FET-Based Biosensors for The Direct Detection of Organophosphate Neurotoxins

Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food supply has demonstrated an urgent need for sensors that can directly detect the presence of dangerous chemical toxins. Such sensors must enable...

Full description

Saved in:
Bibliographic Details
Published in:Electroanalysis (New York, N.Y.) Vol. 16; no. 22; pp. 1896 - 1906
Main Authors: Simonian, A. L., Flounders, A. W., Wild, J. R.
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 01-11-2004
WILEY‐VCH Verlag
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food supply has demonstrated an urgent need for sensors that can directly detect the presence of dangerous chemical toxins. Such sensors must enable real‐time detection and accurate identification of different classes of pesticides (e.g., carbamates and organophosphates) but must especially discriminate between widely used organophosphate (OP) pesticides and G‐ and V‐type organophosphate chemical warfare nerve agents. Present field analytic sensors are bulky with limited specificity, require specially‐trained personnel, and, in some cases, depend upon lengthy analysis time and specialized facilities. Most bioanalytical based systems are biomimetic. These sensors utilize sensitive enzyme recognition elements that are the in‐vivo target of the neurotoxic agents which the sensor is attempting to detect. The strategy is well founded; if you want to detect cholinesterase toxins use cholinesterase receptors. However, this approach has multiple limitations. Cholinesterase receptors are sensitive to a wide range of non‐related compounds and require lengthy incubation time. Cholinesterase sensors are inherently inhibition mode and therefore require baseline testing followed by sample exposure, retest and comparison to baseline. Finally, due to the irreversible nature of enzyme‐ligand interactions, inhibition‐mode sensors cannot be reused without regeneration of enzyme activity, which in many cases is inefficient and time‐consuming. In 1996, we pioneered a new “kinetic” approach for the direct detection of OP neurotoxins based on agent hydrolysis by the enzyme organophosphate hydrolase (OPH; EC 3.1.8.2; phosphotriesterase) and further identified a novel multi‐enzyme strategy for discrimination between different classes of neurotoxins. The major advantage of this sensor strategy is it allows direct and continuous measurement of OP agents using a reversible biorecognition element. We also investigated incorporation of enzymes with variations in substrate specificity (e.g., native OPH, site‐directed mutants of OPH, and OPAA (EC 3.1.8.1), based upon preferential hydrolysis of PO, PF and PS bonds to enable discrimination among chemically diverse OP compounds. Organophosphate hydrolase enzymes were integrated with several different transduction platforms including conventional pH electrodes, fluoride ion‐sensitive electrodes, and pH‐responsive fluorescent dyes. Detection limit for most systems was in the low ppm concentration range. This article reviews our integration of organophosphate hydrolase enzymes with pH sensitive field effect transistors (FETs) for OP detection.
AbstractList Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food supply has demonstrated an urgent need for sensors that can directly detect the presence of dangerous chemical toxins. Such sensors must enable real‐time detection and accurate identification of different classes of pesticides (e.g., carbamates and organophosphates) but must especially discriminate between widely used organophosphate (OP) pesticides and G‐ and V‐type organophosphate chemical warfare nerve agents. Present field analytic sensors are bulky with limited specificity, require specially‐trained personnel, and, in some cases, depend upon lengthy analysis time and specialized facilities. Most bioanalytical based systems are biomimetic. These sensors utilize sensitive enzyme recognition elements that are the in‐vivo target of the neurotoxic agents which the sensor is attempting to detect. The strategy is well founded; if you want to detect cholinesterase toxins use cholinesterase receptors. However, this approach has multiple limitations. Cholinesterase receptors are sensitive to a wide range of non‐related compounds and require lengthy incubation time. Cholinesterase sensors are inherently inhibition mode and therefore require baseline testing followed by sample exposure, retest and comparison to baseline. Finally, due to the irreversible nature of enzyme‐ligand interactions, inhibition‐mode sensors cannot be reused without regeneration of enzyme activity, which in many cases is inefficient and time‐consuming. In 1996, we pioneered a new “kinetic” approach for the direct detection of OP neurotoxins based on agent hydrolysis by the enzyme organophosphate hydrolase (OPH; EC 3.1.8.2; phosphotriesterase) and further identified a novel multi‐enzyme strategy for discrimination between different classes of neurotoxins. The major advantage of this sensor strategy is it allows direct and continuous measurement of OP agents using a reversible biorecognition element. We also investigated incorporation of enzymes with variations in substrate specificity (e.g., native OPH, site‐directed mutants of OPH, and OPAA (EC 3.1.8.1), based upon preferential hydrolysis of PO, PF and PS bonds to enable discrimination among chemically diverse OP compounds. Organophosphate hydrolase enzymes were integrated with several different transduction platforms including conventional pH electrodes, fluoride ion‐sensitive electrodes, and pH‐responsive fluorescent dyes. Detection limit for most systems was in the low ppm concentration range. This article reviews our integration of organophosphate hydrolase enzymes with pH sensitive field effect transistors (FETs) for OP detection.
