Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests
Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation ponderosa pine forests of the south‐western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured act...
Saved in:
Published in: | Ecohydrology Vol. 8; no. 7; pp. 1335 - 1350 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Blackwell Publishing Ltd
01-10-2015
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation ponderosa pine forests of the south‐western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4 years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415–510 mm year−1 on average) with actual ET estimated from five meteorological models [Penman–Monteith (P‐M), P‐M with dynamic control of stomatal resistance (P‐M‐d), Priestley–Taylor (P‐T), McNaughton–Black (M‐B), and Shuttleworth–Wallace (S‐W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P‐M, M‐B, and S‐W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and −14%), but their accuracy varied across sites. The P‐M‐d consistently underpredicted ET at all sites. The more simplistic P‐T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (−26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south‐western USA and that remote sensing‐based ET estimates need to be improved through use of higher resolution products. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation ponderosa pine forests of the south‐western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4 years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415–510 mm year
−1
on average) with actual ET estimated from five meteorological models [Penman–Monteith (P‐M), P‐M with dynamic control of stomatal resistance (P‐M‐d), Priestley–Taylor (P‐T), McNaughton–Black (M‐B), and Shuttleworth–Wallace (S‐W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P‐M, M‐B, and S‐W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and −14%), but their accuracy varied across sites. The P‐M‐d consistently underpredicted ET at all sites. The more simplistic P‐T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (−26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south‐western USA and that remote sensing‐based ET estimates need to be improved through use of higher resolution products. Copyright © 2014 John Wiley & Sons, Ltd. Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation ponderosa pine forests of the south‐western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4 years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415–510 mm year−1 on average) with actual ET estimated from five meteorological models [Penman–Monteith (P‐M), P‐M with dynamic control of stomatal resistance (P‐M‐d), Priestley–Taylor (P‐T), McNaughton–Black (M‐B), and Shuttleworth–Wallace (S‐W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P‐M, M‐B, and S‐W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and −14%), but their accuracy varied across sites. The P‐M‐d consistently underpredicted ET at all sites. The more simplistic P‐T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (−26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south‐western USA and that remote sensing‐based ET estimates need to be improved through use of higher resolution products. Copyright © 2014 John Wiley & Sons, Ltd. Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi-arid, high-elevation ponderosa pine forests of the south-western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415-510mmyear-1 on average) with actual ET estimated from five meteorological models [Penman-Monteith (P-M), P-M with dynamic control of stomatal resistance (P-M-d), Priestley-Taylor (P-T), McNaughton-Black (M-B), and Shuttleworth-Wallace (S-W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P-M, M-B, and S-W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and -14%), but their accuracy varied across sites. The P-M-d consistently underpredicted ET at all sites. The more simplistic P-T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (-26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south-western USA and that remote sensing-based ET estimates need to be improved through use of higher resolution products. Copyright © 2014 John Wiley & Sons, Ltd. Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi-arid, high-elevation ponderosa pine forests of the south-western USA or have investigated the capacity of models to predict ET in disturbed forests. We measured actual ET with the eddy covariance (eddy) method over 4years in three ponderosa pine forests near Flagstaff, Arizona, that differ in disturbance history (undisturbed control, wildfire burned, and restoration thinning) and compared these measurements (415-510mmyear super(-1) on average) with actual ET estimated from five meteorological models [Penman-Monteith (P-M), P-M with dynamic control of stomatal resistance (P-M-d), Priestley-Taylor (P-T), McNaughton-Black (M-B), and Shuttleworth-Wallace (S-W)] and from the Moderate Resolution Imaging Spectroradiometer (MODIS) ET product. The meteorological models with constant stomatal resistance (P-M, M-B, and S-W) provided the most accurate estimates of annual eddy ET (average percent differences ranged between 11 and -14%), but their accuracy varied across sites. The P-M-d consistently underpredicted ET at all sites. The more simplistic P-T model performed well at the control site (18% overprediction) but strongly overpredicted annual eddy ET at the restoration sites (92%) and underpredicted at the fire site (-26%). The MODIS ET underpredicted annual eddy ET at all sites by at least 51% primarily because of underestimation of leaf area index. Overall, we conclude that with accurate parameterization, micrometeorological models can predict ET within 30% in forests of the south-western USA and that remote sensing-based ET estimates need to be improved through use of higher resolution products. |
