FET-Based Biosensors for The Direct Detection of Organophosphate Neurotoxins
Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food supply has demonstrated an urgent need for sensors that can directly detect the presence of dangerous chemical toxins. Such sensors must enable...
Saved in:
Published in: | Electroanalysis (New York, N.Y.) Vol. 16; no. 22; pp. 1896 - 1906 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
01-11-2004
WILEY‐VCH Verlag |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food supply has demonstrated an urgent need for sensors that can directly detect the presence of dangerous chemical toxins. Such sensors must enable real‐time detection and accurate identification of different classes of pesticides (e.g., carbamates and organophosphates) but must especially discriminate between widely used organophosphate (OP) pesticides and G‐ and V‐type organophosphate chemical warfare nerve agents. Present field analytic sensors are bulky with limited specificity, require specially‐trained personnel, and, in some cases, depend upon lengthy analysis time and specialized facilities. Most bioanalytical based systems are biomimetic. These sensors utilize sensitive enzyme recognition elements that are the in‐vivo target of the neurotoxic agents which the sensor is attempting to detect. The strategy is well founded; if you want to detect cholinesterase toxins use cholinesterase receptors. However, this approach has multiple limitations. Cholinesterase receptors are sensitive to a wide range of non‐related compounds and require lengthy incubation time. Cholinesterase sensors are inherently inhibition mode and therefore require baseline testing followed by sample exposure, retest and comparison to baseline. Finally, due to the irreversible nature of enzyme‐ligand interactions, inhibition‐mode sensors cannot be reused without regeneration of enzyme activity, which in many cases is inefficient and time‐consuming. In 1996, we pioneered a new “kinetic” approach for the direct detection of OP neurotoxins based on agent hydrolysis by the enzyme organophosphate hydrolase (OPH; EC 3.1.8.2; phosphotriesterase) and further identified a novel multi‐enzyme strategy for discrimination between different classes of neurotoxins. The major advantage of this sensor strategy is it allows direct and continuous measurement of OP agents using a reversible biorecognition element. We also investigated incorporation of enzymes with variations in substrate specificity (e.g., native OPH, site‐directed mutants of OPH, and OPAA (EC 3.1.8.1), based upon preferential hydrolysis of PO, PF and PS bonds to enable discrimination among chemically diverse OP compounds. Organophosphate hydrolase enzymes were integrated with several different transduction platforms including conventional pH electrodes, fluoride ion‐sensitive electrodes, and pH‐responsive fluorescent dyes. Detection limit for most systems was in the low ppm concentration range. This article reviews our integration of organophosphate hydrolase enzymes with pH sensitive field effect transistors (FETs) for OP detection. |
---|---|
