Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests

Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation ponderosa pine forests of the south‐western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured act...

Full description

Saved in:
Bibliographic Details
Published in:Ecohydrology Vol. 8; no. 7; pp. 1335 - 1350
Main Authors: Ha, Wonsook, Kolb, Thomas E., Springer, Abraham E., Dore, Sabina, O'Donnell, Frances C., Martinez Morales, Rodolfo, Masek Lopez, Sharon, Koch, George W.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01-10-2015
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation ponderosa pine forests of the south‐western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4 years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415–510 mm year−1 on average) with actual ET estimated from five meteorological models [Penman–Monteith (P‐M), P‐M with dynamic control of stomatal resistance (P‐M‐d), Priestley–Taylor (P‐T), McNaughton–Black (M‐B), and Shuttleworth–Wallace (S‐W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P‐M, M‐B, and S‐W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and −14%), but their accuracy varied across sites. The P‐M‐d consistently underpredicted ET at all sites. The more simplistic P‐T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (−26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south‐western USA and that remote sensing‐based ET estimates need to be improved through use of higher resolution products. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation ponderosa pine forests of the south‐western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4 years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415–510 mm year −1 on average) with actual ET estimated from five meteorological models [Penman–Monteith (P‐M), P‐M with dynamic control of stomatal resistance (P‐M‐d), Priestley–Taylor (P‐T), McNaughton–Black (M‐B), and Shuttleworth–Wallace (S‐W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P‐M, M‐B, and S‐W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and −14%), but their accuracy varied across sites. The P‐M‐d consistently underpredicted ET at all sites. The more simplistic P‐T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (−26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south‐western USA and that remote sensing‐based ET estimates need to be improved through use of higher resolution products. Copyright © 2014 John Wiley & Sons, Ltd.
Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation ponderosa pine forests of the south‐western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4 years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415–510 mm year−1 on average) with actual ET estimated from five meteorological models [Penman–Monteith (P‐M), P‐M with dynamic control of stomatal resistance (P‐M‐d), Priestley–Taylor (P‐T), McNaughton–Black (M‐B), and Shuttleworth–Wallace (S‐W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P‐M, M‐B, and S‐W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and −14%), but their accuracy varied across sites. The P‐M‐d consistently underpredicted ET at all sites. The more simplistic P‐T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (−26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south‐western USA and that remote sensing‐based ET estimates need to be improved through use of higher resolution products. Copyright © 2014 John Wiley & Sons, Ltd.
Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi-arid, high-elevation ponderosa pine forests of the south-western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415-510mmyear-1 on average) with actual ET estimated from five meteorological models [Penman-Monteith (P-M), P-M with dynamic control of stomatal resistance (P-M-d), Priestley-Taylor (P-T), McNaughton-Black (M-B), and Shuttleworth-Wallace (S-W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P-M, M-B, and S-W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and -14%), but their accuracy varied across sites. The P-M-d consistently underpredicted ET at all sites. The more simplistic P-T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (-26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south-western USA and that remote sensing-based ET estimates need to be improved through use of higher resolution products. Copyright © 2014 John Wiley & Sons, Ltd.
Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi-arid, high-elevation ponderosa pine forests of the south-western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415-510mmyear super(-1) on average) with actual ET estimated from five meteorological models [Penman-Monteith (P-M), P-M with dynamic control of stomatal resistance (P-M-d), Priestley-Taylor (P-T), McNaughton-Black (M-B), and Shuttleworth-Wallace (S-W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P-M, M-B, and S-W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and -14%), but their accuracy varied across sites. The P-M-d consistently underpredicted ET at all sites. The more simplistic P-T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (-26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south-western USA and that remote sensing-based ET estimates need to be improved through use of higher resolution products.
Author Kolb, Thomas E.
Masek Lopez, Sharon
Koch, George W.
Dore, Sabina
Ha, Wonsook
O'Donnell, Frances C.
Martinez Morales, Rodolfo
Springer, Abraham E.
Author_xml – sequence: 1
  givenname: Wonsook
  surname: Ha
  fullname: Ha, Wonsook
  organization: School of Earth Sciences and Environmental Sustainability, Northern Arizona University, AZ, Flagstaff, USA
– sequence: 2
  givenname: Thomas E.
  surname: Kolb
  fullname: Kolb, Thomas E.
  organization: School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
– sequence: 3
  givenname: Abraham E.
  surname: Springer
  fullname: Springer, Abraham E.
  email: Correspondence to: Abraham E. Springer, School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA., Abe.Springer@nau.edu
  organization: School of Earth Sciences and Environmental Sustainability, Northern Arizona University, AZ, Flagstaff, USA
– sequence: 4
  givenname: Sabina
  surname: Dore
  fullname: Dore, Sabina
  organization: Department of Environmental Science, Policy, and Management, University of California at Berkeley, CA, Berkeley, USA
– sequence: 5
  givenname: Frances C.
  surname: O'Donnell
  fullname: O'Donnell, Frances C.
  organization: School of Earth Sciences and Environmental Sustainability, Northern Arizona University, AZ, Flagstaff, USA
– sequence: 6
  givenname: Rodolfo
  surname: Martinez Morales
  fullname: Martinez Morales, Rodolfo
  organization: Department of Biological Sciences, Northern Arizona University, AZ, Flagstaff, USA
– sequence: 7
  givenname: Sharon
  surname: Masek Lopez
  fullname: Masek Lopez, Sharon
  organization: School of Earth Sciences and Environmental Sustainability, Northern Arizona University, AZ, Flagstaff, USA
– sequence: 8
  givenname: George W.
  surname: Koch
  fullname: Koch, George W.