Abstract Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food supply has demonstrated an urgent need for sensors that can directly detect the presence of dangerous chemical toxins. Such sensors must enable real‐time detection and accurate identification of different classes of pesticides (e.g., carbamates and organophosphates) but must especially discriminate between widely used organophosphate (OP) pesticides and G‐ and V‐type organophosphate chemical warfare nerve agents. Present field analytic sensors are bulky with limited specificity, require specially‐trained personnel, and, in some cases, depend upon lengthy analysis time and specialized facilities. Most bioanalytical based systems are biomimetic. These sensors utilize sensitive enzyme recognition elements that are the in‐vivo target of the neurotoxic agents which the sensor is attempting to detect. The strategy is well founded; if you want to detect cholinesterase toxins use cholinesterase receptors. However, this approach has multiple limitations. Cholinesterase receptors are sensitive to a wide range of non‐related compounds and require lengthy incubation time. Cholinesterase sensors are inherently inhibition mode and therefore require baseline testing followed by sample exposure, retest and comparison to baseline. Finally, due to the irreversible nature of enzyme‐ligand interactions, inhibition‐mode sensors cannot be reused without regeneration of enzyme activity, which in many cases is inefficient and time‐consuming. In 1996, we pioneered a new “kinetic” approach for the direct detection of OP neurotoxins based on agent hydrolysis by the enzyme organophosphate hydrolase (OPH; EC 3.1.8.2; phosphotriesterase) and further identified a novel multi‐enzyme strategy for discrimination between different classes of neurotoxins. The major advantage of this sensor strategy is it allows direct and continuous measurement of OP agents using a reversible biorecognition element. We also investigated incorporation of enzymes with variations in substrate specificity (e.g., native OPH, site‐directed mutants of OPH, and OPAA (EC 3.1.8.1), based upon preferential hydrolysis of PO, PF and PS bonds to enable discrimination among chemically diverse OP compounds. Organophosphate hydrolase enzymes were integrated with several different transduction platforms including conventional pH electrodes, fluoride ion‐sensitive electrodes, and pH‐responsive fluorescent dyes. Detection limit for most systems was in the low ppm concentration range. This article reviews our integration of organophosphate hydrolase enzymes with pH sensitive field effect transistors (FETs) for OP detection.
Author Flounders, A. W.
Wild, J. R.
Simonian, A. L.
Author_xml – sequence: 1
  givenname: A. L.
  surname: Simonian
  fullname: Simonian, A. L.
  email: als@eng.auburn.edu
  organization: Auburn University, Materials Research and Education Center, Auburn, AL, USA
– sequence: 2
  givenname: A. W.
  surname: Flounders
  fullname: Flounders, A. W.
  organization: University of California, Microfabrication Laboratory, Berkeley, CA, USA
– sequence: 3
  givenname: J. R.
  surname: Wild
  fullname: Wild, J. R.