AbstractList | Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food supply has demonstrated an urgent need for sensors that can directly detect the presence of dangerous chemical toxins. Such sensors must enable real‐time detection and accurate identification of different classes of pesticides (e.g., carbamates and organophosphates) but must especially discriminate between widely used organophosphate (OP) pesticides and G‐ and V‐type organophosphate chemical warfare nerve agents. Present field analytic sensors are bulky with limited specificity, require specially‐trained personnel, and, in some cases, depend upon lengthy analysis time and specialized facilities. Most bioanalytical based systems are biomimetic. These sensors utilize sensitive enzyme recognition elements that are the in‐vivo target of the neurotoxic agents which the sensor is attempting to detect. The strategy is well founded; if you want to detect cholinesterase toxins use cholinesterase receptors. However, this approach has multiple limitations. Cholinesterase receptors are sensitive to a wide range of non‐related compounds and require lengthy incubation time. Cholinesterase sensors are inherently inhibition mode and therefore require baseline testing followed by sample exposure, retest and comparison to baseline. Finally, due to the irreversible nature of enzyme‐ligand interactions, inhibition‐mode sensors cannot be reused without regeneration of enzyme activity, which in many cases is inefficient and time‐consuming. In 1996, we pioneered a new “kinetic” approach for the direct detection of OP neurotoxins based on agent hydrolysis by the enzyme organophosphate hydrolase (OPH; EC 3.1.8.2; phosphotriesterase) and further identified a novel multi‐enzyme strategy for discrimination between different classes of neurotoxins. The major advantage of this sensor strategy is it allows direct and continuous measurement of OP agents using a reversible biorecognition element. We also investigated incorporation of enzymes with variations in substrate specificity (e.g., native OPH, site‐directed mutants of OPH, and OPAA (EC 3.1.8.1), based upon preferential hydrolysis of PO, PF and PS bonds to enable discrimination among chemically diverse OP compounds. Organophosphate hydrolase enzymes were integrated with several different transduction platforms including conventional pH electrodes, fluoride ion‐sensitive electrodes, and pH‐responsive fluorescent dyes. Detection limit for most systems was in the low ppm concentration range. This article reviews our integration of organophosphate hydrolase enzymes with pH sensitive field effect transistors (FETs) for OP detection. Abstract Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food supply has demonstrated an urgent need for sensors that can directly detect the presence of dangerous chemical toxins. Such sensors must enable real‐time detection and accurate identification of different classes of pesticides (e.g., carbamates and organophosphates) but must especially discriminate between widely used organophosphate (OP) pesticides and G‐ and V‐type organophosphate chemical warfare nerve agents. Present field analytic sensors are bulky with limited specificity, require specially‐trained personnel, and, in some cases, depend upon lengthy analysis time and specialized facilities. Most bioanalytical based systems are biomimetic. These sensors utilize sensitive enzyme recognition elements that are the in‐vivo target of the neurotoxic agents which the sensor is attempting to detect. The strategy is well founded; if you want to detect cholinesterase toxins use cholinesterase receptors. However, this approach has multiple limitations. Cholinesterase receptors are sensitive to a wide range of non‐related compounds and require lengthy incubation time. Cholinesterase sensors are inherently inhibition mode and therefore require baseline testing followed by sample exposure, retest