Author | Kolb, Thomas E. Masek Lopez, Sharon Koch, George W. Dore, Sabina Ha, Wonsook O'Donnell, Frances C. Martinez Morales, Rodolfo Springer, Abraham E. |
Author_xml | – sequence: 1 givenname: Wonsook surname: Ha fullname: Ha, Wonsook organization: School of Earth Sciences and Environmental Sustainability, Northern Arizona University, AZ, Flagstaff, USA – sequence: 2 givenname: Thomas E. surname: Kolb fullname: Kolb, Thomas E. organization: School of Forestry, Northern Arizona University, Flagstaff, AZ, USA – sequence: 3 givenname: Abraham E. surname: Springer fullname: Springer, Abraham E. email: Correspondence to: Abraham E. Springer, School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA., Abe.Springer@nau.edu organization: School of Earth Sciences and Environmental Sustainability, Northern Arizona University, AZ, Flagstaff, USA – sequence: 4 givenname: Sabina surname: Dore fullname: Dore, Sabina organization: Department of Environmental Science, Policy, and Management, University of California at Berkeley, CA, Berkeley, USA – sequence: 5 givenname: Frances C. surname: O'Donnell fullname: O'Donnell, Frances C. organization: School of Earth Sciences and Environmental Sustainability, Northern Arizona University, AZ, Flagstaff, USA – sequence: 6 givenname: Rodolfo surname: Martinez Morales fullname: Martinez Morales, Rodolfo organization: Department of Biological Sciences, Northern Arizona University, AZ, Flagstaff, USA – sequence: 7 givenname: Sharon surname: Masek Lopez fullname: Masek Lopez, Sharon organization: School of Earth Sciences and Environmental Sustainability, Northern Arizona University, AZ, Flagstaff, USA – sequence: 8 givenname: George W. surname: Koch fullname: Koch, George W. organization: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA |
BookMark | eNp1kctu1TAQhi1UJNqCxCNYYsMmrS8njrNER4dDpUJZgFhajj2uXBI7eJKW8yo8LS5FRSCxmtE_n-b2n5CjlBMQ8pKzM86YOAeXz3ir1RNyzHupGtb24ugx15tn5ATxhjHFN608Jj92t3bOS7EJ51jsEnOiLk-zLRFzQjrAcgeQKHh_qIXbqtvkgE5gcS0wQVqQ2uSrsEAueczX0dnxl1TLeYEGIWFM181gESqXPYxIY6I-4rKWoWpzTh5KRkvnmICGXAAXfE6eBjsivPgdT8nnt7tP23fN5dX-YvvmsnFSbVQTVHCW25Zx1gvNOiZFGxwPMDgAL4RwbmDac9szG5TuVd8HFsC3HQteD0KektcPfeeSv611spkiOhhHmyCvaHgnhRZdfVdFX_2D3uS1pLpdpYRSSmw0-9PQ1ZuwQDBziZMtB8OZuTfJVJPMvUkVbR7QuzjC4b-c2W2v_ubr7-D7I2_LV6M62bXmy4e9-Sjl-73eaiPlT1QgqFs |
CitedBy_id | crossref_primary_10_1016_j_agrformet_2022_108824 crossref_primary_10_3390_rs12050890 crossref_primary_10_3390_rs15143680 crossref_primary_10_3390_rs71114899 crossref_primary_10_1016_j_agrformet_2023_109437 crossref_primary_10_3390_ijgi10030192 crossref_primary_10_1016_j_ecoleng_2019_105701 crossref_primary_10_3390_ijgi11030182 crossref_primary_10_1002_eco_2475 crossref_primary_10_3389_fpls_2023_1120202 crossref_primary_10_1016_j_agrformet_2020_107984 crossref_primary_10_1175_JHM_D_14_0179_1 crossref_primary_10_3390_rs9040307 crossref_primary_10_3390_rs14071660 crossref_primary_10_1016_j_quaint_2021_04_005 crossref_primary_10_1111_gcb_13686 crossref_primary_10_2166_nh_2017_232 crossref_primary_10_1002_rse2_210 crossref_primary_10_3390_f14050916 crossref_primary_10_1007_s12040_019_1098_5 crossref_primary_10_3390_land11122168 crossref_primary_10_3390_rs16020361 crossref_primary_10_3390_hydrology10080161 crossref_primary_10_1175_JHM_D_18_0146_1 crossref_primary_10_3390_w10111687 crossref_primary_10_1016_j_agwat_2021_106753 crossref_primary_10_1016_j_scitotenv_2018_09_130 |
Cites_doi | 10.1073/pnas.0608998104 10.1016/j.jhydrol.2004.12.010 10.1016/j.rse.2006.07.007 10.1016/j.envsoft.2004.04.009 10.3390/rs4030703 10.1016/j.agrformet.2011.05.017 10.1016/S0034-4257(02)00078-0 10.1061/(ASCE)0733-9437(2007)133:4(395) 10.1016/S0168-1923(00)00123-4 10.1016/j.foreco.2005.01.034 10.1029/2009JG001179 10.1002/jgrg.20078 10.5194/bg-7-959-2010 10.1111/j.1365-2486.2005.01036.x 10.2307/3236114 10.1080/10106040108542218 10.1016/S0022-1694(98)00202-9 10.1016/S0168-1923(00)00199-4 10.1002/qj.49711146910 10.1890/09-0934.1 10.1029/2003GB002098 10.3402/tellusb.v64i0.17159 10.1016/0022-1694(82)90117-2 10.1002/hyp.1348 10.1029/WR009i006p01579 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.2307/1941631 10.1109/36.841980 10.1016/S0034-4257(98)00102-3 10.1016/j.rse.2011.02.019 10.5849/forsci.11-051 10.1016/j.agrformet.2008.09.011 10.1080/01431169508954373 10.1111/j.1365-2486.1996.tb00069.x 10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2 10.1139/x05-090 10.1016/j.rse.2010.01.022 10.1007/978-1-4612-1224-9_14 10.2136/sssaj1986.03615995005000040039x 10.1016/0022-1694(95)02780-7 10.1007/978-1-4612-1224-9_12 10.1890/03-0583 10.3390/rs6010233 10.1016/j.jhydrol.2008.12.021 10.1016/j.rse.2007.04.015 10.1029/2008WR007045 10.1071/WF11130 10.1029/2012JG002027 10.1016/0168-1923(88)90003-2 10.1016/j.rse.2006.06.026 10.1046/j.1365-2486.2000.00291.x 10.1111/j.1752-1688.1983.tb04593.x 10.1038/nature09396 10.1016/S0034-4257(02)00074-3 10.1016/j.jhydrol.2012.09.016 10.1029/WR022i001p00067 10.1016/S0022-1694(02)00064-1 10.1890/06-0922.1 10.1016/0168-1923(91)90094-7 10.1098/rspa.1948.0037 10.1016/S0065-2504(08)60018-5 10.1029/96WR00801 10.1111/j.1365-2486.2012.02775.x 10.1093/treephys/tpr048 10.1016/j.agee.2008.01.015 10.1029/2001RG000103 10.1007/978-94-007-1363-5_5 10.1111/j.1365-2486.2008.01613.x 10.1016/j.rse.2004.08.009 10.1088/1748-9326/7/2/024024 10.1080/014311600211064 10.3354/cr021219 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7QH 7UA C1K F1W H96 H97 L.G 7ST 7TG KL. SOI |
DOI | 10.1002/eco.1586 |
DatabaseName | Istex CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1936-0592 |