  organization: Biochemistry and Biophysics Department, Texas A&M University, College Station, TX, USA
BookMark eNqFkE9PwkAQxTcGEwG9et4vUJztdtvukX-i0oCJGBIvm6WdShV3yW6J8O0twRBvHmbey2R-7_A6pGWsQUJuGfQYQHiHG216IUAEHJL0grSZCFkQMZCtxjfnALhMrkjH-w8AkHEk2yS7Hy-CgfZY0EFlPRpvnaeldXSxRjqqHOY1HWHdSGUNtSWdu3dt7HZt_Xata6Qz3Dlb231l_DW5LPXG482vdslrEz98CLL55HHYz4Kcx1HabMYjhjmCjkuOIeariK-KlQiBCcmbSUUuQOgiFcjDWBexLETJQHBR5GHMu6R3ys2d9d5hqbau-tLuoBioYxfq2IU6d9EA8gR8Vxs8_POtxll_9pcNTmzla9yfWe0-VZzwRKjlbKImT29yOn1-UUv-A4RndB8
CitedBy_id crossref_primary_10_1007_s00253_020_11008_w
crossref_primary_10_1088_1757_899X_872_1_012048
crossref_primary_10_3389_frcrb_2023_1325970
crossref_primary_10_1109_LED_2018_2890741
crossref_primary_10_3389_fbioe_2019_00289
crossref_primary_10_1002_elan_200603609
crossref_primary_10_1002_elan_200804255
crossref_primary_10_3390_bios8020027
crossref_primary_10_3390_s90907111
crossref_primary_10_1016_j_colsurfb_2006_08_013
crossref_primary_10_1016_j_snb_2005_08_032
crossref_primary_10_1134_S1995425521030069
crossref_primary_10_1039_b806830p
crossref_primary_10_1002_elsc_201700028
crossref_primary_10_1016_j_bios_2007_04_023
crossref_primary_10_1016_j_snb_2013_01_010
crossref_primary_10_1016_j_bios_2005_07_012
crossref_primary_10_1109_JSEN_2018_2878243
crossref_primary_10_1109_TNB_2021_3139345
crossref_primary_10_1007_s00216_012_6299_6
crossref_primary_10_1039_B612871H
crossref_primary_10_3390_ma12010121
crossref_primary_10_1088_0957_4484_19_37_375502
crossref_primary_10_1002_admi_202201029
crossref_primary_10_1002_elan_201100190
crossref_primary_10_1039_c3cs60141b
crossref_primary_10_1002_pssa_201431891
crossref_primary_10_1021_cr100193y
crossref_primary_10_1039_c1cc13685b
crossref_primary_10_1021_jacs_1c08356
crossref_primary_10_1007_s10311_020_01116_4
crossref_primary_10_1016_j_sse_2017_10_025
crossref_primary_10_1002_celc_202200349
crossref_primary_10_1021_ac301077d
crossref_primary_10_1021_acs_jafc_8b01756
crossref_primary_10_1021_acs_chemrev_5b00402
crossref_primary_10_1016_j_talanta_2015_07_008
crossref_primary_10_1007_s12633_021_01573_8
crossref_primary_10_1016_j_tsf_2010_05_110
crossref_primary_10_1002_pssa_200983317
crossref_primary_10_1039_b616035b
crossref_primary_10_5194_os_5_697_2009
crossref_primary_10_1007_s00216_007_1330_z
crossref_primary_10_1016_j_bios_2021_113172
Cites_doi 10.1016/0925-4005(93)85057-H
10.1021/jf00027a031
10.1016/S0956-5663(99)00044-5
10.1016/0925-4005(92)80355-2
10.1016/0003-2670(93)85333-F
10.1016/0956-5663(96)87658-5
10.1016/S0003-2670(01)01131-X
10.1039/an9941902275
10.1016/S0003-2670(00)83460-1
10.1021/bi00254a008
10.1016/0003-9861(90)90564-F
10.1016/0009-2797(93)90035-W
10.1016/S0956-5663(99)00045-7
10.1016/S0003-2670(99)00170-1
10.1039/B204444G
10.1021/ac50062a035
10.1016/0003-2670(91)87189-E
10.1021/ac990901u
10.1128/jb.173.6.1938-1943.1991
10.1016/S0003-2670(99)00513-9
10.1080/00032719508004027
10.1128/jb.170.5.2306-2311.1988
10.1006/abbi.1995.1204
10.1016/0956-5663(94)90035-3
10.1039/an9962101911
10.1016/0003-2670(72)80051-5
10.1016/0003-2670(93)85104-R
10.1016/0925-4005(91)80123-2
10.1016/0956-5663(91)87034-9
10.1016/S0956-5663(01)00157-9
10.1021/bp990034e
10.1080/00032719708001757
10.1111/j.1432-1033.1986.tb09646.x
10.1016/S0925-4005(01)00659-1
ContentType Journal Article
Copyright Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/elan.200403078
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-4109
EndPage 1906
ExternalDocumentID 10_1002_elan_200403078
ELAN200403078
ark_67375_WNG_GJZ9KKPS_W
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XV2
Y6R
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c3648-c31341ece0a6f3e2ecb43bdb520159315985c505ad85e326ad69d5f10535dc263
IEDL.DBID 33P
ISSN 1040-0397
IngestDate Fri Aug 23 00:38:08 EDT 2024
Sat Aug 24 00:59:37 EDT 2024
Wed Oct 30 09:57:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3648-c31341ece0a6f3e2ecb43bdb520159315985c505ad85e326ad69d5f10535dc263
Notes ArticleID:ELAN200403078
ark:/67375/WNG-GJZ9KKPS-W
istex:FD25BDD6C89FAD7B2DDA66295BA6B6F0EE725051
PageCount 11
ParticipantIDs crossref_primary_10_1002_elan_200403078
wiley_primary_10_1002_elan_200403078_ELAN200403078
istex_primary_ark_67375_WNG_GJZ9KKPS_W
PublicationCentury 2000
PublicationDate November 2004
PublicationDateYYYYMMDD 2004-11-01
PublicationDate_xml – month: 11
  year: 2004
  text: November 2004
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Electroanalysis (New York, N.Y.)