and comparison to baseline. Finally, due to the irreversible nature of enzyme‐ligand interactions, inhibition‐mode sensors cannot be reused without regeneration of enzyme activity, which in many cases is inefficient and time‐consuming. In 1996, we pioneered a new “kinetic” approach for the direct detection of OP neurotoxins based on agent hydrolysis by the enzyme organophosphate hydrolase (OPH; EC 3.1.8.2; phosphotriesterase) and further identified a novel multi‐enzyme strategy for discrimination between different classes of neurotoxins. The major advantage of this sensor strategy is it allows direct and continuous measurement of OP agents using a reversible biorecognition element. We also investigated incorporation of enzymes with variations in substrate specificity (e.g., native OPH, site‐directed mutants of OPH, and OPAA (EC 3.1.8.1), based upon preferential hydrolysis of PO, PF and PS bonds to enable discrimination among chemically diverse OP compounds. Organophosphate hydrolase enzymes were integrated with several different transduction platforms including conventional pH electrodes, fluoride ion‐sensitive electrodes, and pH‐responsive fluorescent dyes. Detection limit for most systems was in the low ppm concentration range. This article reviews our integration of organophosphate hydrolase enzymes with pH sensitive field effect transistors (FETs) for OP detection. |
Author | Flounders, A. W. Wild, J. R. Simonian, A. L. |
Author_xml | – sequence: 1 givenname: A. L. surname: Simonian fullname: Simonian, A. L. email: als@eng.auburn.edu organization: Auburn University, Materials Research and Education Center, Auburn, AL, USA – sequence: 2 givenname: A. W. surname: Flounders fullname: Flounders, A. W. organization: University of California, Microfabrication Laboratory, Berkeley, CA, USA – sequence: 3 givenname: J. R. surname: Wild fullname: Wild, J. R. organization: Biochemistry and Biophysics Department, Texas A&M University, College Station, TX, USA |
BookMark | eNqFkE9PwkAQxTcGEwG9et4vUJztdtvukX-i0oCJGBIvm6WdShV3yW6J8O0twRBvHmbey2R-7_A6pGWsQUJuGfQYQHiHG216IUAEHJL0grSZCFkQMZCtxjfnALhMrkjH-w8AkHEk2yS7Hy-CgfZY0EFlPRpvnaeldXSxRjqqHOY1HWHdSGUNtSWdu3dt7HZt_Xata6Qz3Dlb231l_DW5LPXG482vdslrEz98CLL55HHYz4Kcx1HabMYjhjmCjkuOIeariK-KlQiBCcmbSUUuQOgiFcjDWBexLETJQHBR5GHMu6R3ys2d9d5hqbau-tLuoBioYxfq2IU6d9EA8gR8Vxs8_POtxll_9pcNTmzla9yfWe0-VZzwRKjlbKImT29yOn1-UUv-A4RndB8 |
CitedBy_id | crossref_primary_10_1007_s00253_020_11008_w crossref_primary_10_1088_1757_899X_872_1_012048 crossref_primary_10_3389_frcrb_2023_1325970 crossref_primary_10_1109_LED_2018_2890741 crossref_primary_10_3389_fbioe_2019_00289 crossref_primary_10_1002_elan_200603609 crossref_primary_10_1002_elan_200804255 crossref_primary_10_3390_bios8020027 crossref_primary_10_3390_s90907111 crossref_primary_10_1016_j_colsurfb_2006_08_013 crossref_primary_10_1016_j_snb_2005_08_032 crossref_primary_10_1134_S1995425521030069 crossref_primary_10_1039_b806830p crossref_primary_10_1002_elsc_201700028 crossref_primary_10_1016_j_bios_2007_04_023 crossref_primary_10_1016_j_snb_2013_01_010 crossref_primary_10_1016_j_bios_2005_07_012 crossref_primary_10_1109_JSEN_2018_2878243 crossref_primary_10_1109_TNB_2021_3139345 crossref_primary_10_1007_s00216_012_6299_6 crossref_primary_10_1039_B612871H crossref_primary_10_3390_ma12010121 crossref_primary_10_1088_0957_4484_19_37_375502 crossref_primary_10_1002_admi_202201029 crossref_primary_10_1002_elan_201100190 crossref_primary_10_1039_c3cs60141b crossref_primary_10_1002_pssa_201431891 