  organization: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
BookMark eNp1kctu1TAQhi1UJNqCxCNYYsMmrS8njrNER4dDpUJZgFhajj2uXBI7eJKW8yo8LS5FRSCxmtE_n-b2n5CjlBMQ8pKzM86YOAeXz3ir1RNyzHupGtb24ugx15tn5ATxhjHFN608Jj92t3bOS7EJ51jsEnOiLk-zLRFzQjrAcgeQKHh_qIXbqtvkgE5gcS0wQVqQ2uSrsEAueczX0dnxl1TLeYEGIWFM181gESqXPYxIY6I-4rKWoWpzTh5KRkvnmICGXAAXfE6eBjsivPgdT8nnt7tP23fN5dX-YvvmsnFSbVQTVHCW25Zx1gvNOiZFGxwPMDgAL4RwbmDac9szG5TuVd8HFsC3HQteD0KektcPfeeSv611spkiOhhHmyCvaHgnhRZdfVdFX_2D3uS1pLpdpYRSSmw0-9PQ1ZuwQDBziZMtB8OZuTfJVJPMvUkVbR7QuzjC4b-c2W2v_ubr7-D7I2_LV6M62bXmy4e9-Sjl-73eaiPlT1QgqFs
CitedBy_id crossref_primary_10_1016_j_agrformet_2022_108824
crossref_primary_10_3390_rs12050890
crossref_primary_10_3390_rs15143680
crossref_primary_10_3390_rs71114899
crossref_primary_10_1016_j_agrformet_2023_109437
crossref_primary_10_3390_ijgi10030192
crossref_primary_10_1016_j_ecoleng_2019_105701
crossref_primary_10_3390_ijgi11030182
crossref_primary_10_1002_eco_2475
crossref_primary_10_3389_fpls_2023_1120202
crossref_primary_10_1016_j_agrformet_2020_107984
crossref_primary_10_1175_JHM_D_14_0179_1
crossref_primary_10_3390_rs9040307
crossref_primary_10_3390_rs14071660
crossref_primary_10_1016_j_quaint_2021_04_005
crossref_primary_10_1111_gcb_13686
crossref_primary_10_2166_nh_2017_232
crossref_primary_10_1002_rse2_210
crossref_primary_10_3390_f14050916
crossref_primary_10_1007_s12040_019_1098_5
crossref_primary_10_3390_land11122168
crossref_primary_10_3390_rs16020361
crossref_primary_10_3390_hydrology10080161
crossref_primary_10_1175_JHM_D_18_0146_1
crossref_primary_10_3390_w10111687
crossref_primary_10_1016_j_agwat_2021_106753
crossref_primary_10_1016_j_scitotenv_2018_09_130
Cites_doi 10.1073/pnas.0608998104
10.1016/j.jhydrol.2004.12.010
10.1016/j.rse.2006.07.007
10.1016/j.envsoft.2004.04.009
10.3390/rs4030703
10.1016/j.agrformet.2011.05.017
10.1016/S0034-4257(02)00078-0
10.1061/(ASCE)0733-9437(2007)133:4(395)
10.1016/S0168-1923(00)00123-4
10.1016/j.foreco.2005.01.034
10.1029/2009JG001179
10.1002/jgrg.20078
10.5194/bg-7-959-2010
10.1111/j.1365-2486.2005.01036.x
10.2307/3236114
10.1080/10106040108542218
10.1016/S0022-1694(98)00202-9
10.1016/S0168-1923(00)00199-4
10.1002/qj.49711146910
10.1890/09-0934.1
10.1029/2003GB002098
10.3402/tellusb.v64i0.17159
10.1016/0022-1694(82)90117-2
10.1002/hyp.1348
10.1029/WR009i006p01579
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.2307/1941631
10.1109/36.841980
10.1016/S0034-4257(98)00102-3
10.1016/j.rse.2011.02.019
10.5849/forsci.11-051
10.1016/j.agrformet.2008.09.011
10.1080/01431169508954373
10.1111/j.1365-2486.1996.tb00069.x
10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2
10.1139/x05-090
10.1016/j.rse.2010.01.022
10.1007/978-1-4612-1224-9_14
10.2136/sssaj1986.03615995005000040039x
10.1016/0022-1694(95)02780-7
10.1007/978-1-4612-1224-9_12
10.1890/03-0583
10.3390/rs6010233
10.1016/j.jhydrol.2008.12.021
10.1016/j.rse.2007.04.015
10.1029/2008WR007045
10.1071/WF11130
10.1029/2012JG002027
10.1016/0168-1923(88)90003-2
10.1016/j.rse.2006.06.026
10.1046/j.1365-2486.2000.00291.x
10.1111/j.1752-1688.1983.tb04593.x
10.1038/nature09396
10.1016/S0034-4257(02)00074-3
10.1016/j.jhydrol.2012.09.016
10.1029/WR022i001p00067
10.1016/S0022-1694(02)00064-1
10.1890/06-0922.1
10.1016/0168-1923(91)90094-7
10.1098/rspa.1948.0037
10.1016/S0065-2504(08)60018-5
10.1029/96WR00801
10.1111/j.1365-2486.2012.02775.x
10.1093/treephys/tpr048
10.1016/j.agee.2008.01.015
10.1029/2001RG000103
10.1007/978-94-007-1363-5_5
10.1111/j.1365-2486.2008.01613.x
10.1016/j.rse.2004.08.009
10.1088/1748-9326/7/2/024024
10.1080/014311600211064
10.3354/cr021219
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
L.G
7ST
7TG
KL.
SOI
DOI 10.1002/eco.1586
DatabaseName Istex
CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1936-0592
EndPage 1350
ExternalDocumentID 3846450441
10_1002_eco_1586
ECO1586
ark_67375_WNG_P33MG8C8_3
Genre article
GeographicLocations USA, Arizona
GeographicLocations_xml – name: USA, Arizona
GrantInformation_xml – fundername: WaterSMART Applied Science Grants for the Desert Landscape Conservation Cooperative of Bureau of Reclamation
  funderid: R12AC80912
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
4.4
4P2
52U
5DZ
5GY
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
C45
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F1Z
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P4E
ROL
SUPJJ
TEORI
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WXSBR
WYISQ
WYJ
XV2
ZZTAW
~S-
AAMNL
AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
L.G
7ST
7TG
KL.