PublicationTitleAlternate Electroanalysis
PublicationYear 2004
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References P. Bergveld , A. Sibbald , Analytical and Biomedical Applications of Ion Sensitive Field Effect Transistors Elsevier, Amsterdam 1988.
J. J. Kulys , E. J. D'Costa. Biosens. Bioelectron. 1991, 6, 109.
J. J. DeFrank , T.-C. Cheng , J. Bacteriology 1991, 173, 1938.
J. Janata , R. J. Huber , R. Cohen , E. S. Kolesar Jr. , Aviat. Space Environ. Med. 1981, 52, 666.
M. M. Benning , J. M. Kuo , F. M. Raushel , H. M. Holden , Biochemistry 1994, 33, 15001.
E. Rainina , A. Simonian , A. Efremenko , S.Varfolomeyev , J. Wild , Biosens. Bioelectron. 1996, 11, 991.
J. C. Fernando , K. R. Rogers , N. A. Anis , J. J. Valdes , R. G. Thompson , A. T. Eldefrawi , M. E. Eldefrawi , J. Agric. Food Chem. 1993, 41, 511.
T.-C. Cheng , J. J. DeFrank , V. K. Rastogi , Chim.-Biol. Interactions 1999, 119-120, 462.
M. Brufani , M. Marta , M. Pomponi , Eur. J. Biochem. 1986, 157, 115.
A. L. Simonian , E. I. Rainina , J. R Wild , Anal. Lett. 1997, 30, 2453.
A. L. Simonian , E. I. Rainina , J. R. Wild , in Methods in Biotechnology: Enzyme Biosensors - Techniques and Protocols (Eds: A. Mulchandani, K. Rogers), Humana Press, N. J. 1998, 17, pp. 237-248.
C. Dumschat,H. Muller , K. Stein , G. Schwedt , Anal. Chim. Acta 1991, 252, 7.
F. Lisdat , W. Moritz , Sens. Act. B 1993, 15-16, 228.
Q. Yang , P. Atanasov , E. Wilkens , R. C. Hughes , Anal. Lett. 1995, 28, 2439.
G. A. Evtugyn , H. C. Budnikov E. B. Nikolskaya , Analyst 1996, 121, 1911.
A. Herbert , L. Guilhermino , H. C. Da Silva De Assis , P.-D. Hasen , Z. Angew. Zoologie, 1995/96, 3, 1.
B. H. Van Der Schoot , P. Bergveld , Anal. Chim. Acta 1990, 233, 49.
A. Herbert , L. Guilhermino , H. C. Da Silva De Assis , P.-D. Hasen , Z. Angew. Zoologie 1995/96, 3, 1.
K. Roger , Y. Wang , A. Mulchandani , P. Mulchandani , W. Chen , Biotech. Prog. 1999, 15, 517.
A. L. Simonian , B. D. diSioudi , J. R. Wild , Anal. Chim. Acta 1999, 389, 189.
J. J. DeFranik , W. T. Beaudry , T.-C. Cheng , S. P. Harvey , A. N. Stroup , L. L. Szafraniec , Chem.-Biol Interactions 1993, 87, 141.
A. Poghossian , A. Baade , H. Emons , M. J. Schöning , Sens. Actuators B 2001, 76, 634.
S. Caras , J. Janata , Anal. Chem.1980, 52, 1935.
J. Janata , Analyst 1994, 119, 2275.
B. H. Van Der Schoot , P. Bergveld , Anal. Chim. Acta 1987, 199,160.
D. P. Dumas , H. D. Durst , W. G. Landis , F. M. Raushel , J. R. Wild , Arch. Biochem. Biophys. 1990, 277, 155.
D. P. Dumas , J. R. Wild , F. M. Raushel , Biotech. Appl. Biochem. 1989, 11, 235.
A. A. Shul'ga , V. I. Strikha , A. P. Soldatkin , A. V. El'skaya , H. Maupas , C. Martelet , P. Clechet , Anal. Chim. Acta 1993, 278, 233.
