019_bib81) 2020; 43 Wedmann (10.1016/j.jgg.2022.02.019_bib71) 2014; 41 Nishizawa (10.1016/j.jgg.2022.02.019_bib55) 2008; 147 Aroca (10.1016/j.jgg.2022.02.019_bib2) 2017; 68 Corpas (10.1016/j.jgg.2022.02.019_bib17) 2019; 24 Ma (10.1016/j.jgg.2022.02.019_bib47) 2015; 241 Cui (10.1016/j.jgg.2022.02.019_bib20) 2014; 9 |
References_xml | – volume: 168 start-page: 334 year: 2015 end-page: 342 ident: bib3 article-title: -sulfhydration: a cysteine posttranslational modification in plant systems publication-title: Plant Physiol. contributor: fullname: Romero – volume: 167 start-page: 738 year: 2021 end-page: 747 ident: bib12 article-title: Hydrogen sulfide alleviates salinity stress in publication-title: Plant Physiol. Biochem. contributor: fullname: Liu – volume: 43 start-page: 624 year: 2020 end-page: 636 ident: bib81 article-title: Abscisic acid-triggered guard cell L-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure publication-title: Plant Cell Environ. contributor: fullname: Wu – volume: 154 start-page: 646 year: 2020 end-page: 656 ident: bib37 article-title: Exogenous application of hydrogen sulfide reduces chromium toxicity in maize seedlings by suppressing NADPH oxidase activities and methylglyoxal accumulation publication-title: Plant Physiol. Biochem. contributor: fullname: Chaoui – volume: 6 start-page: 248 year: 2012 end-page: 254 ident: bib61 article-title: Hydrogen sulfide protects wheat seedlings against copper stress by regulating the ascorbate and glutathione metabolism in leaves publication-title: Aust. J. Crop. Sci. contributor: fullname: Sun – volume: 57 start-page: 628 year: 2015 end-page: 640 ident: bib65 article-title: Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis publication-title: J. Integr. Plant Biol. contributor: fullname: Chan – volume: 71 start-page: 157 year: 2020 end-page: 182 ident: bib25 article-title: Redox homeostasis and signaling in a higher-CO publication-title: Annu. Rev. Plant Biol. contributor: fullname: Noctor – volume: 177 start-page: 121 year: 2015 end-page: 127 ident: bib42 article-title: Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize ( publication-title: J. Plant Physiol. contributor: fullname: Li – volume: 5 start-page: 12516 year: 2015 ident: bib10 article-title: Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots publication-title: Sci. Rep. contributor: fullname: Zheng – volume: 11 start-page: 108 year: 2020 ident: bib69 article-title: Improving photosynthetic capacity, alleviating photosynthetic inhibition and oxidative stress under low temperature stress with exogenous hydrogen sulfide in blueberry seedlings publication-title: Front. Plant Sci. contributor: fullname: Sun – volume: 528 start-page: 3 year: 2013 end-page: 25 ident: bib74 article-title: The biological chemistry of hydrogen peroxide publication-title: Methods Enzymol. contributor: fullname: Winterbourn – volume: 34 start-page: 1803 year: 2011 end-page: 1818 ident: bib9 article-title: High temperature triggers the metabolism of publication-title: Plant Cell Environ. contributor: fullname: Leterrier – volume: 48 start-page: 195 year: 2021 end-page: 205 ident: bib49 article-title: Hydrogen sulfide induced by hydrogen peroxide mediates brassinosteroid-induced stomatal closure of publication-title: Funct. Plant Biol. contributor: fullname: Zheng – volume: 314 start-page: 284 year: 1994 end-page: 290 ident: bib75 article-title: The reaction of superoxide with reduced glutathione publication-title: Arch. Biochem. Biophys. contributor: fullname: Metodiewa – volume: 152 start-page: 656 year: 2010 end-page: 669 ident: bib1 article-title: An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis publication-title: Plant Physiol. contributor: fullname: Gotor – volume: 43 start-page: 1130 year: 2020 end-page: 1147 ident: bib83 article-title: Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean publication-title: Plant Cell Environ. contributor: fullname: Chen – volume: 36 start-page: 1564 year: 2013 end-page: 1572 ident: bib43 article-title: Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize ( publication-title: Plant Cell Environ. contributor: fullname: Shen – volume: 123 start-page: 1163 year: 2000 end-page: 1171 ident: bib29 article-title: β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in Spinach and Arabidopsis publication-title: Plant Physiol. contributor: fullname: Saito – volume: 80 start-page: 3 year: 2018 end-page: 12 ident: bib56 article-title: ROS-related redox regulation and signaling in plants publication-title: Semin. Cell Dev. Biol. contributor: fullname: Foyer – volume: 64 start-page: 1121 year: 2013 end-page: 1134 ident: bib7 article-title: Protein tyrosine nitration in pea roots during development and senescence publication-title: J. Exp. Bot. contributor: fullname: Corpas – volume: 33 start-page: 2533 year: 2011 end-page: 2540 ident: bib62 article-title: Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress publication-title: Acta Physiol. Plant. contributor: fullname: Liu – volume: 241 start-page: 887 year: 2015 end-page: 906 ident: bib47 article-title: Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant publication-title: Planta contributor: fullname: Hu – volume: 24 start-page: 983 year: 2019 end-page: 988 ident: bib17 article-title: Hydrogen sulfide: a new warrior against abiotic stress publication-title: Trends Plant