SOI
ID FETCH-LOGICAL-c3646-f6fca1a5010928070325fc1febceed222ccb08d1a90af689699f0fed570fd8b23
IEDL.DBID 5DZ
ISSN 1936-0584
IngestDate Fri Aug 16 21:22:18 EDT 2024
Thu Oct 10 18:58:51 EDT 2024
Thu Nov 21 21:10:44 EST 2024
Sat Aug 24 01:01:49 EDT 2024
Wed Oct 30 09:55:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3646-f6fca1a5010928070325fc1febceed222ccb08d1a90af689699f0fed570fd8b23
Notes Supporting info item
ark:/67375/WNG-P33MG8C8-3
WaterSMART Applied Science Grants for the Desert Landscape Conservation Cooperative of Bureau of Reclamation - No. R12AC80912
istex:09AE1D284DE17772C680AECA2E86048FE8ADBE7E
ArticleID:ECO1586
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1726662480
PQPubID 866379
PageCount 16
ParticipantIDs proquest_miscellaneous_1732827453
proquest_journals_1726662480
crossref_primary_10_1002_eco_1586
wiley_primary_10_1002_eco_1586_ECO1586
istex_primary_ark_67375_WNG_P33MG8C8_3
PublicationCentury 2000
PublicationDate 2015-10
October 2015
2015-10-00
20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Ecohydrology
PublicationTitleAlternate Ecohydrol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Baker, MB. 1986. Effects of ponderosa pine treatments on water yield in Arizona. Water Resources Research 22: 67-73. DOI: 10.1029/WR022i001p00067.
Foken T. 2008. The energy balance closure problem: An overview. Ecological Applications 18: 1351-1367.
Stednick JD. 1996. Monitoring the effects of timber harvest on annual water yield. Journal of Hydrology 176: 79-95.
Baldocchi DD, Hicks BB, Meyers TP. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69: 1331-1340.
Bosch JM Hewlett JD. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology 55: 3-23.
Stewart JB. 1988. Modeling surface conductance of pine forest. Agricultural and Forest Meteorology 43: 19-35.
Varjo J. 1997. Change detection and controlling forest information using multitemporal Landsat TM imagery. Acta Forestalia Fennica 258: 1-64.
Shuttleworth WJ, Wallace JS. 1985. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society 111: 839-855.
Troendle CA. 1983. The potential for water yield augmentation from forest management in the Rocky-Mountain Mountain Region. Water Resources Bulletin 19: 359-373.
Sheppard PR, Comrie AC, Packin GD, Angersbach K, Hughes MK. 2002. The climate of the US Southwest. Climatic Research 21: 219-238.
Dore S, Kolb TE, Montes-Helu M, Eckert SE, Sullivan BW, Hungate BA, Kaye JP, Hart SC, Koch GW, Finkral A. 2010. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecological Applications 20: 663-683.
Goulden ML, Anderson RG, Bales RC, Kelly AE, Meadows M, and Winston GC. 2012. Evapotranspiration along an elevation gradient in California's Sierra Nevada. Journal of Geophysical Research 117: G03028. DOI: 10.1029/2012JG002027.
Monteith JL. 1965. Evaporation and the environment. Symposium of the Society of Exploratory Biology 19: 205-234.
Cleugh HA, Leuning R, Mu Q, Running SW. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment 106: 285-304.
Dingman SL. 2002. Physical hydrology, 2nd edn. Waveland Press, Inc.: Long Grove, IL.
Federer CA, Vӧrӧsmarty CJ, Fekete B. 1996. Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resources Research 32: 2315-2321.
Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Advances in Ecological Research 30: 113-175.
Finney MA, McHugh CW, Grenfell IC. 2005. Stand- and landscape-level effects of prescribed burning on two Arizona wildfires. Canadian Journal of Forest Research 35: 1714-1722.
Heikkonen J, Varjo J. 2004. Forest change detection applying landsat thematic mapper difference features: A comparison of different classifiers in boreal forest conditions. Forest Science 50: 579-588.
Singh RK, Senay GB, Velpuri NM, Bohms S, Scott RL, Verdin JP. 2014. Actual evapotranspiration (Water Use) Assessment of the Colorado river basin at the Landsat resolution using the operational simplified surface energy balance model. Remote Sensing 6: 233-256.
Sun G, McNulty SG, Amatya DM, Skaggs RW, Swift Jr. LW, Shepard JP, Riekerk H. 2002. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US. Journal of Hydrology 263: 92-104.
Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America 104: 6550-6555.
Gordon WS, Famiglietti JS. 2004. Response of the water balance to climatic change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons. Global Biogeochemical Cycles 18: GB1030. DOI: 10.1029/2003GB002098.
McNaughton KG, Black TA. 1973. A study of evapotranspiration from a Douglas fir forest using the energy balance approach. Water Resources Research 9: 1579-1590.
Arora VK. 2002. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Reviews of Geophysics 40: 1006. DOI: 10.1029/2001RG000103.
Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment 83: 214-231.
Costa MH, Biajoli MC, Sanches L, Malhado ACM, Hutyra LR, da Rocha HR, Aguiar RG, de Araújo AC. 2010. Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? Journal of Geophysical Research 115: G04021. DOI: 10.1029/2009JG001179.
Moreaux V, Lamaud É, Bosc A, Bonnefond J-M, Medlyn BE, Loustau D. 2011. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth. Tree Physiology 31: 903-921.
FAO (Food and Agricultural Organization of the United Nations). 2012. State of the world's forests 2012. UN FAO: Rome, Italy.
Priestley CHB, Taylor RJ. 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review 100: 81-92.
Arain MA, Black TA, Barr AG, Griffis TJ, Morgenstern K, Nesic Z. 2003. Year-around observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrological Processes 17: 3581-3600.
Souza CM, Barreto P. 2000. An alternative approach for detecting and monitoring selectively logged forests in the Amazon. International Journal of Remote Sensing 21: 173-179.
Fisher JB, DeBiase TA, Qi Y, Xu M, Goldstein AH. 2005. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modeling & Software 20: 783-796.
Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467: 951-954.
Nagler PL, Cleverly J, Glenn E, Lampkin D, Huete A, Wan Z. 2005. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sensing of Environment 94: 17-30.
Saxton KE, Rawls WJ, Romberger JS, Papendick RI. 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 50: 1031-1036.
Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, and Wullschleger SD. 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology 106: 153-168.
Olsson H. 1995. Reflectance calibration of thematic mapper data for forest change detection. International Journal of Remote Sensing 16: 81-96.
Cienciala E, Running SW, Lindroth A, Grelle A, Ryan MG. 1998. Analysis of carbon and water fluxes from the NOPEX boreal forest: comparison of measurements with FOREST-BGC simulations. Journal of Hydrology 212-213: 62-78.