K. Lai , N. .J. Stolowich , J. R. Wild , Arch. Biochem. Biophys. 1995, 318, 59.
J. F. Payne , A. Mathieu , W. Melvin , L. L. Fancey , Marine Pollution Bulletin, 81.
Solid State Chemical Sensors (Eds: J. Janata, R. J. Huber), Academic Press, Orlando, FL 1985.
R. Russell , M. Pishko , A. Simonian , J. Wild , Anal. Chem. 1999, 71, 4909.
P. Mulchandani , W. Chen , A. Mulchandani , J. Wang , L. Chen , Biosens. Bioelectron. 2001, 16, 433.
A. M. Nyamsi- Hendji , N. Jaffrezic-Renault , C. Martelet , P. Clechet , A. A. Shul'ga , V. I. Strikha , L. I. Netchiporuk , A. P. Soldatkin , W. B. Wlodarski , Anal. Chim. Acta 1993, 281, 3.
A. K. Singh , A. W. Flounders , J. V. Volponi , C. S. Ashley , K. Wally , J. S. Schoeniger , Biosens. Bioelectron. 1999, 14, 703.
G. Palleschi , M. Bernabei , C. Cremisini , M. Mascini. Sens. Actuators B 1992, 7, 513.
O. Schafer , L. Weil , R. Niessner , Methoden Vom Wasser 1994, 82, 233.
C. S. McDaniel , L. L. Harper , J. R. Wild , J. Bacteriol. 1988, 170, 2306.
A. L. Simonian , J. K. Grimsley , A. W. Flounders , J. S. Schoeniger , T.-C. Cheng , J. J. DeFrank , J. R. Wild , Anal. Chim. Acta 2001, 442, 15.
M. J. Schöning , A. Poghossian , Analyst 2002, 127, 1137.
P. Strop , G. G. Guilbault , Anal. Chim. Acta 1972, 62, 425.
A. Flounders , A. Singh , J. Volponi , S. Carichner , K. Wally , A. Simonian , J. Wild , J. Schoeniger , Biosens. Bioelectron. 1999, 14, 713.
T. T. Bachmann , R. D. Schmid , Anal. Chim. Acta 1999, 401, 95.
Y. Vlasov , A. Bratov , S. Levichev , Y. Tarantov , Sens. Actuators B 1991, 4, 283.
N. Mionetto , J.-L. Marty , I. Karube , Biosens. Bioelectron. 1994, 9, 463.
1991; 4
1991; 252
1991; 173
2001; 442
1986; 157
1988; 170
1988.
1993; 15–16
1993; 87
1995; 318
1995/96; 3
1993; 41
1998
1993; 281
1999; 119–120
1996; 121
1999; 389
1972; 62
1999; 401
1994; 82
1994; 119
1991; 6
1996; 11
1994; 9
1992; 7
1989; 11
1985.
1987; 199
1995; 28
1980; 52
1997; 30
1999; 15
1999; 14
1994; 33
2002; 127
2001; 16
1990; 277
1999; 71
1990; 233
1993; 278
1981; 52
2001; 76
Schafer O. (e_1_2_1_14_2) 1994; 82
(e_1_2_1_28_2) 1985
Schoot B. H. Van Der (e_1_2_1_31_2) 1987; 199
Schafer O. (e_1_2_1_12_2) 1994; 82
e_1_2_1_41_2
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_43_2
Simonian A. L. (e_1_2_1_20_2) 1998
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_26_2
e_1_2_1_48_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_25_2
e_1_2_1_46_2
Herbert A. (e_1_2_1_9_2) 1995; 3
Payne J. F. (e_1_2_1_10_2)
Bergveld P. (e_1_2_1_29_2) 1988
Janata J. (e_1_2_1_37_2) 1981; 52
Herbert A. (e_1_2_1_6_2) 1995; 3
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
Cheng T.‐C. (e_1_2_1_27_2) 1999; 119
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_1_2
Dumas D. P. (e_1_2_1_17_2) 1989; 11
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – volume: 16
  start-page: 433
  year: 2001
  publication-title: Biosens. Bioelectron.
– volume: 199
  year: 1987
  publication-title: Anal. Chim. Acta
– volume: 30
  start-page: 2453
  year: 1997
  publication-title: Anal. Lett.