Sci. contributor: fullname: Corpas – volume: 176 start-page: 2532 year: 2018 end-page: 2542 ident: bib60 article-title: Hydrogen sulfide increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling publication-title: Plant Physiol. contributor: fullname: García-Mata – volume: 116 start-page: 21256 year: 2019 end-page: 21261 ident: bib32 article-title: Mining for protein publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Vertommen – volume: 71 start-page: 2862 year: 2020 end-page: 2869 ident: bib14 article-title: Hydrogen sulfide: a multi-tasking signal molecule in the regulation of oxidative stress responses publication-title: J. Exp. Bot. contributor: fullname: Han – volume: 272 start-page: 1291 year: 2005 end-page: 1304 ident: bib58 article-title: Isolation and characterization of a D-cysteine desulfhydrase protein from publication-title: FEBS J. contributor: fullname: Papenbrock – volume: 9 start-page: e109669 year: 2014 ident: bib20 article-title: Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in publication-title: PLoS ONE contributor: fullname: Shen – volume: 155 start-page: 367 year: 2020 end-page: 373 ident: bib87 article-title: Current approaches for detection of hydrogen sulfide and persulfidation in biological systems publication-title: Plant Physiol. Biochem. contributor: fullname: Xie – volume: 91 start-page: 1590 year: 1987 end-page: 1596 ident: bib51 article-title: Thermal and photochemical reactions of sulfhydryl radicals. Implications for colloid photocorrosion publication-title: Phys. Chem. contributor: fullname: Meisel – volume: 10 start-page: 508 year: 2021 ident: bib35 article-title: Label-free quantitative proteomic analysis of nitrogen starvation in Arabidopsis root reveals new aspects of H publication-title: Antioxidants (Basel) contributor: fullname: Gotor – volume: 50 start-page: 196 year: 2011 end-page: 205 ident: bib8 article-title: Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest publication-title: Free Radic. Biol. Med. contributor: fullname: Denicola – volume: 155 start-page: 579 year: 2020 end-page: 588 ident: bib27 article-title: Appraisal of H publication-title: Plant Physiol. Biochem. contributor: fullname: Corpas – volume: 166 start-page: 2065 year: 2014 end-page: 2076 ident: bib59 article-title: Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure publication-title: Plant Physiol. contributor: fullname: García-Mata – volume: 199 start-page: 633 year: 2013 end-page: 635 ident: bib18 article-title: Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants publication-title: New Phytol. contributor: fullname: Barroso – volume: 76 start-page: 164 year: 2018 end-page: 173 ident: bib21 article-title: NO, hydrogen sulfide does not come first during tomato response to high salinity publication-title: Nitric Oxide. contributor: fullname: Modolo – volume: 7 start-page: 211 year: 2020 ident: bib31 article-title: A nuclear-localized cysteine desulfhydrase plays a role in fruit ripening in tomato publication-title: Hortic. Res. contributor: fullname: Chen – volume: 55 start-page: 277 year: 2013 end-page: 289 ident: bib30 article-title: Hydrogen sulfide regulates ethylene-induced stomatal closure in publication-title: J. Integr. Plant Biol. contributor: fullname: Liu – volume: 7 start-page: 1669 year: 2016 ident: bib38 article-title: ROS-mediated inhibition of publication-title: Front. Plant Sci. contributor: fullname: Arnold – volume: 8 start-page: e77047 year: 2013 ident: bib63 article-title: Hydrogen sulfide improves drought tolerance in publication-title: PLoS ONE contributor: fullname: Pei – volume: 10 start-page: 108 year: 2021 ident: bib33 article-title: Nitric oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat ( publication-title: Antioxidants (Basel). contributor: fullname: Corpas – volume: 71 start-page: 142 year: 2018 end-page: 154 ident: bib78 article-title: -Nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants publication-title: Mol. Cell. contributor: fullname: Li – volume: 171 start-page: 1378 year: 2016 end-page: 1391 ident: bib40 article-title: Negative regulation of autophagy by sulfide is independent of reactive oxygen species publication-title: Plant Physiol. contributor: fullname: Gotor – volume: 5 start-page: 683 year: 2014 ident: bib39 article-title: Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in publication-title: Front. Plant Sci. contributor: fullname: Gotor – volume: 133 start-page: 393 year: 2020 end-page: 407 ident: bib88 article-title: Alleviation of osmotic stress by H publication-title: J. Plant Res. contributor: fullname: Wang – volume: 177 start-page: 155 year: 2008 end-page: 166 ident: bib28 article-title: Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of publication-title: New Phytol. contributor: fullname: Shen – volume: 296 start-page: 100429 year: 2021 ident: bib52 article-title: 3-mercaptopyruvate sulfurtransferases interact with and are protected by reducing systems publication-title: J. Boil. Chem. contributor: fullname: Couturier – volume: 32 start-page: 1000 year: 2020 end-page: 1017 ident: bib64 article-title: Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling publication-title: Plant Cell contributor: fullname: Foyer – volume: 251 start-page: 42 year: 2020 ident: bib22 article-title: Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis publication-title: Planta contributor: fullname: Chen – volume: 61 start-page: 871 year: 2019 end-page: 883 ident: bib19 article-title: Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase inhibition publication-title: J. Integr. Plant Biol. contributor: fullname: Palma – volume: 183 start-page: 345 year: 2020 end-page: 357 ident: bib84 article-title: WRKY13 enhances cadmium tolerance by promoting D-CYSTEINE DESULFHYDRASE and hydrogen sulfide production publication-title: Plant Physiol. contributor: fullname: Yuan – volume: 13 start-page: 732 year: 2020 end-page: 744 ident: bib13 article-title: Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells publication-title: Mol. Plant contributor: fullname: Li – volume: 8 start-page: 19 year: 2021 ident: bib48 article-title: Hydrogen sulfide promotes flowering in heading Chinese cabbage by publication-title: Hortic. Res. contributor: fullname: Pei – volume: 21 start-page: 118 year: 2019 ident: bib46 article-title: Comparative proteomic analysis reveals the regulatory effects of H publication-title: Int. J. Mol. Sci. contributor: fullname: Zheng – volume: 251 start-page: 69 year: 2020 ident: bib86 article-title: Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber publication-title: Planta contributor: fullname: Ai – volume: 112 start-page: 613 year: 2015 end-page: 618 ident: bib70 article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by publication-title: Proc. NatI. Acad. Sci. U. S. A. contributor: fullname: Zhu – volume: 167 start-page: 1604 year: 2015 end-page: 1615 ident: bib76 article-title: -nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses publication-title: Plant Physiol. contributor: fullname: Zuo – volume: 51 start-page: 1086 year: 2009 end-page: 1094 ident: bib80 article-title: Hydrogen sulfide promotes root organogenesis in publication-title: J. Integr. Plant Biol. contributor: fullname: Hu – volume: 31 start-page: 3834 year: 2021 end-page: 3847 ident: bib23 article-title: Periodic root branching is influenced by light through an HY1-HY5-auxin pathway publication-title: Curr. Biol. contributor: fullname: Van Breusegem – volume: 156 start-page: 257 year: 2020 end-page: 266 ident: bib41 article-title: Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to Copper Oxide nanoparticles (CuO NPs)-induced oxidative stress publication-title: Plant Physiol. Biochem. contributor: fullname: Jia – volume: 70 start-page: 278 year: 2013 end-page: 286 ident: bib15 article-title: Hydrogen sulfide alleviates hypoxia-induced root tip death in publication-title: Plant Physiol. Biochem. contributor: fullname: Wang – volume: 414 start-page: 481 year: 2011 end-page: 486 ident: bib34 article-title: Hydrogen sulfide improves drought resistance in publication-title: Biochem. Biophys. Res. Commun. contributor: fullname: Pei – volume: 147 start-page: 1251 year: 2008 end-page: 1263 ident: bib55 article-title: Galactinol and raffinose constitute a novel function to protect plants from oxidative damage publication-title: Plant Physiol. contributor: fullname: Shigeoka – volume: 7 start-page: 2615 year: 2017 ident: bib72 article-title: Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis publication-title: Sci. Rep. contributor: fullname: Han – volume: 62 start-page: 100 year: 2021 end-page: 110 ident: bib66 article-title: Repressor activity of SqrR, a master regulator of persulfide-responsive genes, is regulated by heme coordination publication-title: Plant Cell Physiol. contributor: fullname: Masuda – volume: 478 start-page: 264 year: 2011 end-page: 268 ident: bib77 article-title: -nitrosylation of NADPH oxidase regulates cell death in plant immunity publication-title: Nature contributor: fullname: Spoel – volume: 126 start-page: 445 year: 2001 end-page: 462 ident: bib57 article-title: Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis publication-title: Plant Physiol. contributor: fullname: Polle – volume: 171 start-page: 1 year: 2014 end-page: 8 ident: bib45 article-title: Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner publication-title: J. Plant Physiol. contributor: fullname: Shen – volume: 7 start-page: 930 year: 2016 ident: bib5 article-title: The significance of hydrogen sulfide for Arabidopsis seed germination publication-title: Front. Plant Sci. contributor: fullname: Bailly – volume: 111–112 start-page: 14 year: 2021 end-page: 30 ident: bib73 article-title: Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings publication-title: Nitric Oxide. contributor: fullname: Zheng – volume: 68 start-page: 4915 year: 2017 end-page: 4927 ident: bib2 article-title: Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis publication-title: J. Exp. Bot. contributor: fullname: Romero – volume: 161 start-page: 255 year: 2019 end-page: 264 ident: bib44 article-title: The hydrogen sulfide, a downstream signaling molecule of hydrogen peroxide and nitric oxide, involves spermidine-regulated transcription factors and antioxidant defense in white clover in response to de-hydration publication-title: Environ. Exp. Bot. contributor: fullname: Nie – volume: 135 start-page: 916 year: 2004 end-page: 926 ident: bib6 article-title: Intracellular localization of Arabidopsis sulfurtransferases publication-title: Plant Physiol. contributor: fullname: Papenbrock – volume: 62 start-page: 157 year: 2011 end-page: 184 ident: bib68 article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes publication-title: Annu. Rev. Plant Biol. contributor: fullname: Hell – volume: 81 start-page: 36 year: 2018 end-page: 45 ident: bib53 article-title: Endogenous hydrogen sulfide (H publication-title: Nitric Oxide contributor: fullname: Corpas – volume: 63 start-page: 146 year: 2021 end-page: 160 ident: bib82 article-title: Hydrogen sulfide, a signaling molecule in plant stress responses publication-title: J. Integr. Plant Biol. contributor: fullname: Shen – volume: 91 start-page: 1038 year: 2017 end-page: 1050 ident: bib24 article-title: The Ca publication-title: Plant J. contributor: fullname: Pei – volume: 41 start-page: 85 year: 2014 end-page: 96 ident: bib71 article-title: Working with "H publication-title: Nitric Oxide contributor: fullname: Filipovic – volume: 62 start-page: 4481 year: 2011 end-page: 4493 ident: bib11 article-title: Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in publication-title: J. Exp. Bot. contributor: fullname: Zheng – volume: 143 start-page: 13325 year: 2021 end-page: 13332 ident: bib54 article-title: A sweet H publication-title: J. Am. Chem. Soc. contributor: fullname: Xian – volume: 43 start-page: 1175 year: 2020 end-page: 1191 ident: bib85 article-title: Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H publication-title: Plant Cell Environ. contributor: fullname: Noctor – volume: 168 start-page: 256 year: 2020 end-page: 277 ident: bib36 article-title: Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper ( publication-title: Physiol. Plantarum contributor: fullname: Ahmad – volume: 53 start-page: 575 year: 2014 end-page: 581 ident: bib79 article-title: Detection of protein publication-title: Angew Chem. Int. Ed. Engl. contributor: fullname: Xian – volume: 64 start-page: 1953 year: 2013 end-page: 1966 ident: bib16 article-title: Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways publication-title: J. Exp. Bot. contributor: fullname: Fotopoulos – volume: 72 start-page: 5893 year: 2021 end-page: 5904 ident: bib4 article-title: Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms publication-title: J. Exp. Bot. contributor: fullname: Gotor – volume: 17 start-page: 162 year: 2017 ident: bib50 article-title: Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings publication-title: BMC Plant Biol. contributor: fullname: Huang – volume: 33 start-page: 1061 year: 2020 end-page: 1076 ident: bib26 article-title: Direct proteomic mapping of cysteine persulfidation publication-title: Antioxid. Redox Signal. contributor: fullname: Yang – volume: 583 start-page: 2982 year: 2009 end-page: 2986 ident: bib67 article-title: Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase publication-title: FEBS Lett. contributor: fullname: Merlot – volume: 296 start-page: 100429 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib52 article-title: Arabidopsis thaliana 3-mercaptopyruvate sulfurtransferases interact with and are protected by reducing systems publication-title: J. Boil. Chem. doi: 10.1016/j.jbc.2021.100429 contributor: fullname: Moseler – volume: 251 start-page: 69 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib86 article-title: Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber publication-title: Planta doi: 10.1007/s00425-020-03362-w contributor: fullname: Zhang – volume: 13 start-page: 732 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib13 article-title: Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells publication-title: Mol. Plant doi: 10.1016/j.molp.2020.01.004 contributor: fullname: Chen – volume: 31 start-page: 3834 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib23 article-title: Periodic root branching is influenced by light through an HY1-HY5-auxin pathway publication-title: Curr. Biol. doi: 10.1016/j.cub.2021.06.055 contributor: fullname: Duan – volume: 5 start-page: 683 year: 2014 ident: 10.1016/j.jgg.2022.02.019_bib39 article-title: Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana publication-title: Front. Plant Sci. contributor: fullname: Laureano-Marín – volume: 72 start-page: 5893 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib4 article-title: Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms publication-title: J. Exp. Bot. doi: 10.1093/jxb/erab239 contributor: fullname: Aroca – volume: 414 start-page: 481 year: 2011 ident: 10.1016/j.jgg.2022.02.019_bib34 article-title: Hydrogen sulfide improves drought resistance in Arabidopsis thaliana publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.09.090 contributor: fullname: Jin – volume: 168 start-page: 256 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib36 article-title: Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination publication-title: Physiol. Plantarum doi: 10.1111/ppl.12976 contributor: fullname: Kaya – volume: 33 start-page: 1061 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib26 article-title: Direct proteomic mapping of cysteine persulfidation publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2019.7777 contributor: fullname: Fu – volume: 32 start-page: 1000 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib64 article-title: Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling publication-title: Plant Cell doi: 10.1105/tpc.19.00826 contributor: fullname: Shen – volume: 68 start-page: 4915 year: 2017 ident: 10.1016/j.jgg.2022.02.019_bib2 