Bright BC, Hicke JA, Meddens AJH. 2013. Effects of bark beetle-caused tree mortality on biogeochemical and biogeophysical MODIS products. Journal of Geophysical Research-Biogeosciences 118: 974-982. DOI: 10.1002/jgrg.20078.
De Lillis M, Federici FM. 1993. Gas exchange and resource-use patterns along a Mediterranean successional gradient. Journal of Vegetation Science 4: 269-272.
Ruhoff AL, Paz AR, Collischonn W, Aragao LEOC, Rocha HR, Malhi YS. 2012. A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazillian tropical savannas. Remote Sensing 4: 703-725.
Montes-Helu MC, Kolb T, Dore S, Sullivan B, Hart SC, Koch G, Hungate BA. 2009. Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests. Agricultural and Forest Meteorology 149: 491-500.
Gemmell F, Varjo J. 1999. Utility of reflectance model inversion versus two spectral indices for estimating biophysical characteristics in a boreal forest test site. Remote Sensing of Environment 68: 95-111.
Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabaté S, Sánchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J. 2005. Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology 11: 2211-2233.
Flint AL, Childs SW. 1991. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agricultural and Forest Meteorology 56: 247-260.
Dore S, Kolb TE, Montes-Helu M, Sullivan BW, Winslow WD, Hart SC, Kaye JP, Koch GW, Hungate BA. 2008. Long-term impact of a stand-replacing fire on ecosystem CO2 exchange of a ponderosa pine forest. Global Change Biology 14: 1-20.
Agee JK, Skinner CN. 2005. Basic principles of forest fuel reduction treatments. Forest Ecology and Management 211: 83-96.
Barr AG, van der Kamp G, Black TA, McCaughey JH, Nesic Z. 2012. Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull watershed 1999-2009. Agricultural and Forest Meteorology 153: 3-13.
Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Ro
2009; 45
2007; 104
2011; 115
1983; 19
2007; 106
1991; 56
2000; 6
2013; 22
2005; 211
2010; 467
1982; 55
2005; 20
2003; 17
2012; 18
2012; 58
1996; 32
1965; 19
1993; 4
2001; 106
2010; 20
1997; 95
1948; 193
2002; 263
2000
2002; 83
2002; 40
2010; 114
2007; 133
2010; 115
2013; 118
1988; 43
2009; 366
2001; 16
1996; 176
1998; 212‐213
2008; 112
1996; 2
1972; 100
2014; 6
2010; 7
2012; 64
2005; 35
1991; 4
1997; 258
1986; 50
2012
2011
2012; 472‐473
1995; 16
2005; 310
2008; 18
2000; 21
2008; 14
1999; 68
2011; 31
2005; 86
2008; 126
2002
2012; 153
2004; 50
1973; 9
2000; 38
2004; 18
2000; 103
1986; 22
1988; 69
2007; 111
2000; 30
2002; 21
2005; 94
2013
2012; 7
2012; 4
2012; 117
2005; 11
2009; 149
1985; 111
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
FAO (Food and Agricultural Organization of the United Nations) (e_1_2_7_27_1) 2012
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Varjo J (e_1_2_7_77_1) 1997; 258
Covington WW (e_1_2_7_20_1) 1997; 95
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
R Core Team (e_1_2_7_60_1) 2013
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
Heikkonen J (e_1_2_7_37_1) 2004; 50
e_1_2_7_29_1
Monteith JL (e_1_2_7_48_1) 1965; 19
Dingman SL (e_1_2_7_22_1) 2002
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 20
  start-page: 663
  year: 2010
  end-page: 683
  article-title: Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning
  publication-title: Ecological Applications
– volume: 86
  start-page: 308
  year: 2005
  end-page: 319
  article-title: Ecohydrological implications of woody plant encroachment
  publication-title: Ecology
– volume: 9
  start-page: 1579
  year: 1973
  end-page: 1590
  article-title: A study of evapotranspiration from a Douglas fir forest using the energy balance approach
  publication-title: Water Resources Research
– volume: 100
  start-page: 81
  year: 1972
  end-page: 92
  article-title: On the assessment of surface heat flux and evaporation using large scale parameters
  publication-title: Monthly Weather Review
– volume: 14
  start-page: 1
  year: 2008
  end-page: 20
  article-title: Long‐term impact of a stand‐replacing fire on ecosystem CO exchange of a ponderosa pine forest
  publication-title: Global Change Biology
– volume: 263
  start-page: 92
  year: 2002
  end-page: 104
  article-title: A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US
  publication-title: Journal of Hydrology
– volume: 111
  start-page: 519
  year: 2007
  end-page: 536
  article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data
  publication-title: Remote Sensing of Environment
– volume: 19
  start-page: 359
  year: 1983
  end-page: 373
  article-title: The potential for water yield augmentation from forest management in the Rocky‐Mountain Mountain Region
  publication-title: Water Resources Bulletin
– volume: 38
  start-page: 977
  year: 2000
  end-page: 998
  article-title: An Algorithm for the retrieval of albedo from space using semiempirical BRDF models
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 176
  start-page: 79
  year: 1996
  end-page: 95
  article-title: Monitoring the effects of timber harvest on annual water yield
  publication-title: Journal of Hydrology
– volume: 118
  start-page: 974
  year: 2013
  end-page: 982
  article-title: Effects of bark beetle‐caused tree mortality on biogeochemical and biogeophysical MODIS products
  publication-title: Journal of Geophysical Research‐Biogeosciences
– volume: 112
  start-page: 59
  year: 2008
  end-page: 74
  article-title: New refinements and validation of the MODIS Land‐Surface Temperature/Emissivity products
  publication-title: Remote Sensing of Environment
– volume: 106
  start-page: 153
  year: 2001
  end-page: 168
  article-title: A comparison of methods for determining forest evapotranspiration and its components: sap‐flow, soil water budget, eddy covariance and catchment water balance
  publication-title: Agricultural and Forest Meteorology
– volume: 366
  start-page: 112
  year: 2009
  end-page: 118
  article-title: Measuring boreal forest evapotranspiration using the energy balance residual
  publication-title: Journal of Hydrology
– volume: 126
  start-page: 81
  year: 2008
  end-page: 97
  article-title: Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies
  publication-title: Agriculture Ecosystems and Environment
– volume: 68
  start-page: 95
  year: 1999
  end-page: 111
  article-title: Utility of reflectance model inversion versus two spectral indices for estimating biophysical characteristics in a boreal forest test site
  publication-title: Remote Sensing of Environment
– volume: 115
  start-page: G04021
  year: 2010
  article-title: Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different?