EndPage | 1350 |
ExternalDocumentID | 3846450441 10_1002_eco_1586 ECO1586 ark_67375_WNG_P33MG8C8_3 |
Genre | article |
GeographicLocations | USA, Arizona |
GeographicLocations_xml | – name: USA, Arizona |
GrantInformation_xml | – fundername: WaterSMART Applied Science Grants for the Desert Landscape Conservation Cooperative of Bureau of Reclamation funderid: R12AC80912 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 4.4 4P2 52U 5DZ 5GY 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHBH AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL C45 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F1Z FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ NNB O66 O9- OIG OVD P2P P2W P4E ROL SUPJJ TEORI W99 WBKPD WIH WIK WOHZO WUPDE WXSBR WYISQ WYJ XV2 ZZTAW ~S- AAMNL AAYXX CITATION 7QH 7UA C1K F1W H96 H97 L.G 7ST 7TG KL. SOI |
ID | FETCH-LOGICAL-c3646-f6fca1a5010928070325fc1febceed222ccb08d1a90af689699f0fed570fd8b23 |
IEDL.DBID | 5DZ |
ISSN | 1936-0584 |
IngestDate | Fri Aug 16 21:22:18 EDT 2024 Thu Oct 10 18:58:51 EDT 2024 Thu Nov 21 21:10:44 EST 2024 Sat Aug 24 01:01:49 EDT 2024 Wed Oct 30 09:55:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3646-f6fca1a5010928070325fc1febceed222ccb08d1a90af689699f0fed570fd8b23 |
Notes | Supporting info item ark:/67375/WNG-P33MG8C8-3 WaterSMART Applied Science Grants for the Desert Landscape Conservation Cooperative of Bureau of Reclamation - No. R12AC80912 istex:09AE1D284DE17772C680AECA2E86048FE8ADBE7E ArticleID:ECO1586 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1726662480 |
PQPubID | 866379 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1732827453 proquest_journals_1726662480 crossref_primary_10_1002_eco_1586 wiley_primary_10_1002_eco_1586_ECO1586 istex_primary_ark_67375_WNG_P33MG8C8_3 |
PublicationCentury | 2000 |
PublicationDate | 2015-10 October 2015 2015-10-00 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Ecohydrology |
PublicationTitleAlternate | Ecohydrol |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Baker, MB. 1986. Effects of ponderosa pine treatments on water yield in Arizona. Water Resources Research 22: 67-73. DOI: 10.1029/WR022i001p00067. Foken T. 2008. The energy balance closure problem: An overview. Ecological Applications 18: 1351-1367. Stednick JD. 1996. Monitoring the effects of timber harvest on annual water yield. Journal of Hydrology 176: 79-95. Baldocchi DD, Hicks BB, Meyers TP. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69: 1331-1340. Bosch JM Hewlett JD. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology 55: 3-23. Stewart JB. 1988. Modeling surface conductance of pine forest. Agricultural and Forest Meteorology 43: 19-35. Varjo J. 1997. Change detection and controlling forest information using multitemporal Landsat TM imagery. Acta Forestalia Fennica 258: 1-64. Shuttleworth WJ, Wallace JS. 1985. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society 111: 839-855. Troendle CA. 1983. The potential for water yield augmentation from forest management in the Rocky-Mountain Mountain Region. Water Resources Bulletin 19: 359-373. Sheppard PR, Comrie AC, Packin GD, Angersbach K, Hughes MK. 2002. The climate of the US Southwest. Climatic Research 21: 219-238. Dore S, Kolb TE, Montes-Helu M, Eckert SE, Sullivan BW, Hungate BA, Kaye JP, Hart SC, Koch GW, Finkral A. 2010. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecological Applications 20: 663-683. Goulden ML, Anderson RG, Bales RC, Kelly AE, Meadows M, and Winston GC. 2012. Evapotranspiration along an elevation gradient in California's Sierra Nevada. Journal of Geophysical Research 117: G03028. DOI: 10.1029/2012JG002027. Monteith JL. 1965. Evaporation and the environment. Symposium of the Society of Exploratory Biology 19: 205-234. Cleugh HA, Leuning R, Mu Q, Running SW. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment 106: 285-304. Dingman SL. 2002. Physical hydrology, 2nd edn. Waveland Press, Inc.: Long Grove, IL. Federer CA, Vӧrӧsmarty CJ, Fekete B. 1996. Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resources Research 32: 2315-2321. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Advances in Ecological Research 30: 113-175. Finney MA, McHugh CW, Grenfell IC. 2005. Stand- and landscape-level effects of prescribed burning on two Arizona wildfires. Canadian Journal of Forest Research 35: 1714-1722. Heikkonen J, Varjo J. 2004. Forest change detection applying landsat thematic mapper difference features: A comparison of different classifiers in boreal forest conditions. Forest Science 50: 579-588. Singh RK, Senay GB, Velpuri NM, Bohms S, Scott RL, Verdin JP. 2014. Actual evapotranspiration (Water Use) Assessment of the Colorado river basin at the Landsat resolution using the operational simplified surface energy balance model. Remote Sensing 6: 233-256. Sun G, McNulty SG, Amatya DM, Skaggs RW, Swift Jr. LW, Shepard JP, Riekerk H. 2002. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US. Journal of Hydrology 263: 92-104. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America 104: 6550-6555. Gordon WS, Famiglietti JS. 2004. Response of the water balance to climatic change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons. Global Biogeochemical Cycles 18: GB1030. DOI: 10.1029/2003GB002098. McNaughton KG, Black TA. 1973. A study of evapotranspiration from a Douglas fir forest using the energy balance approach. Water Resources Research 9: 1579-1590. Arora VK. 2002. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Reviews of Geophysics 40: 1006. DOI: 10.1029/2001RG000103. Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment 83: 214-231. Costa MH, Biajoli MC, Sanches L, Malhado ACM, Hutyra LR, da Rocha HR, Aguiar RG, de Araújo AC. 2010. Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? Journal of Geophysical Research 115: G04021. DOI: 10.1029/2009JG001179. Moreaux V, Lamaud É, Bosc A, Bonnefond J-M, Medlyn BE, Loustau D. 2011. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth. Tree Physiology 31: 903-921. FAO (Food and Agricultural Organization of the United Nations). 2012. State of the world's forests 2012. UN FAO: Rome, Italy. Priestley CHB, Taylor RJ. 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review 100: 81-92. Arain MA, Black TA, Barr AG, Griffis TJ, Morgenstern K, Nesic Z. 2003. Year-around observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrological Processes 17: 3581-3600. Souza CM, Barreto P. 2000. An alternative approach for detecting and monitoring selectively logged forests in the Amazon. International Journal of Remote Sensing 21: 173-179. Fisher JB, DeBiase TA, Qi Y, Xu M, Goldstein AH. 2005. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modeling & Software 20: 783-796. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467: 951-954. Nagler PL, Cleverly J, Glenn E, Lampkin D, Huete A, Wan Z. 2005. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sensing of Environment 94: 17-30. Saxton KE, Rawls WJ, Romberger JS, Papendick RI. 1986. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 50: 1031-1036. Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, and Wullschleger SD. 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology 106: 153-168. Olsson H. 1995. Reflectance calibration of thematic mapper data for forest change detection. International Journal of Remote Sensing 16: 81-96. Cienciala E, Running SW, Lindroth A, Grelle A, Ryan MG. 1998. Analysis of carbon and water fluxes from the NOPEX boreal forest: comparison of measurements with FOREST-BGC simulations. Journal of Hydrology 212-213: 62-78. Bright BC, Hicke JA, Meddens AJH. 2013. Effects of bark beetle-caused tree mortality on biogeochemical and biogeophysical MODIS products. Journal of Geophysical Research-Biogeosciences 118: 974-982. DOI: 10.1002/jgrg.20078. De Lillis M, Federici FM. 1993. Gas exchange and resource-use patterns along a Mediterranean successional gradient. Journal of Vegetation Science 4: 269-272. Ruhoff AL, Paz AR, Collischonn W, Aragao LEOC, Rocha HR, Malhi YS. 2012. A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazillian tropical savannas. Remote Sensing 4: 703-725. Montes-Helu MC, Kolb T, Dore S, Sullivan B, Hart SC, Koch G, Hungate BA. 2009. Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests. Agricultural and Forest Meteorology 149: 491-500. Gemmell F, Varjo J. 1999. Utility of reflectance model inversion versus two spectral indices for estimating biophysical characteristics in a boreal forest test site. Remote Sensing of Environment 68: 95-111. Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabaté S, Sánchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J. 2005. Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology 11: 2211-2233. Flint AL, Childs SW. 1991. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agricultural and Forest Meteorology 56: 247-260. Dore S, Kolb TE, Montes-Helu M, Sullivan BW, Winslow WD, Hart SC, Kaye JP, Koch GW, Hungate BA. 2008. Long-term impact of a stand-replacing fire on ecosystem CO2 exchange of a ponderosa pine forest. Global Change Biology 14: 1-20. Agee JK, Skinner CN. 2005. Basic principles of forest fuel reduction treatments. Forest Ecology and Management 211: 83-96. Barr AG, van der Kamp G, Black TA, McCaughey JH, Nesic Z. 2012. Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull watershed 1999-2009. Agricultural and Forest Meteorology 153: 3-13. Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Ro 2009; 45 2007; 104 2011; 115 1983; 19 2007; 106 1991; 56 2000; 6 2013; 22 2005; 211 2010; 467 1982; 55 2005; 20 2003; 17 2012; 18 2012; 58 1996; 32 1965; 19 1993; 4 2001; 106 2010; 20 1997; 95 1948; 193 2002; 263 2000 2002; 83 2002; 40 2010; 114 2007; 133 2010; 115 2013; 118 1988; 43 2009; 366 2001; 16 1996; 176 1998; 212‐213 2008; 112 1996; 2 1972; 100 2014; 6 2010; 7 2012; 64 2005; 35 1991; 4 1997; 258 1986; 50 2012 2011 2012; 472‐473 1995; 16 2005; 310 2008; 18 2000; 21 2008; 14 1999; 68 2011; 31 2005; 86 2008; 126 2002 2012; 153 2004; 50 1973; 9 2000; 38 2004; 18 2000; 103 1986; 22 1988; 69 2007; 111 2000; 30 2002; 21 2005; 94 2013 2012; 7 2012; 4 2012; 117 2005; 11 2009; 149 1985; 111 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 FAO (Food and Agricultural Organization of the United Nations) (e_1_2_7_27_1) 2012 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Varjo J (e_1_2_7_77_1) 1997; 258 Covington WW (e_1_2_7_20_1) 1997; 95 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 R Core Team (e_1_2_7_60_1) 2013 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_1 Heikkonen J (e_1_2_7_37_1) 2004; 50 e_1_2_7_29_1 Monteith JL (e_1_2_7_48_1) 1965; 19 Dingman SL (e_1_2_7_22_1) 2002 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 20 start-page: 663 year: 2010 end-page: 683 article-title: Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning publication-title: Ecological Applications – volume: 86 start-page: 308 year: 2005 end-page: 319 article-title: Ecohydrological implications of woody plant encroachment publication-title: Ecology – volume: 9 start-page: 1579 year: 1973 end-page: 1590 article-title: A study of evapotranspiration from a Douglas fir forest using the energy balance approach publication-title: Water Resources Research – volume: 100 start-page: 81 year: 1972 end-page: 92 article-title: On the assessment of surface heat flux and evaporation using large scale parameters