crossref_primary_10_1021_cr100193y crossref_primary_10_1039_c1cc13685b crossref_primary_10_1021_jacs_1c08356 crossref_primary_10_1007_s10311_020_01116_4 crossref_primary_10_1016_j_sse_2017_10_025 crossref_primary_10_1002_celc_202200349 crossref_primary_10_1021_ac301077d crossref_primary_10_1021_acs_jafc_8b01756 crossref_primary_10_1021_acs_chemrev_5b00402 crossref_primary_10_1016_j_talanta_2015_07_008 crossref_primary_10_1007_s12633_021_01573_8 crossref_primary_10_1016_j_tsf_2010_05_110 crossref_primary_10_1002_pssa_200983317 crossref_primary_10_1039_b616035b crossref_primary_10_5194_os_5_697_2009 crossref_primary_10_1007_s00216_007_1330_z crossref_primary_10_1016_j_bios_2021_113172 |
Cites_doi | 10.1016/0925-4005(93)85057-H 10.1021/jf00027a031 10.1016/S0956-5663(99)00044-5 10.1016/0925-4005(92)80355-2 10.1016/0003-2670(93)85333-F 10.1016/0956-5663(96)87658-5 10.1016/S0003-2670(01)01131-X 10.1039/an9941902275 10.1016/S0003-2670(00)83460-1 10.1021/bi00254a008 10.1016/0003-9861(90)90564-F 10.1016/0009-2797(93)90035-W 10.1016/S0956-5663(99)00045-7 10.1016/S0003-2670(99)00170-1 10.1039/B204444G 10.1021/ac50062a035 10.1016/0003-2670(91)87189-E 10.1021/ac990901u 10.1128/jb.173.6.1938-1943.1991 10.1016/S0003-2670(99)00513-9 10.1080/00032719508004027 10.1128/jb.170.5.2306-2311.1988 10.1006/abbi.1995.1204 10.1016/0956-5663(94)90035-3 10.1039/an9962101911 10.1016/0003-2670(72)80051-5 10.1016/0003-2670(93)85104-R 10.1016/0925-4005(91)80123-2 10.1016/0956-5663(91)87034-9 10.1016/S0956-5663(01)00157-9 10.1021/bp990034e 10.1080/00032719708001757 10.1111/j.1432-1033.1986.tb09646.x 10.1016/S0925-4005(01)00659-1 |
ContentType | Journal Article |
Copyright | Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1002/elan.200403078 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-4109 |
EndPage | 1906 |
ExternalDocumentID | 10_1002_elan_200403078 ELAN200403078 ark_67375_WNG_GJZ9KKPS_W |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRJ WXSBR WYISQ XG1 XV2 Y6R ZY4 ZZTAW ~IA ~WT AAYXX CITATION |
ID | FETCH-LOGICAL-c3648-c31341ece0a6f3e2ecb43bdb520159315985c505ad85e326ad69d5f10535dc263 |
IEDL.DBID | 33P |
ISSN | 1040-0397 |
IngestDate | Fri Aug 23 00:38:08 EDT 2024 Sat Aug 24 00:59:37 EDT 2024 Wed Oct 30 09:57:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3648-c31341ece0a6f3e2ecb43bdb520159315985c505ad85e326ad69d5f10535dc263 |
Notes | ArticleID:ELAN200403078 ark:/67375/WNG-GJZ9KKPS-W istex:FD25BDD6C89FAD7B2DDA66295BA6B6F0EE725051 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1002_elan_200403078 wiley_primary_10_1002_elan_200403078_ELAN200403078 istex_primary_ark_67375_WNG_GJZ9KKPS_W |
PublicationCentury | 2000 |
PublicationDate | November 2004 |
PublicationDateYYYYMMDD | 2004-11-01 |
PublicationDate_xml | – month: 11 year: 2004 text: November 2004 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Electroanalysis (New York, N.Y.) |
PublicationTitleAlternate | Electroanalysis |
PublicationYear | 2004 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | P. Bergveld , A. Sibbald , Analytical and Biomedical Applications of Ion Sensitive Field Effect Transistors Elsevier, Amsterdam 1988. J. J. Kulys , E. J. D'Costa. Biosens. Bioelectron. 1991, 6, 109. J. J. DeFrank , T.-C. Cheng , J. Bacteriology 1991, 173, 1938. J. Janata , R. J. Huber , R. Cohen , E. S. Kolesar Jr. , Aviat. Space Environ. Med. 1981, 52, 666. M. M. Benning , J. M. Kuo , F. M. Raushel , H. M. Holden , Biochemistry 1994, 33, 15001. E. Rainina , A. Simonian , A. Efremenko , S.Varfolomeyev , J. Wild , Biosens. Bioelectron. 