article-title: Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx294 contributor: fullname: Aroca – volume: 123 start-page: 1163 year: 2000 ident: 10.1016/j.jgg.2022.02.019_bib29 article-title: β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in Spinach and Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.123.3.1163 contributor: fullname: Hatzfeld – volume: 43 start-page: 1175 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib85 article-title: Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H2O2 publication-title: Plant Cell Environ. doi: 10.1111/pce.13727 contributor: fullname: Zhang – volume: 111–112 start-page: 14 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib73 article-title: Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings publication-title: Nitric Oxide. doi: 10.1016/j.niox.2021.04.002 contributor: fullname: Wei – volume: 17 start-page: 162 year: 2017 ident: 10.1016/j.jgg.2022.02.019_bib50 article-title: Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings publication-title: BMC Plant Biol. doi: 10.1186/s12870-017-1110-7 contributor: fullname: Mei – volume: 143 start-page: 13325 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib54 article-title: A sweet H2S/H2O2 dual release system and specific protein S-persulfidation mediated by thioglucose/glucose oxidase publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c06372 contributor: fullname: Ni – volume: 51 start-page: 1086 year: 2009 ident: 10.1016/j.jgg.2022.02.019_bib80 article-title: Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2009.00885.x contributor: fullname: Zhang – volume: 133 start-page: 393 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib88 article-title: Alleviation of osmotic stress by H2S is related to regulated PLDα1 and suppressed ROS in Arabidopsis thaliana publication-title: J. Plant Res. doi: 10.1007/s10265-020-01182-3 contributor: fullname: Zhao – volume: 177 start-page: 121 year: 2015 ident: 10.1016/j.jgg.2022.02.019_bib42 article-title: Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2014.12.018 contributor: fullname: Li – volume: 241 start-page: 887 year: 2015 ident: 10.1016/j.jgg.2022.02.019_bib47 article-title: Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau publication-title: Planta doi: 10.1007/s00425-014-2209-9 contributor: fullname: Ma – volume: 80 start-page: 3 year: 2018 ident: 10.1016/j.jgg.2022.02.019_bib56 article-title: ROS-related redox regulation and signaling in plants publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.07.013 contributor: fullname: Noctor – volume: 91 start-page: 1590 year: 1987 ident: 10.1016/j.jgg.2022.02.019_bib51 article-title: Thermal and photochemical reactions of sulfhydryl radicals. Implications for colloid photocorrosion publication-title: Phys. Chem. doi: 10.1021/j100290a060 contributor: fullname: Mills – volume: 63 start-page: 146 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib82 article-title: Hydrogen sulfide, a signaling molecule in plant stress responses publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13022 contributor: fullname: Zhang – volume: 168 start-page: 334 year: 2015 ident: 10.1016/j.jgg.2022.02.019_bib3 article-title: S-sulfhydration: a cysteine posttranslational modification in plant systems publication-title: Plant Physiol. doi: 10.1104/pp.15.00009 contributor: fullname: Aroca – volume: 64 start-page: 1953 year: 2013 ident: 10.1016/j.jgg.2022.02.019_bib16 article-title: Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert055 contributor: fullname: Christou – volume: 24 start-page: 983 year: 2019 ident: 10.1016/j.jgg.2022.02.019_bib17 article-title: Hydrogen sulfide: a new warrior against abiotic stress publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2019.08.003 contributor: fullname: Corpas – volume: 91 start-page: 1038 year: 2017 ident: 10.1016/j.jgg.2022.02.019_bib24 article-title: The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis publication-title: Plant J. doi: 10.1111/tpj.13627 contributor: fullname: Fang – volume: 55 start-page: 277 year: 2013 ident: 10.1016/j.jgg.2022.02.019_bib30 article-title: Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12004 contributor: fullname: Hou – volume: 155 start-page: 367 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib87 article-title: Current approaches for detection of hydrogen sulfide and persulfidation in biological systems publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.08.006 contributor: fullname: Zhao – volume: 34 start-page: 1803 year: 2011 ident: 10.1016/j.jgg.2022.02.019_bib9 article-title: High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02376.x contributor: fullname: Chaki – volume: 176 start-page: 2532 year: 2018 ident: 10.1016/j.jgg.2022.02.019_bib60 article-title: Hydrogen sulfide increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling publication-title: Plant Physiol. doi: 10.1104/pp.17.01636 contributor: fullname: Scuffi – volume: 50 start-page: 196 year: 2011 ident: 10.1016/j.jgg.2022.02.019_bib8 article-title: Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.10.705 contributor: fullname: Carballal – volume: 177 start-page: 155 year: 2008 ident: 10.1016/j.jgg.2022.02.019_bib28 article-title: Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02251.x contributor: fullname: Han – volume: 43 start-page: 1130 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib83 