publication-title: Monthly Weather Review – volume: 14 start-page: 1 year: 2008 end-page: 20 article-title: Long‐term impact of a stand‐replacing fire on ecosystem CO exchange of a ponderosa pine forest publication-title: Global Change Biology – volume: 263 start-page: 92 year: 2002 end-page: 104 article-title: A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US publication-title: Journal of Hydrology – volume: 111 start-page: 519 year: 2007 end-page: 536 article-title: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data publication-title: Remote Sensing of Environment – volume: 19 start-page: 359 year: 1983 end-page: 373 article-title: The potential for water yield augmentation from forest management in the Rocky‐Mountain Mountain Region publication-title: Water Resources Bulletin – volume: 38 start-page: 977 year: 2000 end-page: 998 article-title: An Algorithm for the retrieval of albedo from space using semiempirical BRDF models publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 176 start-page: 79 year: 1996 end-page: 95 article-title: Monitoring the effects of timber harvest on annual water yield publication-title: Journal of Hydrology – volume: 118 start-page: 974 year: 2013 end-page: 982 article-title: Effects of bark beetle‐caused tree mortality on biogeochemical and biogeophysical MODIS products publication-title: Journal of Geophysical Research‐Biogeosciences – volume: 112 start-page: 59 year: 2008 end-page: 74 article-title: New refinements and validation of the MODIS Land‐Surface Temperature/Emissivity products publication-title: Remote Sensing of Environment – volume: 106 start-page: 153 year: 2001 end-page: 168 article-title: A comparison of methods for determining forest evapotranspiration and its components: sap‐flow, soil water budget, eddy covariance and catchment water balance publication-title: Agricultural and Forest Meteorology – volume: 366 start-page: 112 year: 2009 end-page: 118 article-title: Measuring boreal forest evapotranspiration using the energy balance residual publication-title: Journal of Hydrology – volume: 126 start-page: 81 year: 2008 end-page: 97 article-title: Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies publication-title: Agriculture Ecosystems and Environment – volume: 68 start-page: 95 year: 1999 end-page: 111 article-title: Utility of reflectance model inversion versus two spectral indices for estimating biophysical characteristics in a boreal forest test site publication-title: Remote Sensing of Environment – volume: 115 start-page: G04021 year: 2010 article-title: Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? publication-title: Journal of Geophysical Research – volume: 58 start-page: 497 year: 2012 end-page: 512 article-title: A comparison of three methods to estimate evapotranspiration in two contrasting loblolly pine plantations: Age‐related changes in water use and drought sensitivity of evapotranspiration components publication-title: Forest Science – volume: 20 start-page: 783 year: 2005 end-page: 796 article-title: Evapotranspiration models compared on a Sierra Nevada forest ecosystem publication-title: Environmental Modeling & Software – volume: 50 start-page: 579 year: 2004 end-page: 588 article-title: Forest change detection applying landsat thematic mapper difference features: A comparison of different classifiers in boreal forest conditions publication-title: Forest Science – volume: 18 year: 2004 article-title: Response of the water balance to climatic change in the United States over the 20th and 21st centuries: Results from the VEMAP Phase 2 model intercomparisons publication-title: Global Biogeochemical Cycles – volume: 16 start-page: 91 year: 2001 end-page: 106 article-title: Mapping wildfire burn severity in southern California forests and shrublands using enhanced thematic mapper imagery publication-title: Geocarto International – volume: 18 start-page: 1351 year: 2008 end-page: 1367 article-title: The energy balance closure problem: An overview publication-title: Ecological Applications – volume: 117 year: 2012 article-title: Evapotranspiration along an elevation gradient in California's Sierra Nevada publication-title: Journal of Geophysical Research – volume: 153 start-page: 3 year: 2012 end-page: 13 article-title: Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull watershed 1999‐2009 publication-title: Agricultural and Forest Meteorology – volume: 22 start-page: 63 year: 2013 end-page: 82 article-title: Ecological effects of alternative fuel‐reduction treatments: highlights of the National Fire and Fire Surrogate study (FFS) publication-title: International Journal of Wildland Fire – volume: 310 start-page: 28 year: 2005 end-page: 61 article-title: A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation publication-title: Journal of Hydrology – volume: 21 start-page: 173 year: 2000 end-page: 179 article-title: An alternative approach for detecting and monitoring selectively logged forests in the Amazon publication-title: International Journal of Remote Sensing – volume: 103 start-page: 279 year: 2000 end-page: 300 article-title: Correcting eddy‐covariance flux underestimates over a grassland publication-title: Agricultural and Forest Meteorology – volume: 4 start-page: 269 year: 1993 end-page: 272 article-title: Gas exchange and resource‐use patterns along a Mediterranean successional gradient publication-title: Journal of Vegetation Science – volume: 83 start-page: 287 year: 2002 end-page: 302 article-title: Global land cover mapping from MODIS: algorithms and early results publication-title: Remote Sensing of Environment – volume: 18 start-page: 3171 year: 2012 end-page: 3185 