1996, 11, 991. J. C. Fernando , K. R. Rogers , N. A. Anis , J. J. Valdes , R. G. Thompson , A. T. Eldefrawi , M. E. Eldefrawi , J. Agric. Food Chem. 1993, 41, 511. T.-C. Cheng , J. J. DeFrank , V. K. Rastogi , Chim.-Biol. Interactions 1999, 119-120, 462. M. Brufani , M. Marta , M. Pomponi , Eur. J. Biochem. 1986, 157, 115. A. L. Simonian , E. I. Rainina , J. R Wild , Anal. Lett. 1997, 30, 2453. A. L. Simonian , E. I. Rainina , J. R. Wild , in Methods in Biotechnology: Enzyme Biosensors - Techniques and Protocols (Eds: A. Mulchandani, K. Rogers), Humana Press, N. J. 1998, 17, pp. 237-248. C. Dumschat,H. Muller , K. Stein , G. Schwedt , Anal. Chim. Acta 1991, 252, 7. F. Lisdat , W. Moritz , Sens. Act. B 1993, 15-16, 228. Q. Yang , P. Atanasov , E. Wilkens , R. C. Hughes , Anal. Lett. 1995, 28, 2439. G. A. Evtugyn , H. C. Budnikov E. B. Nikolskaya , Analyst 1996, 121, 1911. A. Herbert , L. Guilhermino , H. C. Da Silva De Assis , P.-D. Hasen , Z. Angew. Zoologie, 1995/96, 3, 1. B. H. Van Der Schoot , P. Bergveld , Anal. Chim. Acta 1990, 233, 49. A. Herbert , L. Guilhermino , H. C. Da Silva De Assis , P.-D. Hasen , Z. Angew. Zoologie 1995/96, 3, 1. K. Roger , Y. Wang , A. Mulchandani , P. Mulchandani , W. Chen , Biotech. Prog. 1999, 15, 517. A. L. Simonian , B. D. diSioudi , J. R. Wild , Anal. Chim. Acta 1999, 389, 189. J. J. DeFranik , W. T. Beaudry , T.-C. Cheng , S. P. Harvey , A. N. Stroup , L. L. Szafraniec , Chem.-Biol Interactions 1993, 87, 141. A. Poghossian , A. Baade , H. Emons , M. J. Schöning , Sens. Actuators B 2001, 76, 634. S. Caras , J. Janata , Anal. Chem.1980, 52, 1935. J. Janata , Analyst 1994, 119, 2275. B. H. Van Der Schoot , P. Bergveld , Anal. Chim. Acta 1987, 199,160. D. P. Dumas , H. D. Durst , W. G. Landis , F. M. Raushel , J. R. Wild , Arch. Biochem. Biophys. 1990, 277, 155. D. P. Dumas , J. R. Wild , F. M. Raushel , Biotech. Appl. Biochem. 1989, 11, 235. A. A. Shul'ga , V. I. Strikha , A. P. Soldatkin , A. V. El'skaya , H. Maupas , C. Martelet , P. Clechet , Anal. Chim. Acta 1993, 278, 233. K. Lai , N. .J. Stolowich , J. R. Wild , Arch. Biochem. Biophys. 1995, 318, 59. J. F. Payne , A. Mathieu , W. Melvin , L. L. Fancey , Marine Pollution Bulletin, 81. Solid State Chemical Sensors (Eds: J. Janata, R. J. Huber), Academic Press, Orlando, FL 1985. R. Russell , M. Pishko , A. Simonian , J. Wild , Anal. Chem. 1999, 71, 4909. P. Mulchandani , W. Chen , A. Mulchandani , J. Wang , L. Chen , Biosens. Bioelectron. 2001, 16, 433. A. M. Nyamsi- Hendji , N. Jaffrezic-Renault , C. Martelet , P. Clechet , A. A. Shul'ga , V. I. Strikha , L. I. Netchiporuk , A. P. Soldatkin , W. B. Wlodarski , Anal. Chim. Acta 1993, 281, 3. A. K. Singh , A. W. Flounders , J. V. Volponi , C. S. Ashley , K. Wally , J. S. Schoeniger , Biosens. Bioelectron. 1999, 14, 703. G. Palleschi , M. Bernabei , C. Cremisini , M. Mascini. Sens. Actuators B 1992, 7, 513. O. Schafer , L. Weil , R. Niessner , Methoden Vom Wasser 1994, 82, 233. C. S. McDaniel , L. L. Harper , J. R. Wild , J. Bacteriol. 1988, 170, 2306. A. L. Simonian , J. K. Grimsley , A. W. Flounders , J. S. Schoeniger , T.-C. Cheng , J. J. DeFrank , J. R. Wild , Anal. Chim. Acta 2001, 442, 15. M. J. Schöning , A. Poghossian , Analyst 2002, 127, 1137. P. Strop , G. G. Guilbault , Anal. Chim. Acta 1972, 62, 425. A. Flounders , A. Singh , J. Volponi , S. Carichner , K. Wally , A. Simonian , J. Wild , J. Schoeniger , Biosens. Bioelectron. 