article-title: Hydrogen sulfide and rhizobia synergistically regulate nitrogen (N) assimilation and remobilization during N deficiency-induced senescence in soybean publication-title: Plant Cell Environ. doi: 10.1111/pce.13736 contributor: fullname: Zhang – volume: 33 start-page: 2533 year: 2011 ident: 10.1016/j.jgg.2022.02.019_bib62 article-title: Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-011-0746-4 contributor: fullname: Shan – volume: 126 start-page: 445 year: 2001 ident: 10.1016/j.jgg.2022.02.019_bib57 article-title: Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis publication-title: Plant Physiol. doi: 10.1104/pp.126.1.445 contributor: fullname: Polle – volume: 166 start-page: 2065 year: 2014 ident: 10.1016/j.jgg.2022.02.019_bib59 article-title: Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure publication-title: Plant Physiol. doi: 10.1104/pp.114.245373 contributor: fullname: Scuffi – volume: 41 start-page: 85 year: 2014 ident: 10.1016/j.jgg.2022.02.019_bib71 article-title: Working with "H2S": facts and apparent artifacts publication-title: Nitric Oxide doi: 10.1016/j.niox.2014.06.003 contributor: fullname: Wedmann – volume: 6 start-page: 248 year: 2012 ident: 10.1016/j.jgg.2022.02.019_bib61 article-title: Hydrogen sulfide protects wheat seedlings against copper stress by regulating the ascorbate and glutathione metabolism in leaves publication-title: Aust. J. Crop. Sci. contributor: fullname: Shan – volume: 62 start-page: 4481 year: 2011 ident: 10.1016/j.jgg.2022.02.019_bib11 article-title: Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings publication-title: J. Exp. Bot. doi: 10.1093/jxb/err145 contributor: fullname: Chen – volume: 171 start-page: 1 year: 2014 ident: 10.1016/j.jgg.2022.02.019_bib45 article-title: Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2013.08.009 contributor: fullname: Lin – volume: 478 start-page: 264 year: 2011 ident: 10.1016/j.jgg.2022.02.019_bib77 article-title: S-nitrosylation of NADPH oxidase regulates cell death in plant immunity publication-title: Nature doi: 10.1038/nature10427 contributor: fullname: Yun – volume: 161 start-page: 255 year: 2019 ident: 10.1016/j.jgg.2022.02.019_bib44 article-title: The hydrogen sulfide, a downstream signaling molecule of hydrogen peroxide and nitric oxide, involves spermidine-regulated transcription factors and antioxidant defense in white clover in response to de-hydration publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.06.036 contributor: fullname: Li – volume: 528 start-page: 3 year: 2013 ident: 10.1016/j.jgg.2022.02.019_bib74 article-title: The biological chemistry of hydrogen peroxide publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-405881-1.00001-X contributor: fullname: Winterbourn – volume: 53 start-page: 575 year: 2014 ident: 10.1016/j.jgg.2022.02.019_bib79 article-title: Detection of protein S-sulfhydration by a tag-switch technique publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201305876 contributor: fullname: Zhang – volume: 167 start-page: 1604 year: 2015 ident: 10.1016/j.jgg.2022.02.019_bib76 article-title: S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses publication-title: Plant Physiol. doi: 10.1104/pp.114.255216 contributor: fullname: Yang – volume: 7 start-page: 930 year: 2016 ident: 10.1016/j.jgg.2022.02.019_bib5 article-title: The significance of hydrogen sulfide for Arabidopsis seed germination publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00930 contributor: fullname: Baudouin – volume: 48 start-page: 195 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib49 article-title: Hydrogen sulfide induced by hydrogen peroxide mediates brassinosteroid-induced stomatal closure of Arabidopsis thaliana publication-title: Funct. Plant Biol. doi: 10.1071/FP20205 contributor: fullname: Ma – volume: 5 start-page: 12516 year: 2015 ident: 10.1016/j.jgg.2022.02.019_bib10 article-title: Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots publication-title: Sci. Rep. doi: 10.1038/srep12516 contributor: fullname: Chen – volume: 76 start-page: 164 year: 2018 ident: 10.1016/j.jgg.2022.02.019_bib21 article-title: NO, hydrogen sulfide does not come first during tomato response to high salinity publication-title: Nitric Oxide. doi: 10.1016/j.niox.2017.09.008 contributor: fullname: da-Silva – volume: 156 start-page: 257 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib41 article-title: Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to Copper Oxide nanoparticles (CuO NPs)-induced oxidative stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.09.020 contributor: fullname: Li – volume: 11 start-page: 108 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib69 article-title: Improving photosynthetic capacity, alleviating photosynthetic inhibition and oxidative stress under low temperature stress with exogenous hydrogen sulfide in blueberry seedlings publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00108 contributor: fullname: Tang – volume: 7 start-page: 1669 year: 2016 ident: 10.1016/j.jgg.2022.02.019_bib38 article-title: ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01669 contributor: fullname: Kovacs – volume: 10 start-page: 108 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib33 article-title: Nitric oxide and hydrogen sulfide coordinately reduce glucose sensitivity