article-title: Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand‐replacing fire publication-title: Global Change Biology – volume: 16 start-page: 81 year: 1995 end-page: 96 article-title: Reflectance calibration of thematic mapper data for forest change detection publication-title: International Journal of Remote Sensing – volume: 258 start-page: 1 year: 1997 end-page: 64 article-title: Change detection and controlling forest information using multitemporal Landsat TM imagery publication-title: Acta Forestalia Fennica – volume: 472‐473 start-page: 216 year: 2012 end-page: 237 article-title: The rain‐runoff response of tropical humid forest ecosystems to use and reforestation in the Western Ghats of India publication-title: Journal of Hydrology – volume: 114 start-page: 1416 year: 2010 end-page: 1431 article-title: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data publication-title: Remote Sensing of Environment – volume: 11 start-page: 2211 year: 2005 end-page: 2233 article-title: Comparing and evaluating process‐based ecosystem model predictions of carbon and water fluxes in major European forest biomes publication-title: Global Change Biology – start-page: 199 year: 2000 end-page: 214 – volume: 43 start-page: 19 year: 1988 end-page: 35 article-title: Modeling surface conductance of pine forest publication-title: Agricultural and Forest Meteorology – volume: 56 start-page: 247 year: 1991 end-page: 260 article-title: Use of the Priestley‐Taylor evaporation equation for soil water limited conditions in a small forest clearcut publication-title: Agricultural and Forest Meteorology – volume: 4 start-page: 703 year: 2012 end-page: 725 article-title: A MODIS‐based energy balance to estimate evapotranspiration for clear‐sky days in Brazillian tropical savannas publication-title: Remote Sensing – volume: 133 start-page: 395 year: 2007 end-page: 406 article-title: Satellite‐based energy balance for mapping evapotranspiration with internalized calibration (METRIC)‐Applications publication-title: Journal of Irrigation and Drainage Engineering‐ASCE – volume: 55 start-page: 3 year: 1982 end-page: 23 article-title: A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration publication-title: Journal of Hydrology – volume: 6 start-page: 233 year: 2014 end-page: 256 article-title: Actual evapotranspiration (Water Use) Assessment of the Colorado river basin at the Landsat resolution using the operational simplified surface energy balance model publication-title: Remote Sensing – volume: 21 start-page: 219 year: 2002 end-page: 238 article-title: The climate of the US Southwest publication-title: Climatic Research – volume: 50 start-page: 1031 year: 1986 end-page: 1036 article-title: Estimating generalized soil‐water characteristics from texture publication-title: Soil Science Society of America Journal – volume: 35 start-page: 1714 year: 2005 end-page: 1722 article-title: Stand‐ and landscape‐level effects of prescribed burning on two Arizona wildfires publication-title: Canadian Journal of Forest Research – volume: 45 year: 2009 article-title: An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments publication-title: Water Resources Research – volume: 115 start-page: 1781 year: 2011 end-page: 1800 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sensing of Environment – volume: 83 start-page: 214 year: 2002 end-page: 231 article-title: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data publication-title: Remote Sensing of Environment – volume: 467 start-page: 951 year: 2010 end-page: 954 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature – volume: 22 start-page: 67 year: 1986 end-page: 73 article-title: Effects of ponderosa pine treatments on water yield in Arizona publication-title: Water Resources Research – volume: 64 start-page: 17159 year: 2012 article-title: Five years of carbon fluxes and inherent water‐use efficiency at two semi‐arid pine forests with different disturbance histories publication-title: Tellus Series B‐Chemical and Physical Meteorology – volume: 104 start-page: 6550 year: 2007 end-page: 6555 article-title: Combined climate and carbon‐cycle effects of large‐scale deforestation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 19 start-page: 205 year: 1965 end-page: 234 article-title: Evaporation and the environment publication-title: Symposium of the Society of Exploratory Biology – volume: 7 start-page: 024024 year: 2012 article-title: Water use by terrestrial ecosystems: temporal variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil publication-title: Environmental Research Letters – volume: 7 start-page: 959 year: 2010 end-page: 977 article-title: Simulating carbon and water cycles of larch forests in East Asia by the BIOME‐BGC model with AsiaFlux data publication-title: Biogeosciences – year: 2012 – volume: 17 start-page: 3581 year: 2003 end-page: 3600 article-title: Year‐around observations of the energy and water vapour fluxes above a boreal black spruce forest publication-title: Hydrological Processes – volume: 31 start-page: 903 year: 2011 end-page: 921 article-title: Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth publication-title: Tree Physiology – volume: 106 start-page: 285 year: 2007 end-page: 304 article-title: Regional evaporation estimates from flux tower and MODIS satellite data publication-title: Remote Sensing of Environment – volume: 30 start-page: 113 year: 2000 end-page: 175 article-title: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology publication-title: Advances in Ecological Research – volume: 211 start-page: 83 year: 2005 end-page: 96 article-title: Basic principles of forest fuel reduction treatments publication-title: Forest Ecology and Management – volume: 212‐213 start-page: 62 year: 1998 end-page: 78 article-title: Analysis of carbon and water fluxes from the NOPEX boreal forest: comparison of measurements with FOREST‐BGC simulations publication-title: Journal of Hydrology – volume: 111 start-page: 839 year: 1985 end-page: 855 article-title: Evaporation from sparse crops‐an energy combination theory publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 94 start-page: 17 year: 2005 end-page: 30 article-title: Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data publication-title: Remote Sensing of Environment – year: 2002 – volume: 6 start-page: 155 year: 2000 end-page: 168 article-title: Measurements of gross and net ecosystem productivity and water vapor exchange of a ecosystem, and an evaluation of two generalized models publication-title: Global Change Biology – volume: 69 start-page: 1331 year: 1988 end-page: 1340 article-title: Measuring biosphere‐atmosphere exchanges of biologically related gases with micrometeorological methods publication-title: Ecology – volume: 193 start-page: 120 year: 1948 end-page: 146 article-title: Natural evaporation from open water, bare soil and grass publication-title: Royal Society of London Series A‐Mathematical and Physical Sciences – volume: 32 start-page: 2315 year: 1996 end-page: 2321 article-title: Intercomparison of methods for calculating potential evaporation in regional and global water balance models publication-title: Water Resources Research – volume: 40 start-page: 1006 year: 2002 article-title: Modeling vegetation as a dynamic component in soil‐vegetation‐atmosphere transfer schemes and hydrological models publication-title: Reviews of Geophysics – volume: 95 start-page: 23 year: 1997 end-page: 29 article-title: Restoring ecosystem health in ponderosa pine forests of the Southwest publication-title: Journal of Forestry – volume: 4 start-page: 957 year: 1991 end-page: 988 article-title: Amazonian deforestation and regional climate change publication-title: Journal of Climate – volume: 2 start-page: 159 year: 1996 end-page: 168 article-title: Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems publication-title: Global Change Biology – start-page: 101 year: 2011 end-page: 5 – volume: 149 start-page: 491 year: 2009 end-page: 500 article-title: Persistent effects of fire‐induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests publication-title: Agricultural and Forest Meteorology – start-page: 161 year: 2000 end-page: 180 – year: 2013 – ident: e_1_2_7_9_1 doi: 10.1073/pnas.0608998104 – ident: e_1_2_7_16_1 doi: 10.1016/j.jhydrol.2004.12.010 – ident: e_1_2_7_18_1 doi: 10.1016/j.rse.2006.07.007 – ident: e_1_2_7_30_1 doi: 10.1016/j.envsoft.2004.04.009 – ident: e_1_2_7_63_1 doi: 10.3390/rs4030703 – ident: e_1_2_7_13_1 doi: 10.1016/j.agrformet.2011.05.017 – ident: e_1_2_7_33_1 doi: 10.1016/S0034-4257(02)00078-0 – ident: e_1_2_7_3_1 doi: 10.1061/(ASCE)0733-9437(2007)133:4(395) – ident: e_1_2_7_74_1 doi: 10.1016/S0168-1923(00)00123-4 – ident: e_1_2_7_2_1 doi: 10.1016/j.foreco.2005.01.034 – ident: e_1_2_7_19_1 doi: 10.1029/2009JG001179 – ident: e_1_2_7_15_1 doi: 10.1002/jgrg.20078 – volume-title: Physical hydrology year: 2002 ident: e_1_2_7_22_1 contributor: fullname: Dingman SL – ident: e_1_2_7_75_1 doi: 10.5194/bg-7-959-2010 – ident: e_1_2_7_50_1 doi: 10.1111/j.1365-2486.2005.01036.x – ident: e_1_2_7_21_1 doi: 10.2307/3236114 – ident: e_1_2_7_62_1 doi: 10.1080/10106040108542218 – ident: e_1_2_7_17_1 doi: 10.1016/S0022-1694(98)00202-9 – ident: e_1_2_7_80_1 doi: 10.1016/S0168-1923(00)00199-4 – volume: 95 start-page: 23 year: 1997 ident: e_1_2_7_20_1 article-title: Restoring ecosystem health in ponderosa pine forests of the Southwest publication-title: Journal of Forestry contributor: fullname: Covington WW – ident: e_1_2_7_66_1 doi: 10.1002/qj.49711146910 – ident: e_1_2_7_25_1 doi: 10.1890/09-0934.1 – ident: e_1_2_7_35_1 doi: 10.1029/2003GB002098 – volume: 50 start-page: 579 year: 2004 ident: e_1_2_7_37_1 article-title: Forest change detection applying landsat thematic mapper difference features: A comparison of different classifiers in boreal forest conditions publication-title: Forest Science contributor: fullname: Heikkonen J – ident: e_1_2_7_78_1 doi: 10.3402/tellusb.v64i0.17159 – ident: e_1_2_7_14_1 doi: 10.1016/0022-1694(82)90117-2 – ident: e_1_2_7_5_1 doi: 10.1002/hyp.1348 – ident: e_1_2_7_46_1 doi: 10.1029/WR009i006p01579 – ident: e_1_2_7_59_1 doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 – volume-title: State of the world's forests 2012 year: 2012 ident: e_1_2_7_27_1 contributor: fullname: FAO (Food and Agricultural Organization of the United Nations) – volume: 19 start-page: 205 year: 1965 ident: e_1_2_7_48_1 article-title: Evaporation and the environment publication-title: Symposium of the Society of Exploratory Biology contributor: fullname: Monteith JL – ident: e_1_2_7_11_1 doi: 10.2307/1941631 – ident: e_1_2_7_44_1 doi: 10.1109/36.841980 – ident: e_1_2_7_34_1 doi: 10.1016/S0034-4257(98)00102-3 – ident: e_1_2_7_53_1 doi: 10.1016/j.rse.2011.02.019 – ident: e_1_2_7_23_1 doi: 10.5849/forsci.11-051 – ident: e_1_2_7_49_1 doi: 10.1016/j.agrformet.2008.09.011 – ident: e_1_2_7_57_1 doi: 10.1080/01431169508954373 – ident: e_1_2_7_12_1 doi: 10.1111/j.1365-2486.1996.tb00069.x – ident: e_1_2_7_56_1 doi: 10.1175/1520-0442(1991)004<0957:ADARCC>2.0.CO;2 – ident: e_1_2_7_29_1 doi: 10.1139/x05-090 – ident: e_1_2_7_81_1 doi: 10.1016/j.rse.2010.01.022 – ident: e_1_2_7_39_1 doi: 10.1007/978-1-4612-1224-9_14 – ident: e_1_2_7_64_1 doi: 10.2136/sssaj1986.03615995005000040039x – ident: e_1_2_7_69_1 doi: 10.1016/0022-1694(95)02780-7 – ident: e_1_2_7_47_1 doi: 10.1007/978-1-4612-1224-9_12 – volume: 258 