Grover on Korean Block Ciphers
The Grover search algorithm reduces the security level of symmetric key cryptography with n-bit security level to O(2n/2). In order to evaluate the Grover search algorithm, the target block cipher should be efficiently implemented in quantum circuits. Recently, many research works evaluated required...
Saved in:
Published in: | Applied sciences Vol. 10; no. 18; p. 6407 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Grover search algorithm reduces the security level of symmetric key cryptography with n-bit security level to O(2n/2). In order to evaluate the Grover search algorithm, the target block cipher should be efficiently implemented in quantum circuits. Recently, many research works evaluated required quantum resources of AES block ciphers by optimizing the expensive substitute layer. However, few works were devoted to the lightweight block ciphers, even though it is an active research area, nowadays. In this paper, we present optimized implementations of every Korean made lightweight block ciphers for quantum computers, which include HIGHT, CHAM, and LEA, and NSA made lightweight block ciphers, namely SPECK. Primitive operations for block ciphers, including addition, rotation, and exclusive-or, are finely optimized to achieve the optimal quantum circuit, in terms of qubits, Toffoli gate, CNOT gate, and X gate. To the best of our knowledge, this is the first implementation of ARX-based Korean lightweight block ciphers in quantum circuits. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10186407 |