– publication-title: Marine Pollution Bulletin
– volume: 281
  start-page: 3
  year: 1993
  publication-title: Anal. Chim. Acta
– volume: 252
  start-page: 7
  year: 1991
  publication-title: Anal. Chim. Acta
– volume: 401
  start-page: 95
  year: 1999
  publication-title: Anal. Chim. Acta
– year: 1988.
– volume: 41
  start-page: 511
  year: 1993
  publication-title: J. Agric. Food Chem.
– volume: 11
  start-page: 235
  year: 1989
  publication-title: Biotech. Appl. Biochem.
– volume: 173
  start-page: 1938
  year: 1991
  publication-title: J. Bacteriology
– volume: 52
  start-page: 1935
  year: 1980
  publication-title: Anal. Chem.
– volume: 14
  start-page: 713
  year: 1999
  publication-title: Biosens. Bioelectron.
– volume: 389
  start-page: 189
  year: 1999
  publication-title: Anal. Chim. Acta
– volume: 52
  start-page: 666
  year: 1981
  publication-title: Aviat. Space Environ. Med.
– volume: 170
  start-page: 2306
  year: 1988
  publication-title: J. Bacteriol.
– year: 1998
– volume: 62
  start-page: 425
  year: 1972
  publication-title: Anal. Chim. Acta
– volume: 442
  start-page: 15
  year: 2001
  publication-title: Anal. Chim. Acta
– volume: 28
  start-page: 2439
  year: 1995
  publication-title: Anal. Lett.
– volume: 233
  start-page: 49
  year: 1990
  publication-title: Anal. Chim. Acta
– volume: 127
  start-page: 1137
  year: 2002
  publication-title: Analyst
– volume: 11
  start-page: 991
  year: 1996
  publication-title: Biosens. Bioelectron.
– volume: 4
  start-page: 283
  year: 1991
  publication-title: Sens. Actuators B
– volume: 7
  start-page: 513
  year: 1992
  publication-title: Sens. Actuators B
– volume: 6
  start-page: 109
  year: 1991
  publication-title: Biosens. Bioelectron.
– volume: 82
  start-page: 233
  year: 1994
  publication-title: Methoden Vom Wasser
– volume: 318
  start-page: 59
  year: 1995
  publication-title: Arch. Biochem. Biophys.
– volume: 76
  start-page: 634
  year: 2001
  publication-title: Sens. Actuators B
– volume: 121
  start-page: 1911
  year: 1996
  publication-title: Analyst
– volume: 87
  start-page: 141
  year: 1993
  publication-title: Chem.‐Biol Interactions
– volume: 33
  start-page: 15001
  year: 1994
  publication-title: Biochemistry
– volume: 9
  start-page: 463
  year: 1994
  publication-title: Biosens. Bioelectron.
– year: 1985.
– volume: 277
  start-page: 155
  year: 1990
  publication-title: Arch. Biochem. Biophys.
– volume: 15–16
  start-page: 228
  year: 1993
  publication-title: Sens. Act. B
– volume: 15
  start-page: 517
  year: 1999
  publication-title: Biotech. Prog.
– volume: 157
  start-page: 115
  year: 1986
  publication-title: Eur. J. Biochem.
– volume: 278
  start-page: 233
  year: 1993
  publication-title: Anal. Chim. Acta
– volume: 71
  start-page: 4909
  year: 1999
  publication-title: Anal. Chem.
– volume: 119–120
  start-page: 462
  year: 1999
  publication-title: Chim.‐Biol. Interactions
– volume: 14
  start-page: 703
  year: 1999
  publication-title: Biosens. Bioelectron.
– volume: 3
  start-page: 1
  year: 1995/96
  publication-title: Z. Angew. Zoologie
– volume: 119
  start-page: 2275
  year: 1994
  publication-title: Analyst
– ident: e_1_2_1_35_2
  doi: 10.1016/0925-4005(93)85057-H
– ident: e_1_2_1_43_2
  doi: 10.1021/jf00027a031
– volume-title: Methods in Biotechnology: Enzyme Biosensors – Techniques and Protocols
  year: 1998
  ident: e_1_2_1_20_2
  contributor:
    fullname: Simonian A. L.
– ident: e_1_2_1_46_2
  doi: 10.1016/S0956-5663(99)00044-5
– ident: e_1_2_1_4_2
  doi: 10.1016/0925-4005(92)80355-2
– volume: 199
  year: 1987
  ident: e_1_2_1_31_2
  publication-title: Anal. Chim. Acta
  contributor:
    fullname: Schoot B. H. Van Der
– ident: e_1_2_1_41_2
  doi: 10.1016/0003-2670(93)85333-F
– ident: e_1_2_1_15_2
  doi: 10.1016/0956-5663(96)87658-5
– volume: 119
  start-page: 462
  year: 1999
  ident: e_1_2_1_27_2
  publication-title: Chim.‐Biol. Interactions
  contributor:
    fullname: Cheng T.‐C.