and decrease oxidative stress via ascorbate-glutathione cycle in heat-stressed wheat (Triticum aestivum L.) Plants publication-title: Antioxidants (Basel). doi: 10.3390/antiox10010108 contributor: fullname: Iqbal – volume: 171 start-page: 1378 year: 2016 ident: 10.1016/j.jgg.2022.02.019_bib40 article-title: Negative regulation of autophagy by sulfide is independent of reactive oxygen species publication-title: Plant Physiol. contributor: fullname: Laureano-Marín – volume: 62 start-page: 157 year: 2011 ident: 10.1016/j.jgg.2022.02.019_bib68 article-title: Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103921 contributor: fullname: Takahashi – volume: 251 start-page: 42 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib22 article-title: Hydrogen sulfide acts downstream of jasmonic acid to inhibit stomatal development in Arabidopsis publication-title: Planta doi: 10.1007/s00425-019-03334-9 contributor: fullname: Deng – volume: 7 start-page: 211 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib31 article-title: A nuclear-localized cysteine desulfhydrase plays a role in fruit ripening in tomato publication-title: Hortic. Res. doi: 10.1038/s41438-020-00439-1 contributor: fullname: Hu – volume: 583 start-page: 2982 year: 2009 ident: 10.1016/j.jgg.2022.02.019_bib67 article-title: Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.08.033 contributor: fullname: Sirichandra – volume: 183 start-page: 345 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib84 article-title: WRKY13 enhances cadmium tolerance by promoting D-CYSTEINE DESULFHYDRASE and hydrogen sulfide production publication-title: Plant Physiol. doi: 10.1104/pp.19.01504 contributor: fullname: Zhang – volume: 8 start-page: e77047 year: 2013 ident: 10.1016/j.jgg.2022.02.019_bib63 article-title: Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions publication-title: PLoS ONE doi: 10.1371/journal.pone.0077047 contributor: fullname: Shen – volume: 64 start-page: 1121 year: 2013 ident: 10.1016/j.jgg.2022.02.019_bib7 article-title: Protein tyrosine nitration in pea roots during development and senescence publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert006 contributor: fullname: Begara-Morales – volume: 70 start-page: 278 year: 2013 ident: 10.1016/j.jgg.2022.02.019_bib15 article-title: Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.042 contributor: fullname: Cheng – volume: 61 start-page: 871 year: 2019 ident: 10.1016/j.jgg.2022.02.019_bib19 article-title: Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase inhibition publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12779 contributor: fullname: Corpas – volume: 21 start-page: 118 year: 2019 ident: 10.1016/j.jgg.2022.02.019_bib46 article-title: Comparative proteomic analysis reveals the regulatory effects of H2S on salt tolerance of mangrove plant Kandelia obovata publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21010118 contributor: fullname: Liu – volume: 155 start-page: 579 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib27 article-title: Appraisal of H2S metabolism in Arabidopsis thaliana: in silico analysis at the subcellular level publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.08.014 contributor: fullname: González-Gordo – volume: 43 start-page: 624 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib81 article-title: Abscisic acid-triggered guard cell L-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure publication-title: Plant Cell Environ. doi: 10.1111/pce.13685 contributor: fullname: Zhang – volume: 9 start-page: e109669 year: 2014 ident: 10.1016/j.jgg.2022.02.019_bib20 article-title: Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostasis publication-title: PLoS ONE doi: 10.1371/journal.pone.0109669 contributor: fullname: Cui – volume: 314 start-page: 284 year: 1994 ident: 10.1016/j.jgg.2022.02.019_bib75 article-title: The reaction of superoxide with reduced glutathione publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1994.1444 contributor: fullname: Winterbourn – volume: 62 start-page: 100 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib66 article-title: Repressor activity of SqrR, a master regulator of persulfide-responsive genes, is regulated by heme coordination publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcaa144 contributor: fullname: Shimizu – volume: 199 start-page: 633 year: 2013 ident: 10.1016/j.jgg.2022.02.019_bib18 article-title: Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants publication-title: New Phytol. doi: 10.1111/nph.12380 contributor: fullname: Corpas – volume: 116 start-page: 21256 year: 2019 ident: 10.1016/j.jgg.2022.02.019_bib32 article-title: Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1906768116 contributor: fullname: Huang – volume: 154 start-page: 646 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib37 article-title: Exogenous application of hydrogen sulfide reduces chromium toxicity in maize seedlings by suppressing NADPH oxidase activities and methylglyoxal accumulation publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.06.002 contributor: fullname: Kharbech – volume: 71 start-page: 142 year: 2018 ident: 10.1016/j.jgg.2022.02.019_bib78 article-title: S-Nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants publication-title: Mol. Cell. doi: 10.1016/j.molcel.2018.05.024 contributor: fullname: Zhan – volume: 57 start-page: 628 year: 2015 ident: 10.1016/j.jgg.2022.02.019_bib65 article-title: Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12302 contributor: fullname: Shi – volume: 10 start-page: 508 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib35 article-title: Label-free quantitative proteomic analysis of nitrogen starvation in Arabidopsis root reveals new aspects of H2S signaling by protein persulfidation publication-title: Antioxidants (Basel) doi: 10.3390/antiox10040508 contributor: fullname: Jurado-Flores – volume: 81 start-page: 36 year: 2018 ident: 10.1016/j.jgg.2022.02.019_bib53 article-title: Endogenous hydrogen sulfide (H2S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H2S and NO publication-title: Nitric Oxide doi: 10.1016/j.niox.2018.10.002 contributor: fullname: Muñoz-Vargas – volume: 36 start-page: 1564 year: 2013 ident: 10.1016/j.jgg.2022.02.019_bib43 article-title: Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings publication-title: Plant Cell Environ. doi: 10.1111/pce.12092 contributor: fullname: Li – volume: 71 start-page: 2862 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib14 article-title: Hydrogen sulfide: a multi-tasking signal molecule in the regulation of oxidative stress responses publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa093 contributor: fullname: Chen – volume: 8 start-page: 19 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib48 article-title: Hydrogen sulfide promotes flowering in heading Chinese cabbage by S-sulfhydration of BraFLCs publication-title: Hortic. Res. doi: 10.1038/s41438-020-00453-3 contributor: fullname: Ma – volume: 135 start-page: 916 year: 2004 ident: 10.1016/j.jgg.2022.02.019_bib6 article-title: Intracellular localization of Arabidopsis sulfurtransferases publication-title: Plant Physiol. doi: 10.1104/pp.104.040121 contributor: fullname: Bauer – volume: 112 start-page: 613 year: 2015 ident: 10.1016/j.jgg.2022.02.019_bib70 article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1 publication-title: Proc. NatI. Acad. Sci. U. S. A. doi: 10.1073/pnas.1423481112 contributor: fullname: Wang – volume: 71 start-page: 157 year: 2020 ident: 10.1016/j.jgg.2022.02.019_bib25 article-title: Redox homeostasis and signaling in a higher-CO2 world publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-095955 contributor: fullname: Foyer – volume: 272 start-page: 1291 year: 2005 ident: 10.1016/j.jgg.2022.02.019_bib58 article-title: Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana publication-title: FEBS J. doi: 10.1111/j.1742-4658.2005.04567.x contributor: fullname: Riemenschneider – volume: 7 start-page: 2615 year: 2017 ident: 10.1016/j.jgg.2022.02.019_bib72 article-title: Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis publication-title: Sci. Rep. doi: 10.1038/s41598-017-02872-0 contributor: fullname: Wei – volume: 152 start-page: 656 year: 2010 ident: 10.1016/j.jgg.2022.02.019_bib1 article-title: An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.109.147975 contributor: fullname: Alvarez – volume: 167 start-page: 738 year: 2021 ident: 10.1016/j.jgg.2022.02.019_bib12 article-title: Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2021.09.004 contributor: fullname: Chen – volume: 147 start-page: 1251 year: 2008 ident: 10.1016/j.jgg.2022.02.019_bib55 article-title: Galactinol and raffinose constitute a novel function to protect plants from oxidative damage publication-title: Plant Physiol. doi: 10.1104/pp.108.122465 contributor: fullname: Nishizawa |
SSID | ssj0058915 |
Score | 2.4385347 |
SecondaryResourceType | review_article |
Snippet | Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 748 |
SubjectTerms | Hydrogen sulfide Nitric oxide Oxidative stress Redox signaling ROS |
Title | Abiotic stress-triggered oxidative challenges: Where does H2S act? |
URI | https://dx.doi.org/10.1016/j.jgg.2022.02.019 https://search.proquest.com/docview/2638726250 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fixMxEA7eHYIv4k88TyWCT5Y9tvsrG1-k1UoV9KUn1KeQNEnZgrty7cL53zuzSbprD0UFoSwlbDdL5uuXmWTyDSEvZKxzZbWKNNcSApSxjqTkaWSNNWmuWMosBorzBfu0LN_Oslmfq9q3_VdLQxvYGk_O_oW19w-FBvgONocrWB2uf2T3iaoaFGF1h0CiHUTfa6zHOWquKu1UvlehgEqXDgd0fGlGujHb0TxZoLjGQbLfwGeFXs1e1xnlXb8OkuW1GU2b-nqk_7HFpmXVbqrBRlCXRTBtegbs6O9LNVyGgAg2JMH5tbFwPqZPRkI6LVgalbk7_R_41kmUelyVA_JkTnPTz8PMyfdeo3i32rA536zX5_gineSqp92flbMX2D32niSdK1UckZME-Ajo8GTyfrb8EKZsrKyIua771w3b310i4EFHv3JgDqbyzj-5uENueyPRiUPEXXLD1PfITVdq9Pt9MvW4oIe4oHtc0B4Xr2iHCoqooIAKCqh4_YB8fje7eDOPfP2MaJUW2S5SpeUp8LHh3MgMMwxyDG8Tk8oyz1XO-FibcWFiW-RSwV0607ZkykJMrBQ4rg_Jcd3U5hGhSVGarlydjSW63NxmGUtX8PdPOIS8-pS8DIMivjmZFBHyBzcCRlDgCIoYPmN-SrIwbML7ec5_E2Dj3_3seRhiARyIG1uyNk27FQlMIiyBt44f_9ujz8itHtNPyPHusjVPydFWt888VH4AYnN9Zw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiotic+stress-triggered+oxidative+challenges%3A+Where+does+H2S+act%3F&rft.jtitle=Journal+of+genetics+and+genomics&rft.au=de+Bont%2C+Linda&rft.au=Mu%2C+Xiujie&rft.au=Wei%2C+Bo&rft.au=Han%2C+Yi&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=1673-8527&rft.volume=49&rft.issue=8&rft.spage=748&rft.epage=755&rft_id=info:doi/10.1016%2Fj.jgg.2022.02.019&rft.externalDocID=S1673852722000716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1673-8527&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1673-8527&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1673-8527&client=summon |