  publication-title: Journal of Geophysical Research
– volume: 58
  start-page: 497
  year: 2012
  end-page: 512
  article-title: A comparison of three methods to estimate evapotranspiration in two contrasting loblolly pine plantations: Age‐related changes in water use and drought sensitivity of evapotranspiration components
  publication-title: Forest Science
– volume: 20
  start-page: 783
  year: 2005
  end-page: 796
  article-title: Evapotranspiration models compared on a Sierra Nevada forest ecosystem
  publication-title: Environmental Modeling & Software
– volume: 50
  start-page: 579
  year: 2004
  end-page: 588
  article-title: Forest change detection applying landsat thematic mapper difference features: A comparison of different classifiers in boreal forest conditions
  publication-title: Forest Science
– volume: 18
  year: 2004
  article-title: Response of the water balance to climatic change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons
  publication-title: Global Biogeochemical Cycles
– volume: 16
  start-page: 91
  year: 2001
  end-page: 106
  article-title: Mapping wildfire burn severity in southern California forests and shrublands using enhanced thematic mapper imagery
  publication-title: Geocarto International
– volume: 18
  start-page: 1351
  year: 2008
  end-page: 1367
  article-title: The energy balance closure problem: An overview
  publication-title: Ecological Applications
– volume: 117
  year: 2012
  article-title: Evapotranspiration along an elevation gradient in California's Sierra Nevada
  publication-title: Journal of Geophysical Research
– volume: 153
  start-page: 3
  year: 2012
  end-page: 13
  article-title: Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull watershed 1999‐2009
  publication-title: Agricultural and Forest Meteorology
– volume: 22
  start-page: 63
  year: 2013
  end-page: 82
  article-title: Ecological effects of alternative fuel‐reduction treatments: highlights of the National Fire and Fire Surrogate study (FFS)
  publication-title: International Journal of Wildland Fire
– volume: 310
  start-page: 28
  year: 2005
  end-page: 61
  article-title: A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation
  publication-title: Journal of Hydrology
– volume: 21
  start-page: 173
  year: 2000
  end-page: 179
  article-title: An alternative approach for detecting and monitoring selectively logged forests in the Amazon
  publication-title: International Journal of Remote Sensing
– volume: 103
  start-page: 279
  year: 2000
  end-page: 300
  article-title: Correcting eddy‐covariance flux underestimates over a grassland
  publication-title: Agricultural and Forest Meteorology
– volume: 4
  start-page: 269
  year: 1993
  end-page: 272
  article-title: Gas exchange and resource‐use patterns along a Mediterranean successional gradient
  publication-title: Journal of Vegetation Science
– volume: 83
  start-page: 287
  year: 2002
  end-page: 302
  article-title: Global land cover mapping from MODIS: algorithms and early results
  publication-title: Remote Sensing of Environment
– volume: 18
  start-page: 3171
  year: 2012
  end-page: 3185
  article-title: Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand‐replacing fire
  publication-title: Global Change Biology
– volume: 16
  start-page: 81
  year: 1995
  end-page: 96
  article-title: Reflectance calibration of thematic mapper data for forest change detection
  publication-title: International Journal of Remote Sensing
– volume: 258
  start-page: 1
  year: 1997
  end-page: 64
  article-title: Change detection and controlling forest information using multitemporal Landsat TM imagery
  publication-title: Acta Forestalia Fennica
– volume: 472‐473
  start-page: 216
  year: 2012
  end-page: 237
  article-title: The rain‐runoff response of tropical humid forest ecosystems to use and reforestation in the Western Ghats of India
  publication-title: Journal of Hydrology
– volume: 114
  start-page: 1416
  year: 2010
  end-page: 1431
  article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 2211
  year: 2005
  end-page: 2233
  article-title: Comparing and evaluating process‐based ecosystem model predictions of carbon and water fluxes in major European forest biomes
  publication-title: Global Change Biology
– start-page: 199
  year: 2000
  end-page: 214
– volume: 43
  start-page: 19
  year: 1988
  end-page: 35
  article-title: Modeling surface conductance of pine forest
  publication-title: Agricultural and Forest Meteorology
– volume: 56
  start-page: 247
  year: 1991
  end-page: 260
  article-title: Use of the Priestley‐Taylor evaporation equation for soil water limited conditions in a small forest clearcut
  publication-title: Agricultural and Forest Meteorology
– volume: 4
  start-page: 703
  year: 2012
  end-page: 725
  article-title: A MODIS‐based energy balance to estimate evapotranspiration for clear‐sky days in Brazillian tropical savannas
  publication-title: Remote Sensing
– volume: 133
  start-page: 395
  year: 2007
  end-page: 406
  article-title: Satellite‐based energy balance for mapping evapotranspiration with internalized calibration (METRIC)‐Applications
  publication-title: Journal of Irrigation and Drainage Engineering‐ASCE
– volume: 55
  start-page: 3
  year: 1982
  end-page: 23
  article-title: A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration
  publication-title: Journal of Hydrology
– volume: 6
  start-page: 233
  year: 2014
  end-page: 256
  article-title: Actual evapotranspiration (Water Use) Assessment of the Colorado river basin at the Landsat resolution using the operational simplified surface energy balance model
  publication-title: Remote Sensing
– volume: 21
  start-page: 219
  year: 2002
  end-page: 238
  article-title: The climate of the US Southwest