– volume: 52
  start-page: 666
  year: 1981
  ident: e_1_2_1_37_2
  publication-title: Aviat. Space Environ. Med.
  contributor:
    fullname: Janata J.
– ident: e_1_2_1_45_2
  doi: 10.1016/S0003-2670(01)01131-X
– ident: e_1_2_1_30_2
  doi: 10.1039/an9941902275
– ident: e_1_2_1_32_2
  doi: 10.1016/S0003-2670(00)83460-1
– ident: e_1_2_1_47_2
  doi: 10.1021/bi00254a008
– ident: e_1_2_1_1_2
  doi: 10.1016/0003-9861(90)90564-F
– ident: e_1_2_1_26_2
  doi: 10.1016/0009-2797(93)90035-W
– volume: 82
  start-page: 233
  year: 1994
  ident: e_1_2_1_12_2
  publication-title: Methoden Vom Wasser
  contributor:
    fullname: Schafer O.
– ident: e_1_2_1_44_2
  doi: 10.1016/S0956-5663(99)00045-7
– ident: e_1_2_1_22_2
  doi: 10.1016/S0003-2670(99)00170-1
– ident: e_1_2_1_42_2
  doi: 10.1039/B204444G
– ident: e_1_2_1_38_2
  doi: 10.1021/ac50062a035
– volume: 3
  start-page: 1
  year: 1995
  ident: e_1_2_1_9_2
  publication-title: Z. Angew. Zoologie
  contributor:
    fullname: Herbert A.
– ident: e_1_2_1_39_2
  doi: 10.1016/0003-2670(91)87189-E
– ident: e_1_2_1_21_2
  doi: 10.1021/ac990901u
– ident: e_1_2_1_25_2
  doi: 10.1128/jb.173.6.1938-1943.1991
– ident: e_1_2_1_13_2
  doi: 10.1016/S0003-2670(99)00513-9
– ident: e_1_2_1_48_2
  doi: 10.1080/00032719508004027
– volume: 3
  start-page: 1
  year: 1995
  ident: e_1_2_1_6_2
  publication-title: Z. Angew. Zoologie
  contributor:
    fullname: Herbert A.
– ident: e_1_2_1_16_2
  doi: 10.1128/jb.170.5.2306-2311.1988
– ident: e_1_2_1_19_2
  doi: 10.1006/abbi.1995.1204
– ident: e_1_2_1_3_2
  doi: 10.1016/0956-5663(94)90035-3
– ident: e_1_2_1_11_2
  doi: 10.1016/S0003-2670(99)00513-9
– ident: e_1_2_1_2_2
  doi: 10.1039/an9962101911
– volume: 82
  start-page: 233
  year: 1994
  ident: e_1_2_1_14_2
  publication-title: Methoden Vom Wasser
  contributor:
    fullname: Schafer O.
– ident: e_1_2_1_36_2
  doi: 10.1016/0003-2670(72)80051-5
– ident: e_1_2_1_34_2
  doi: 10.1016/0003-2670(93)85104-R
– ident: e_1_2_1_10_2
  publication-title: Marine Pollution Bulletin
  contributor:
    fullname: Payne J. F.
– ident: e_1_2_1_18_2
  doi: 10.1016/0003-9861(90)90564-F
– ident: e_1_2_1_40_2
  doi: 10.1016/0925-4005(91)80123-2
– ident: e_1_2_1_5_2
  doi: 10.1016/0956-5663(91)87034-9
– ident: e_1_2_1_23_2
  doi: 10.1016/S0956-5663(01)00157-9
– ident: e_1_2_1_24_2
  doi: 10.1021/bp990034e
– ident: e_1_2_1_8_2
  doi: 10.1080/00032719708001757
– volume: 11
  start-page: 235
  year: 1989
  ident: e_1_2_1_17_2
  publication-title: Biotech. Appl. Biochem.
  contributor:
    fullname: Dumas D. P.
– ident: e_1_2_1_7_2
  doi: 10.1111/j.1432-1033.1986.tb09646.x
– volume-title: Analytical and Biomedical Applications of Ion Sensitive Field Effect Transistors
  year: 1988
  ident: e_1_2_1_29_2
  contributor:
    fullname: Bergveld P.