1999, 14, 713. T. T. Bachmann , R. D. Schmid , Anal. Chim. Acta 1999, 401, 95. Y. Vlasov , A. Bratov , S. Levichev , Y. Tarantov , Sens. Actuators B 1991, 4, 283. N. Mionetto , J.-L. Marty , I. Karube , Biosens. Bioelectron. 1994, 9, 463. 1991; 4 1991; 252 1991; 173 2001; 442 1986; 157 1988; 170 1988. 1993; 15–16 1993; 87 1995; 318 1995/96; 3 1993; 41 1998 1993; 281 1999; 119–120 1996; 121 1999; 389 1972; 62 1999; 401 1994; 82 1994; 119 1991; 6 1996; 11 1994; 9 1992; 7 1989; 11 1985. 1987; 199 1995; 28 1980; 52 1997; 30 1999; 15 1999; 14 1994; 33 2002; 127 2001; 16 1990; 277 1999; 71 1990; 233 1993; 278 1981; 52 2001; 76 Schafer O. (e_1_2_1_14_2) 1994; 82 (e_1_2_1_28_2) 1985 Schoot B. H. Van Der (e_1_2_1_31_2) 1987; 199 Schafer O. (e_1_2_1_12_2) 1994; 82 e_1_2_1_41_2 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_43_2 Simonian A. L. (e_1_2_1_20_2) 1998 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_26_2 e_1_2_1_48_2 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_25_2 e_1_2_1_46_2 Herbert A. (e_1_2_1_9_2) 1995; 3 Payne J. F. (e_1_2_1_10_2) Bergveld P. (e_1_2_1_29_2) 1988 Janata J. (e_1_2_1_37_2) 1981; 52 Herbert A. (e_1_2_1_6_2) 1995; 3 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 Cheng T.‐C. (e_1_2_1_27_2) 1999; 119 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_1_2 Dumas D. P. (e_1_2_1_17_2) 1989; 11 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_18_2 e_1_2_1_39_2 |
References_xml | – volume: 16 start-page: 433 year: 2001 publication-title: Biosens. Bioelectron. – volume: 199 year: 1987 publication-title: Anal. Chim. Acta – volume: 30 start-page: 2453 year: 1997 publication-title: Anal. Lett. – publication-title: Marine Pollution Bulletin – volume: 281 start-page: 3 year: 1993 publication-title: Anal. Chim. Acta – volume: 252 start-page: 7 year: 1991 publication-title: Anal. Chim. Acta – volume: 401 start-page: 95 year: 1999 publication-title: Anal. Chim. Acta – year: 1988. – volume: 41 start-page: 511 year: 1993 publication-title: J. Agric. Food Chem. – volume: 11 start-page: 235 year: 1989 publication-title: Biotech. Appl. Biochem. – volume: 173 start-page: 1938 year: 1991 publication-title: J. Bacteriology – volume: 52 start-page: 1935 year: 1980 publication-title: Anal. Chem. – volume: 14 start-page: 713 year: 1999 publication-title: Biosens. Bioelectron. – volume: 389 start-page: 189 year: 1999 publication-title: Anal. Chim. Acta – volume: 52 start-page: 666 year: 1981 publication-title: Aviat. Space Environ. Med. – volume: 170 start-page: 2306 year: 1988 publication-title: J. Bacteriol. – year: 1998 – volume: 62 start-page: 425 year: 1972 publication-title: Anal. Chim. Acta – volume: 442 start-page: 15 year: 2001 publication-title: Anal. Chim. Acta – volume: 28 start-page: 2439 year: 1995 publication-title: Anal. Lett. – volume: 233 start-page: 49 year: 1990 publication-title: Anal. Chim. Acta – volume: 127 start-page: 1137 year: 2002 publication-title: Analyst – volume: 11 start-page: 991 year: 1996 publication-title: Biosens. Bioelectron. – volume: 4 start-page: 283 year: 1991 publication-title: Sens. Actuators B – volume: 7 start-page: 513 year: 1992 publication-title: Sens. Actuators B – volume: 6 start-page: 109 year: 1991 publication-title: Biosens. Bioelectron. – volume: 82 start-page: 233 year: 1994 publication-title: Methoden Vom Wasser – volume: 318 start-page: 59 year: 1995 publication-title: Arch. Biochem. Biophys. – volume: 76 start-page: 634 year: 2001 publication-title: Sens. Actuators B – volume: 121 start-page: 1911 year: 1996 publication-title: Analyst – volume: 87 start-page: 141 year: 1993 publication-title: Chem.