start-page: 1 year: 1997 ident: e_1_2_7_77_1 article-title: Change detection and controlling forest information using multitemporal Landsat TM imagery publication-title: Acta Forestalia Fennica contributor: fullname: Varjo J – ident: e_1_2_7_38_1 doi: 10.1890/03-0583 – ident: e_1_2_7_76_1 – ident: e_1_2_7_67_1 doi: 10.3390/rs6010233 – ident: e_1_2_7_4_1 doi: 10.1016/j.jhydrol.2008.12.021 – ident: e_1_2_7_52_1 doi: 10.1016/j.rse.2007.04.015 – ident: e_1_2_7_61_1 doi: 10.1029/2008WR007045 – ident: e_1_2_7_45_1 doi: 10.1071/WF11130 – ident: e_1_2_7_36_1 doi: 10.1029/2012JG002027 – ident: e_1_2_7_70_1 doi: 10.1016/0168-1923(88)90003-2 – ident: e_1_2_7_79_1 doi: 10.1016/j.rse.2006.06.026 – ident: e_1_2_7_43_1 doi: 10.1046/j.1365-2486.2000.00291.x – ident: e_1_2_7_73_1 doi: 10.1111/j.1752-1688.1983.tb04593.x – ident: e_1_2_7_40_1 doi: 10.1038/nature09396 – ident: e_1_2_7_54_1 doi: 10.1016/S0034-4257(02)00074-3 – ident: e_1_2_7_41_1 doi: 10.1016/j.jhydrol.2012.09.016 – volume-title: R: A language and environment for statistical computing year: 2013 ident: e_1_2_7_60_1 contributor: fullname: R Core Team – ident: e_1_2_7_8_1 doi: 10.1029/WR022i001p00067 – ident: e_1_2_7_71_1 doi: 10.1016/S0022-1694(02)00064-1 – ident: e_1_2_7_32_1 doi: 10.1890/06-0922.1 – ident: e_1_2_7_31_1 doi: 10.1016/0168-1923(91)90094-7 – ident: e_1_2_7_58_1 doi: 10.1098/rspa.1948.0037 – ident: e_1_2_7_7_1 doi: 10.1016/S0065-2504(08)60018-5 – ident: e_1_2_7_28_1 doi: 10.1029/96WR00801 – ident: e_1_2_7_26_1 doi: 10.1111/j.1365-2486.2012.02775.x – ident: e_1_2_7_51_1 doi: 10.1093/treephys/tpr048 – ident: e_1_2_7_72_1 doi: 10.1016/j.agee.2008.01.015 – ident: e_1_2_7_6_1 doi: 10.1029/2001RG000103 – ident: e_1_2_7_10_1 doi: 10.1007/978-94-007-1363-5_5 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-2486.2008.01613.x – ident: e_1_2_7_55_1 doi: 10.1016/j.rse.2004.08.009 – ident: e_1_2_7_42_1 doi: 10.1088/1748-9326/7/2/024024 – ident: e_1_2_7_68_1 doi: 10.1080/014311600211064 – ident: e_1_2_7_65_1 doi: 10.3354/cr021219 |
SSID | ssj0061453 |
Score | 2.2493935 |
Snippet | Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi‐arid, high‐elevation... Evapotranspiration (ET) comprises a major portion of the water budget in forests, yet few studies have measured or estimated ET in semi-arid, high-elevation... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1335 |
SubjectTerms | eddy covariance evapotranspiration forest ecosystems latent heat Marine Moderate Resolution Imaging Spectroradiometer (MODIS) Pinus ponderosa ponderosa pine |
Title | Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests |
URI | https://api.istex.fr/ark:/67375/WNG-P33MG8C8-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feco.1586 https://www.proquest.com/docview/1726662480 https://search.proquest.com/docview/1732827453 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoKyQu_eFHbCmVkRC30Gy8dhxuaLttL5RKgEBcLMdjowqRrNa7VXvjEfoEPBxPwoyz2bYHJCROiWxHdsZjzzf2-DNjLwsJtQgCkRs4n43qSmZ1KXxm0bgjILUW0vGxkw_l6Rd9OCGanDf9WZiOH2K14EYjI83XNMBtHQ9uSEPRO3s9lJrYttFJoGg-efi1n4TR6CQCSoQn6DCjke15Z_PioP_wjiXaIKFe3oGZt8FqsjZHW__Tzm22ucSY_G2nFDvsnm8esvuTxE999Yj9QvQ8beeJ1fy8UwDuVtcRRr4M3eIe4AozLjCdVIP_uFlOjNw2gAlz38762TMlYXY7979_XkcKjG--4RvZSSxLN-5Eft5wQBksZjWmTVs6WdNGy6f4lxzhM0okPmafjiYfxyfZ8pqGzAk1UllQwdmhlbTJRtw6uShkcMPgazLAiD-cq3MNQ1vlNihdqaoKefAgyzyArgvxhK03beOfMq5ApUPuUDgYWa80SNAaCLeUSlZuwF70XWamHRuH6XiXC4NyNiTnAXuV-nJVwM6-U_RaKc3n02NzJsS7Yz3WRgzYXt_ZZjlwo0E8hw5dgW3AulbZOORoH8U2vl1QGYGOaokahnWlrv9rY8xk_J6eu_9a8Bl7gJBMduGCe2x9Plv452wtwmKfrQlxtp_U_A9V9gSZ |
link.rule.ids | 315,782,786,1405,1408,27933,27934,46064,46165,46488,46589 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoKwSX8luxpYCRELfQbLx2HPWEttsuol2QKAJxsRyPjSrUZLXZreiNR-AJ-nA8CTPOZksPSEicEtkT2RmPPZ_t8WfGXmQSShEEIjdwPhmUhUzKXPjEonNHQGotxONj4w_55LPeHxFNzl53Fqblh1gtuFHPiOM1dXBakN69Yg3F6dmrvtRqjW0M0I-SScv9L90wjG4nUlAiQMEpM7rZjnk2zXa7L6_5og1S6_drQPNPuBr9zcGd_6rpXba5hJn8dWsX99gNX91nN0eRovriAbtEAD2t55HY_LS1Ae5WNxI2fBm9xT3ABWacYzpZBz-7WlFsuK0AE-a-nnUDaEzC7Hruf_342VBsfPUV38hVoixdutPw04oDKmExKzFtWtPhmrqxfIq_yRFBo0qah-zjwehkOE6WNzUkTqiBSoIKzvatpH02otdJRSaD6wdfkg9GCOJcmWro2yK1QelCFUVIgweZpwF0mYkttl7VlX_EuAIVz7lD5mBgvdIgQWsg6JIrWbgee961mZm2hBympV7ODOrZkJ577GVszJWAnX2jALZcmk-TQ_NeiONDPdRG9NhO19pm2Xcbg5AO53QZ1gHLWmVjr6OtFFv5ekEyAueqOZoYlhXb_q-VMaPhO3pu_6vgM3ZrfHJ8ZI7eTN4-ZrcRock2enCHrc9nC_-ErTWweBqt_TeRfQfv |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoKxCX8luxpYCRELfQJF47Tm9of1oELJUAgbhYTsZGFWoSbXYreuMReII-HE_CjLPZ0gMSEqdEtiM747HnG3v8mbFnqYRCeIHIDUoXDYtcRkUmXGTRuCMgtRbC8bGj99nssx5PiCbnoD8L0_FDrBfcaGSE-ZoGeAN-_5I0FL2zF4nUaoNtDVWiKJxPjr_0szBancBAifgEPWa0sj3xbJzu919eMUVbJNXvV3Dmn2g1mJvprf9p6G22vQKZ_GWnFXfYNVfdZdcngaD6_B67QPjc1ItAa37SaQAv1_cRtnwVu8UdwDlmnGE66QY_vVxPbLmtABMWrp7302dIwux64X79-NlSZHz1Fd_IUGJZunKn5ScVB5TBcl5gWlPT0Zq6tbzBv-SIn1Ei7X32cTr5MDqKVvc0RKVQQxV55UubWEm7bESuE4tU-jLxriALjACkLItYQ2Lz2Hqlc5XnPvYOZBZ70EUqdthmVVfuAeMKVDjlDmkJQ-uUBglaAwGXTMm8HLCnfZeZpqPjMB3xcmpQzobkPGDPQ1-uC9j5Nwpfy6T5NDs0x0K8PdQjbcSA7fWdbVYjtzUI6NCjS7ENWNc6G8ccbaTYytVLKiPQU81Qw7Cu0PV_bYyZjN7Rc_dfCz5hN47HU_Pm1ez1Q3YT4ZnsQgf32OZivnSP2EYLy8dB138DazsGlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evapotranspiration+comparisons+between+eddy+covariance+measurements+and+meteorological+and+remote%E2%80%90sensing%E2%80%90based+models+in+disturbed+ponderosa+pine+forests&rft.jtitle=Ecohydrology&rft.au=Ha%2C+Wonsook&rft.au=Kolb%2C+Thomas+E.&rft.au=Springer%2C+Abraham+E.&rft.au=Dore%2C+Sabina&rft.date=2015-10-01&rft.issn=1936-0584&rft.eissn=1936-0592&rft.volume=8&rft.issue=7&rft.spage=1335&rft.epage=1350&rft_id=info:doi/10.1002%2Feco.1586&rft.externalDBID=10.1002%252Feco.1586&rft.externalDocID=ECO1586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0584&client=summon |