– volume-title: Solid State Chemical Sensors
  year: 1985
  ident: e_1_2_1_28_2
– ident: e_1_2_1_33_2
  doi: 10.1016/S0925-4005(01)00659-1
SSID ssj0009649
Score 2.038711
Snippet Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in the food...
Abstract Recent world‐wide terrorist events associated with the threat of hazardous chemical agent proliferation, and outbreaks of chemical contamination in...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1896
SubjectTerms Biosensor
Chemical warfare agents
Demeton-S
Detection
Diisopropyl fluorophosphate
ENFET
Organophosphate hydrolase
Organophosphorus acid anhydrolase
Paraoxon
pHFET
Title FET-Based Biosensors for The Direct Detection of Organophosphate Neurotoxins
URI https://api.istex.fr/ark:/67375/WNG-GJZ9KKPS-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felan.200403078
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46H_TFuzhv5EH0qaxLmrR7dDeHgzGYMvEl5FY2lHasG-zRn-Bv9JeYpFvHngR9aKHQhPJxcs6X9JzvAHAbEhkiYXuEmeDtBcqXXoSj2KvWtC-N91NU2I1iZxD2XqNmy8rkFFX8uT5EceBmV4bz13aBc5FV1qKh-oM7_dLAmqmt9jVbBVfDgftr1V3q-G_Vps35JvKuVBt9VNkcvhGVdizAi0226sJN--D_H3oI9pdUEz7ktnEEtnRyDHYbqw5vJ6DXbj1_f37VTSBTsD5OM7OlTacZNDwWGvOBuTuETT1z-VoJTGPoajfTySjNJiNDU6ET95ili3GSnYIXM2Gj4y37K3gS0yAyd6vmpqX2OY2xRlqKAAsliCEFpIbNFRFpGBJXEdGG5nFFa4rEVSsJoySi-AyUkjTR5wBKLSnWwicx5YEiivvc_lGVOBYBChEqg_sVvmySy2iwXDAZMYsPK_ApgzsHf_Ean77b5LOQsGHvkT0-vdW63f6ADcsAOdR_mY_ZziPF08VfBl2CvVze0R68XIHSbDrX12A7U_MbZ24_kL_Ttw
link.rule.ids 315,782,786,1408,27935,27936,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58HPTiW1yfOYieit2kSduju7quri6CiuIltEmKorTLdgWP_gR_o7_ETLq7sidBPLRQaEL5mMx8mU6-AdgPuQppij3CbPD2Au0rL2JR5tVj4yvr_bRIcaPYvgm7D9HJKcrkHI_OwlT6EOOEG64M569xgWNC-uhHNdS8Jk7ANEA7jaZhNhBBjN0bGLv-0d0VjgHXsXDOt7F3pNvo06PJ8RNxaRYhfp_kqy7gtBb_4VOXYGHINslxZR7LMGXyFZhrjpq8rUK3dXr79fHZsLFMk8ZzUdpdbdEviaWyxFoQqTwiOTEDV7KVkyIj7vhm0Xsqyt6TZarE6XsMivfnvFyDOzths-0NWyx4iokgsncUdDPK-InImKFGpQFLdcotL-Axs1fElSVJiY64sUwv0SLWPKujKoxWVLB1mMmL3GwAUUYJZlKfZyIJNNeJn-BPVcWyNKAhpTU4HAEse5WShqw0k6lEfOQYnxocOPzHryX9F6w_C7m8757Js4vHuNO5vpH3NaAO9l_mk9h8ZPy0-ZdBezDXvr26lJfn3c4WzFdqj5iH2YaZQf_N7MB0qd92ne19A_tn19g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FET%E2%80%90Based+Biosensors+for+The+Direct+Detection+of+Organophosphate+Neurotoxins&rft.jtitle=Electroanalysis+%28New+York%2C+N.Y.%29&rft.au=Simonian%2C+A.%E2%80%85L.&rft.au=Flounders%2C+A.%E2%80%85W.&rft.au=Wild%2C+J.%E2%80%85R.&rft.date=2004-11-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1040-0397&rft.eissn=1521-4109&rft.volume=16&rft.issue=22&rft.spage=1896&rft.epage=1906&rft_id=info:doi/10.1002%2Felan.200403078&rft.externalDBID=10.1002%252Felan.200403078&rft.externalDocID=ELAN200403078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-0397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-0397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-0397&client=summon