  publication-title: Climatic Research
– volume: 50
  start-page: 1031
  year: 1986
  end-page: 1036
  article-title: Estimating generalized soil‐water characteristics from texture
  publication-title: Soil Science Society of America Journal
– volume: 35
  start-page: 1714
  year: 2005
  end-page: 1722
  article-title: Stand‐ and landscape‐level effects of prescribed burning on two Arizona wildfires
  publication-title: Canadian Journal of Forest Research
– volume: 45
  year: 2009
  article-title: An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments
  publication-title: Water Resources Research
– volume: 115
  start-page: 1781
  year: 2011
  end-page: 1800
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sensing of Environment
– volume: 83
  start-page: 214
  year: 2002
  end-page: 231
  article-title: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data
  publication-title: Remote Sensing of Environment
– volume: 467
  start-page: 951
  year: 2010
  end-page: 954
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
– volume: 22
  start-page: 67
  year: 1986
  end-page: 73
  article-title: Effects of ponderosa pine treatments on water yield in Arizona
  publication-title: Water Resources Research
– volume: 64
  start-page: 17159
  year: 2012
  article-title: Five years of carbon fluxes and inherent water‐use efficiency at two semi‐arid pine forests with different disturbance histories
  publication-title: Tellus Series B‐Chemical and Physical Meteorology
– volume: 104
  start-page: 6550
  year: 2007
  end-page: 6555
  article-title: Combined climate and carbon‐cycle effects of large‐scale deforestation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 205
  year: 1965
  end-page: 234
  article-title: Evaporation and the environment
  publication-title: Symposium of the Society of Exploratory Biology
– volume: 7
  start-page: 024024
  year: 2012
  article-title: Water use by terrestrial ecosystems: temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil
  publication-title: Environmental Research Letters
– volume: 7
  start-page: 959
  year: 2010
  end-page: 977
  article-title: Simulating carbon and water cycles of larch forests in East Asia by the BIOME‐BGC model with AsiaFlux data
  publication-title: Biogeosciences
– year: 2012
– volume: 17
  start-page: 3581
  year: 2003
  end-page: 3600
  article-title: Year‐around observations of the energy and water vapour fluxes above a boreal black spruce forest
  publication-title: Hydrological Processes
– volume: 31
  start-page: 903
  year: 2011
  end-page: 921
  article-title: Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth
  publication-title: Tree Physiology
– volume: 106
  start-page: 285
  year: 2007
  end-page: 304
  article-title: Regional evaporation estimates from flux tower and MODIS satellite data
  publication-title: Remote Sensing of Environment
– volume: 30
  start-page: 113
  year: 2000
  end-page: 175
  article-title: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology
  publication-title: Advances in Ecological Research
– volume: 211
  start-page: 83
  year: 2005
  end-page: 96
  article-title: Basic principles of forest fuel reduction treatments
  publication-title: Forest Ecology and Management
– volume: 212‐213
  start-page: 62
  year: 1998
  end-page: 78
  article-title: Analysis of carbon and water fluxes from the NOPEX boreal forest: comparison of measurements with FOREST‐BGC simulations
  publication-title: Journal of Hydrology
– volume: 111
  start-page: 839
  year: 1985
  end-page: 855
  article-title: Evaporation from sparse crops‐an energy combination theory
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 94
  start-page: 17
  year: 2005
  end-page: 30
  article-title: Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data
  publication-title: Remote Sensing of Environment
– year: 2002
– volume: 6
  start-page: 155
  year: 2000
  end-page: 168
  article-title: Measurements of gross and net ecosystem productivity and water vapor exchange of a ecosystem, and an evaluation of two generalized models
  publication-title: Global Change Biology
– volume: 69
  start-page: 1331
  year: 1988
  end-page: 1340
  article-title: Measuring biosphere‐atmosphere exchanges of biologically related gases with micrometeorological methods
  publication-title: Ecology
– volume: 193
  start-page: 120
  year: 1948
  end-page: 146
  article-title: Natural evaporation from open water, bare soil and grass
  publication-title: Royal Society of London Series A‐Mathematical and Physical Sciences
– volume: 32
  start-page: 2315
  year: 1996
  end-page: 2321
  article-title: Intercomparison of methods for calculating potential evaporation in regional and global water balance models
  publication-title: Water Resources Research
– volume: 40
  start-page: 1006
  year: 2002
  article-title: Modeling vegetation as a dynamic component in soil‐vegetation‐atmosphere transfer schemes and hydrological models
  publication-title: Reviews of Geophysics
– volume: 95
  start-page: 23
  year: 1997
  end-page: 29
  article-title: Restoring ecosystem health in ponderosa pine forests of the Southwest
  publication-title: Journal of Forestry
– volume: 4
  start-page: 957
  year: 1991
  end-page: 988
  article-title: Amazonian deforestation and regional climate change
  publication-title: Journal of Climate
– volume: 2
  start-page: 159
  year: 1996
  end-page: 168
  article-title: Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems
  publication-title: Global Change Biology
– start-page: 101
  year: 2011
  end-page: 5
– volume: 149
  start-page: 491
  year: 2009
  end-page: 500
  article-title: Persistent effects of fire‐induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests
  publication-title: Agricultural and Forest Meteorology
– start-page: 161
  year: 2000
  end-page: 180
– year: 2013
– ident: e_1_2_7_9_1
  doi: 10.1073/pnas.0608998104
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jhydrol.2004.12.010
– ident: e_1_2_7_18_1
  doi: 10.1016/j.rse.2006.07.007
– ident: e_1_2_7_30_1
  doi: 10.1016/j.envsoft.2004.04.009
– ident: e_1_2_7_63_1
  doi: 10.3390/rs4030703
– ident: e_1_2_7_13_1
  doi: 10.1016/j.agrformet.2011.05.017
– ident: e_1_2_7_33_1
  doi: 10.1016/S0034-4257(02)00078-0
– ident: e_1_2_7_3_1
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(395)
– ident: e_1_2_7_74_1
  doi: 10.1016/S0168-1923(00)00123-4
– ident: e_1_2_7_2_1
  doi: 10.1016/j.foreco.2005.01.034
– ident: e_1_2_7_19_1
  doi: 10.1029/2009JG001179
– ident: e_1_2_7_15_1
  doi: 10.1002/jgrg.20078
– volume-title: Physical hydrology
  year: 2002
  ident: e_1_2_7_22_1
  contributor:
    fullname: Dingman SL
– ident: e_1_2_7_75_1
  doi: 10.5194/bg-7-959-2010
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1365-2486.2005.01036.x
– ident: e_1_2_7_21_1
  doi: 10.2307/3236114
– ident: e_1_2_7_62_1
  doi: 10.1080/10106040108542218
– ident: e_1_2_7_17_1
  doi: 10.1016/S0022-1694(98)00202-9
– ident: e_1_2_7_80_1
  doi: 10.1016/S0168-1923(00)00199-4
– volume: 95
  start-page: 23
  year: 1997
  ident: e_1_2_7_20_1
  article-title: Restoring ecosystem health in ponderosa pine forests of the Southwest
  publication-title: Journal of Forestry
  contributor:
    fullname: Covington WW
– ident: e_1_2_7_66_1
  doi: 10.1002/qj.49711146910
– ident: e_1_2_7_25_1
  doi: 10.1890/09-0934.1
– ident: e_1_2_7_35_1
  doi: 10.1029/2003GB002098
– volume: 50
  start-page: 579
  year: 2004
  ident: e_1_2_7_37_1
  article-title: Forest change detection applying landsat thematic mapper difference features: A comparison of different classifiers in boreal forest conditions
  publication-title: Forest Science
  contributor:
    fullname: Heikkonen J
– ident: e_1_2_7_78_1
  doi: 10.3402/tellusb.v64i0.17159
– ident: e_1_2_7_14_1
  doi: 10.1016/0022-1694(82)90117-2
– ident: e_1_2_7_5_1
  doi: 10.1002/hyp.1348
– ident: e_1_2_7_46_1
  doi: 10.1029/WR009i006p01579
– ident: e_1_2_7_59_1
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– volume-title: State of the world's forests 2012
  year: 2012
  ident: e_1_2_7_27_1
  contributor:
    fullname: FAO (Food and Agricultural Organization of the United Nations)
– volume: 19
  start-page: 205
  year: 1965
  ident: e_1_2_7_48_1
  article-title: Evaporation and the environment
  publication-title: Symposium of the Society of Exploratory Biology
  contributor:
    fullname: Monteith JL
– ident: e_1_2_7_11_1
  doi: 10.2307/1941631
– ident: e_1_2_7_44_1
  doi: 10.1109/36.841980
– ident: e_1_2_7_34_1
  doi: 10.1016/S0034-4257(98)00102-3
– ident: e_1_2_7_53_1
  doi: 10.1016/j.rse.2011.02.019
– ident: e_1_2_7_23_1
  doi: 10.5849/forsci.11-051
– ident: e_1_2_7_49_1
  doi: 10.1016/j.agrformet.2008.09.011
– ident: e_1_2_7_57_1
  doi: 10.1080/01431169508954373
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-2486.1996.tb00069.x
– ident: e_1_2_7_56_1
  doi: 10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2
– ident: e_1_2_7_29_1
  doi: 10.1139/x05-090
– ident: e_1_2_7_81_1
  doi: 10.1016/j.rse.2010.01.022
– ident: e_1_2_7_39_1
  doi: 10.1007/978-1-4612-1224-9_14
– ident: e_1_2_7_64_1
  doi: 10.2136/sssaj1986.03615995005000040039x
– ident: e_1_2_7_69_1
  doi: 10.1016/0022-1694(95)02780-7
– ident: e_1_2_7_47_1
  doi: 10.1007/978-1-4612-1224-9_12
– volume: 258
  start-page: 1
  year: 1997
  ident: e_1_2_7_77_1
  article-title: Change detection and controlling forest information using multitemporal Landsat TM imagery
  publication-title: Acta Forestalia Fennica
  contributor:
    fullname: Varjo J
– ident: e_1_2_7_38_1
  doi: 10.1890/03-0583
– ident: e_1_2_7_76_1
– ident: e_1_2_7_67_1
  doi: 10.3390/rs6010233
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jhydrol.2008.12.021
– ident: e_1_2_7_52_1
  doi: 10.1016/j.rse.2007.04.015
– ident: e_1_2_7_61_1
  doi: 10.1029/2008WR007045
– ident: e_1_2_7_45_1
  doi: 10.1071/WF11130
– ident: e_1_2_7_36_1
  doi: 10.1029/2012JG002027
– ident: e_1_2_7_70_1
  doi: 10.1016/0168-1923(88)90003-2
– ident: e_1_2_7_79_1
  doi: 10.1016/j.rse.2006.06.026
– ident: e_1_2_7_43_1
  doi: 10.1046/j.1365-2486.2000.00291.x
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1752-1688.1983.tb04593.x
– ident: e_1_2_7_40_1
  doi: 10.1038/nature09396
– ident: e_1_2_7_54_1
  doi: 10.1016/S0034-4257(02)00074-3
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jhydrol.2012.09.016
– volume-title: R: A language and environment for statistical computing
  year: 2013
  ident: e_1_2_7_60_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_7_8_1
  doi: 10.1029/WR022i001p00067
– ident: e_1_2_7_71_1
  doi: 10.1016/S0022-1694(02)00064-1
– ident: e_1_2_7_32_1
  doi: 10.1890/06-0922.1
– ident: e_1_2_7_31_1
  doi: 10.1016/0168-1923(91)90094-7
– ident: e_1_2_7_58_1
  doi: 10.1098/rspa.1948.0037
– ident: e_1_2_7_7_1
  doi: 10.1016/S0065-2504(08)60018-5
– ident: e_1_2_7_28_1
  doi: 10.1029/96WR00801
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1365-2486.2012.02775.x
– ident: e_1_2_7_51_1
  doi: 10.1093/treephys/tpr048
– ident: e_1_2_7_72_1
  doi: 10.1016/j.agee.2008.01.015
– ident: e_1_2_7_6_1
  doi: 10.1029/2001RG000103
– ident: e_1_2_7_10_1
  doi: 10.1007/978-94-007-1363-5_5
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-2486.2008.01613.x
– ident: e_1_2_7_55_1
  doi: 10.1016/j.rse.2004.08.009
– ident: e_1_2_7_42_1
  doi: 10.1088/1748-9326/7/2/024024
– ident: e_1_2_7_68_1
  doi: 10.1080/014311600211064
– ident: e_1_2_7_65_1
  doi: 10.3354/cr021219
SSID ssj0061453
Score 2.2493935
Snippet Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation...
Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi-arid, high-elevation...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1335
SubjectTerms eddy covariance
evapotranspiration
forest ecosystems
latent heat
Marine
Moderate Resolution Imaging Spectroradiometer (MODIS)
Pinus ponderosa
ponderosa pine
Title Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests
URI https://api.istex.fr/ark:/67375/WNG-P33MG8C8-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feco.1586
https://www.proquest.com/docview/1726662480
https://search.proquest.com/docview/1732827453
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoKyQu_eFHbCmVkRC30Gy8dhxuaLttL5RKgEBcLMdjowqRrNa7VXvjEfoEPBxPwoyz2bYHJCROiWxHdsZjzzf2-DNjLwsJtQgCkRs4n43qSmZ1KXxm0bgjILUW0vGxkw_l6Rd9OCGanDf9WZiOH2K14EYjI83XNMBtHQ9uSEPRO3s9lJrYttFJoGg-efi1n4TR6CQCSoQn6DCjke15Z_PioP_wjiXaIKFe3oGZt8FqsjZHW__Tzm22ucSY_G2nFDvsnm8esvuTxE999Yj9QvQ8beeJ1fy8UwDuVtcRRr4M3eIe4AozLjCdVIP_uFlOjNw2gAlz38762TMlYXY7979_XkcKjG--4RvZSSxLN-5Eft5wQBksZjWmTVs6WdNGy6f4lxzhM0okPmafjiYfxyfZ8pqGzAk1UllQwdmhlbTJRtw6uShkcMPgazLAiD-cq3MNQ1vlNihdqaoKefAgyzyArgvxhK03beOfMq5ApUPuUDgYWa80SNAaCLeUSlZuwF70XWamHRuH6XiXC4NyNiTnAXuV-nJVwM6-U_RaKc3n02NzJsS7Yz3WRgzYXt_ZZjlwo0E8hw5dgW3AulbZOORoH8U2vl1QGYGOaokahnWlrv9rY8xk_J6eu_9a8Bl7gJBMduGCe2x9Plv452wtwmKfrQlxtp_U_A9V9gSZ
link.rule.ids 315,782,786,1405,1408,27933,27934,46064,46165,46488,46589
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoKwSX8luxpYCRELfQbLx2HPWEttsuol2QKAJxsRyPjSrUZLXZreiNR-AJ-nA8CTPOZksPSEicEtkT2RmPPZ_t8WfGXmQSShEEIjdwPhmUhUzKXPjEonNHQGotxONj4w_55LPeHxFNzl53Fqblh1gtuFHPiOM1dXBakN69Yg3F6dmrvtRqjW0M0I-SScv9L90wjG4nUlAiQMEpM7rZjnk2zXa7L6_5og1S6_drQPNPuBr9zcGd_6rpXba5hJn8dWsX99gNX91nN0eRovriAbtEAD2t55HY_LS1Ae5WNxI2fBm9xT3ABWacYzpZBz-7WlFsuK0AE-a-nnUDaEzC7Hruf_342VBsfPUV38hVoixdutPw04oDKmExKzFtWtPhmrqxfIq_yRFBo0qah-zjwehkOE6WNzUkTqiBSoIKzvatpH02otdJRSaD6wdfkg9GCOJcmWro2yK1QelCFUVIgweZpwF0mYkttl7VlX_EuAIVz7lD5mBgvdIgQWsg6JIrWbgee961mZm2hBympV7ODOrZkJ577GVszJWAnX2jALZcmk-TQ_NeiONDPdRG9NhO19pm2Xcbg5AO53QZ1gHLWmVjr6OtFFv5ekEyAueqOZoYlhXb_q-VMaPhO3pu_6vgM3ZrfHJ8ZI7eTN4-ZrcRock2enCHrc9nC_-ErTWweBqt_TeRfQfv
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoKxCX8luxpYCRELfQJF47Tm9of1oELJUAgbhYTsZGFWoSbXYreuMReII-HE_CjLPZ0gMSEqdEtiM747HnG3v8mbFnqYRCeIHIDUoXDYtcRkUmXGTRuCMgtRbC8bGj99nssx5PiCbnoD8L0_FDrBfcaGSE-ZoGeAN-_5I0FL2zF4nUaoNtDVWiKJxPjr_0szBancBAifgEPWa0sj3xbJzu919eMUVbJNXvV3Dmn2g1mJvprf9p6G22vQKZ_GWnFXfYNVfdZdcngaD6_B67QPjc1ItAa37SaQAv1_cRtnwVu8UdwDlmnGE66QY_vVxPbLmtABMWrp7302dIwux64X79-NlSZHz1Fd_IUGJZunKn5ScVB5TBcl5gWlPT0Zq6tbzBv-SIn1Ei7X32cTr5MDqKVvc0RKVQQxV55UubWEm7bESuE4tU-jLxriALjACkLItYQ2Lz2Hqlc5XnPvYOZBZ70EUqdthmVVfuAeMKVDjlDmkJQ-uUBglaAwGXTMm8HLCnfZeZpqPjMB3xcmpQzobkPGDPQ1-uC9j5Nwpfy6T5NDs0x0K8PdQjbcSA7fWdbVYjtzUI6NCjS7ENWNc6G8ccbaTYytVLKiPQU81Qw7Cu0PV_bYyZjN7Rc_dfCz5hN47HU_Pm1ez1Q3YT4ZnsQgf32OZivnSP2EYLy8dB138DazsGlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evapotranspiration+comparisons+between+eddy+covariance+measurements+and+meteorological+and+remote%E2%80%90sensing%E2%80%90based+models+in+disturbed+ponderosa+pine+forests&rft.jtitle=Ecohydrology&rft.au=Ha%2C+Wonsook&rft.au=Kolb%2C+Thomas+E.&rft.au=Springer%2C+Abraham+E.&rft.au=Dore%2C+Sabina&rft.date=2015-10-01&rft.issn=1936-0584&rft.eissn=1936-0592&rft.volume=8&rft.issue=7&rft.spage=1335&rft.epage=1350&rft_id=info:doi/10.1002%2Feco.1586&rft.externalDBID=10.1002%252Feco.1586&rft.externalDocID=ECO1586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0584&client=summon