‐Biol Interactions – volume: 33 start-page: 15001 year: 1994 publication-title: Biochemistry – volume: 9 start-page: 463 year: 1994 publication-title: Biosens. Bioelectron. – year: 1985. – volume: 277 start-page: 155 year: 1990 publication-title: Arch. Biochem. Biophys. – volume: 15–16 start-page: 228 year: 1993 publication-title: Sens. Act. B – volume: 15 start-page: 517 year: 1999 publication-title: Biotech. Prog. – volume: 157 start-page: 115 year: 1986 publication-title: Eur. J. Biochem. – volume: 278 start-page: 233 year: 1993 publication-title: Anal. Chim. Acta – volume: 71 start-page: 4909 year: 1999 publication-title: Anal. Chem. – volume: 119–120 start-page: 462 year: 1999 publication-title: Chim.‐Biol. Interactions – volume: 14 start-page: 703 year: 1999 publication-title: Biosens. Bioelectron. – volume: 3 start-page: 1 year: 1995/96 publication-title: Z. Angew. Zoologie – volume: 119 start-page: 2275 year: 1994 publication-title: Analyst – ident: e_1_2_1_35_2 doi: 10.1016/0925-4005(93)85057-H – ident: e_1_2_1_43_2 doi: 10.1021/jf00027a031 – volume-title: Methods in Biotechnology: Enzyme Biosensors – Techniques and Protocols year: 1998 ident: e_1_2_1_20_2 contributor: fullname: Simonian A. L. – ident: e_1_2_1_46_2 doi: 10.1016/S0956-5663(99)00044-5 – ident: e_1_2_1_4_2 doi: 10.1016/0925-4005(92)80355-2 – volume: 199 year: 1987 ident: e_1_2_1_31_2 publication-title: Anal. Chim. Acta contributor: fullname: Schoot B. H. Van Der – ident: e_1_2_1_41_2 doi: 10.1016/0003-2670(93)85333-F – ident: e_1_2_1_15_2 doi: 10.1016/0956-5663(96)87658-5 – volume: 119 start-page: 462 year: 1999 ident: e_1_2_1_27_2 publication-title: Chim.‐Biol. Interactions contributor: fullname: Cheng T.‐C. – volume: 52 start-page: 666 year: 1981 ident: e_1_2_1_37_2 publication-title: Aviat. Space Environ. Med. contributor: fullname: Janata J. – ident: e_1_2_1_45_2 doi: 10.1016/S0003-2670(01)01131-X – ident: e_1_2_1_30_2 doi: 10.1039/an9941902275 – ident: e_1_2_1_32_2 doi: 10.1016/S0003-2670(00)83460-1 – ident: e_1_2_1_47_2 doi: 10.1021/bi00254a008 – ident: e_1_2_1_1_2 doi: 10.1016/0003-9861(90)90564-F – ident: e_1_2_1_26_2 doi: 10.1016/0009-2797(93)90035-W – volume: 82 start-page: 233 year: 1994 ident: e_1_2_1_12_2 publication-title: Methoden Vom Wasser contributor: fullname: Schafer O. – ident: e_1_2_1_44_2 doi: 10.1016/S0956-5663(99)00045-7 – ident: e_1_2_1_22_2 doi: 10.1016/S0003-2670(99)00170-1 – ident: e_1_2_1_42_2 doi: 10.1039/B204444G – ident: e_1_2_1_38_2 doi: 10.1021/ac50062a035 – volume: 3 start-page: 1 year: 1995 ident: e_1_2_1_9_2 publication-title: Z. Angew. Zoologie contributor: fullname: Herbert A. – ident: e_1_2_1_39_2 doi: 10.1016/0003-2670(91)87189-E – ident: e_1_2_1_21_2 doi: 10.1021/ac990901u – ident: e_1_2_1_25_2 doi: 10.1128/jb.173.6.1938-1943.1991 – ident: e_1_2_1_13_2 doi: 10.1016/S0003-2670(99)00513-9 – ident: e_1_2_1_48_2 doi: 10.1080/00032719508004027 – volume: 3 start-page: 1 year: 1995 ident: e_1_2_1_6_2 publication-title: Z. Angew. Zoologie contributor: fullname: Herbert A. – ident: e_1_2_1_16_2 doi: 10.1128/jb.170.5.2306-2311.1988 – ident: e_1_2_1_19_2 doi: 10.1006/abbi.1995.1204 – ident: e_1_2_1_3_2 doi: 10.1016/0956-5663(94)90035-3 – ident: e_1_2_1_11_2 doi: 10.1016/S0003-2670(99)00513-9 – ident: e_1_2_1_2_2 doi: 10.1039/an9962101911 – volume: 82 start-page: 233 year: 1994 ident: e_1_2_1_14_2 publication-title: Methoden Vom Wasser contributor: fullname: Schafer O. – ident: e_1_2_1_36_2 doi: 10.1016/0003-2670(72)80051-5 – ident: e_1_2_1_34_2 doi: 10.1016/0003-2670(93)85104-R – ident: e_1_2_1_10_2 publication-title: Marine Pollution Bulletin contributor: fullname: Payne J. F. – ident: e_1_2_1_18_2 doi: 10.1016/0003-9861(90)90564-F – ident: e_1_2_1_40_2 doi: 10.1016/0925-4005(91)80123-2 – ident: e_1_2_1_5_2 doi: 10.1016/0956-5663(91)87034-9 – ident: e_1_2_1_23_2 doi: 10.1016/S0956-5663(01)00157-9 – ident: e_1_2_1_24_2 doi: 10.1021/bp990034e – ident: e_1_2_1_8_2 doi: 10.1080/00032719708001757 – volume: 11 start-page: 235 year: 1989 ident: e_1_2_1_17_2 publication-title: Biotech. Appl. Biochem. contributor: fullname: Dumas D. P. – ident: e_1_2_1_7_2 doi: 10.1111/j.1432-1033.1986.tb09646.x – volume-title: Analytical and Biomedical Applications of Ion Sensitive Field Effect Transistors year: 1988 ident: e_1_2_1_29_2 contributor: fullname: Bergveld P. – volume-title: Solid State Chemical Sensors year: 1985 ident: e_1_2_1_28_2 – ident: e_1_2_1_33_2 doi: 10.1016/S0925-4005(01)00659-1 |
SSID | ssj0009649 |
Score | 2.038711 |
Snippet | Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food... Abstract Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in... |
SourceID | crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1896 |
SubjectTerms | Biosensor Chemical warfare agents Demeton-S Detection Diisopropyl fluorophosphate ENFET Organophosphate hydrolase Organophosphorus acid anhydrolase Paraoxon pHFET |
Title | FET-Based Biosensors for The Direct Detection of Organophosphate Neurotoxins |
URI | https://api.istex.fr/ark:/67375/WNG-GJZ9KKPS-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felan.200403078 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46H_TFuzhv5EH0qaxLmrR7dDeHgzGYMvEl5FY2lHasG-zRn-Bv9JeYpFvHngR9aKHQhPJxcs6X9JzvAHAbEhkiYXuEmeDtBcqXXoSj2KvWtC-N91NU2I1iZxD2XqNmy8rkFFX8uT5EceBmV4bz13aBc5FV1qKh-oM7_dLAmqmt9jVbBVfDgftr1V3q-G_Vps35JvKuVBt9VNkcvhGVdizAi0226sJN--D_H3oI9pdUEz7ktnEEtnRyDHYbqw5vJ6DXbj1_f37VTSBTsD5OM7OlTacZNDwWGvOBuTuETT1z-VoJTGPoajfTySjNJiNDU6ET95ili3GSnYIXM2Gj4y37K3gS0yAyd6vmpqX2OY2xRlqKAAsliCEFpIbNFRFpGBJXEdGG5nFFa4rEVSsJoySi-AyUkjTR5wBKLSnWwicx5YEiivvc_lGVOBYBChEqg_sVvmySy2iwXDAZMYsPK_ApgzsHf_Ean77b5LOQsGHvkT0-vdW63f6ADcsAOdR_mY_ZziPF08VfBl2CvVze0R68XIHSbDrX12A7U_MbZ24_kL_Ttw |
link.rule.ids | 315,782,786,1408,27935,27936,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58HPTiW1yfOYieit2kSduju7quri6CiuIltEmKorTLdgWP_gR_o7_ETLq7sidBPLRQaEL5mMx8mU6-AdgPuQppij3CbPD2Au0rL2JR5tVj4yvr_bRIcaPYvgm7D9HJKcrkHI_OwlT6EOOEG64M569xgWNC-uhHNdS8Jk7ANEA7jaZhNhBBjN0bGLv-0d0VjgHXsXDOt7F3pNvo06PJ8RNxaRYhfp_kqy7gtBb_4VOXYGHINslxZR7LMGXyFZhrjpq8rUK3dXr79fHZsLFMk8ZzUdpdbdEviaWyxFoQqTwiOTEDV7KVkyIj7vhm0Xsqyt6TZarE6XsMivfnvFyDOzths-0NWyx4iokgsncUdDPK-InImKFGpQFLdcotL-Axs1fElSVJiY64sUwv0SLWPKujKoxWVLB1mMmL3GwAUUYJZlKfZyIJNNeJn-BPVcWyNKAhpTU4HAEse5WShqw0k6lEfOQYnxocOPzHryX9F6w_C7m8757Js4vHuNO5vpH3NaAO9l_mk9h8ZPy0-ZdBezDXvr26lJfn3c4WzFdqj5iH2YaZQf_N7MB0qd92ne19A_tn19g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FET%E2%80%90Based+Biosensors+for+The+Direct+Detection+of+Organophosphate+Neurotoxins&rft.jtitle=Electroanalysis+%28New+York%2C+N.Y.%29&rft.au=Simonian%2C+A.%E2%80%85L.&rft.au=Flounders%2C+A.%E2%80%85W.&rft.au=Wild%2C+J.%E2%80%85R.&rft.date=2004-11-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1040-0397&rft.eissn=1521-4109&rft.volume=16&rft.issue=22&rft.spage=1896&rft.epage=1906&rft_id=info:doi/10.1002%2Felan.200403078&rft.externalDBID=10.1002%252Felan.200403078&rft.externalDocID=ELAN200403078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0397&client=summon |