A Large-Class Few-Shot Learning Method Based on High-Dimensional Features

Large-class few-shot learning has a wide range of applications in many fields, such as the medical, power, security, and remote sensing fields. At present, many few-shot learning methods for fewer-class scenarios have been proposed, but little research has been performed for large-class scenarios. I...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 13; no. 23; p. 12843
Main Authors: Dang, Jiawei, Zhou, Yu, Zheng, Ruirui, He, Jianjun
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Large-class few-shot learning has a wide range of applications in many fields, such as the medical, power, security, and remote sensing fields. At present, many few-shot learning methods for fewer-class scenarios have been proposed, but little research has been performed for large-class scenarios. In this paper, we propose a large-class few-shot learning method called HF-FSL, which is based on high-dimensional features. Recent theoretical research shows that if the distribution of samples in a high-dimensional feature space meets the conditions of compactness within the class and the dispersion between classes, the large-class few-shot learning method has a better generalization ability. Inspired by this theory, the basic idea is use a deep neural network to extract high-dimensional features and unitize them to project the samples onto a hypersphere. The global orthogonal regularization strategy can then be used to make samples of different classes on the hypersphere that are as orthogonal as possible, so as to achieve the goal of sample compactness within the class and the dispersion between classes in high-dimensional feature space. Experiments on Omniglot, Fungi, and ImageNet demonstrate that the proposed method can effectively improve the recognition accuracy in a large-class FSL problem.
AbstractList Large-class few-shot learning has a wide range of applications in many fields, such as the medical, power, security, and remote sensing fields. At present, many few-shot learning methods for fewer-class scenarios have been proposed, but little research has been performed for large-class scenarios. In this paper, we propose a large-class few-shot learning method called HF-FSL, which is based on high-dimensional features. Recent theoretical research shows that if the distribution of samples in a high-dimensional feature space meets the conditions of compactness within the class and the dispersion between classes, the large-class few-shot learning method has a better generalization ability. Inspired by this theory, the basic idea is use a deep neural network to extract high-dimensional features and unitize them to project the samples onto a hypersphere. The global orthogonal regularization strategy can then be used to make samples of different classes on the hypersphere that are as orthogonal as possible, so as to achieve the goal of sample compactness within the class and the dispersion between classes in high-dimensional feature space. Experiments on Omniglot, Fungi, and ImageNet demonstrate that the proposed method can effectively improve the recognition accuracy in a large-class FSL problem.
Audience Academic
Author Zheng, Ruirui
Dang, Jiawei
Zhou, Yu
He, Jianjun
Author_xml – sequence: 1
  givenname: Jiawei
  surname: Dang
  fullname: Dang, Jiawei
– sequence: 2
  givenname: Yu
  surname: Zhou
  fullname: Zhou, Yu
– sequence: 3
  givenname: Ruirui
  surname: Zheng
  fullname: Zheng, Ruirui
– sequence: 4
  givenname: Jianjun
  orcidid: 0000-0002-6942-8457
  surname: He
  fullname: He, Jianjun
BookMark eNpNUctu2zAQJIoUaJrk1g8QkGuV8iGJ5NF18zDgIoe2Z2LFXck0bNEhZQT9-zB1EWT3sIvBzGAX85mdTXEixr4IfqOU5d_gcBBKKiFNoz6wc8l1V6tG6LN3-yd2lfOWl7JCGcHP2WpRrSGNVC93kHN1R8_1r02cqzVBmsI0Vj9p3kSsvkMmrOJUPYRxU_8Ie5pyiBPsigTmY6J8yT4OsMt09X9esD93t7-XD_X68X61XKxrrzo112io6bUGAX5otPYoe0Q-SNQGbIsWqTfUc2s1dtAQ9t43yL30nKTG1qsLtjr5YoStO6Swh_TXRQjuHxDT6CDNwe_Ioe0H3qJEZZvGkO5VZ1Wr1WB1V_CueF2fvA4pPh0pz24bj6l8lZ001ipjTMcL6-bEGqGYhmmIcwJfGmkffElhCAVfaN2-8kVbBF9PAp9izomGtzMFd69hufdhqRcdiIdX
Cites_doi 10.1109/ICCV.2017.328
10.1109/WACV51458.2022.00210
10.1016/j.cobeha.2019.04.007
10.1109/CVPR.2018.00760
10.1109/LSP.2018.2822810
10.1177/00031348221101490
10.1109/CVPR.2018.00610
10.1109/IJCNN52387.2021.9534395
10.5244/C.28.6
10.3390/sym11091066
10.1109/CVPR52688.2022.00957
10.1021/acs.jcim.2c01034
10.1109/ICCV.2017.492
10.1016/j.jmva.2019.104536
10.20944/preprints202106.0718.v1
10.1109/CVPR.2018.00552
10.1109/CVPR42600.2020.01220
10.1155/2022/9710667
10.1109/CVPR.2017.713
10.1093/bfgp/elad031
10.1109/CVPR.2019.00738
10.1016/j.ins.2021.01.022
10.1098/rsta.2017.0237
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app132312843
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_d9bf05d2d39448e7b3693573f97605d6
A775888615
10_3390_app132312843
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARAPS
ARCSS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
K6V
K7-
KB.
KC.
KQ8
L6V
LK5
LK8
M0K
M7P
M7R
M7S
MODMG
M~E
N95
OK1
P62
PATMY
PCBAR
PDBOC
PIMPY
PROAC
PYCSY
RIG
TUS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-d8e4b77a1acf477cd2bdd0f2d78a95d9deb8eb0997d6a4edbcc4d0c2c0e27d5c3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 22 15:14:47 EDT 2024
Fri Nov 08 20:54:03 EST 2024
Tue Nov 12 23:58:10 EST 2024
Thu Nov 21 22:30:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-d8e4b77a1acf477cd2bdd0f2d78a95d9deb8eb0997d6a4edbcc4d0c2c0e27d5c3
ORCID 0000-0002-6942-8457
OpenAccessLink https://doaj.org/article/d9bf05d2d39448e7b3693573f97605d6
PQID 2899388860
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_d9bf05d2d39448e7b3693573f97605d6
proquest_journals_2899388860
gale_infotracacademiconefile_A775888615
crossref_primary_10_3390_app132312843
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_35
ref_34
ref_10
ref_32
ref_31
ref_30
ref_19
ref_18
ref_17
ref_15
Tyukin (ref_12) 2021; 564
ref_25
ref_24
ref_23
Kha (ref_3) 2022; 62
ref_21
ref_20
ref_1
Lake (ref_16) 2019; 29
Subedi (ref_22) 2022; 2022
ref_2
Abramovich (ref_11) 2019; 174
ref_29
Morris (ref_4) 2023; 89
ref_28
ref_27
ref_26
ref_9
ref_8
Wang (ref_33) 2018; 25
ref_5
ref_7
Gorban (ref_13) 2018; 376
ref_6
References_xml – ident: ref_7
– ident: ref_9
– ident: ref_10
  doi: 10.1109/ICCV.2017.328
– ident: ref_30
– ident: ref_23
  doi: 10.1109/WACV51458.2022.00210
– ident: ref_5
– volume: 29
  start-page: 97
  year: 2019
  ident: ref_16
  article-title: The Omniglot challenge: A 3-year progress report
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2019.04.007
  contributor:
    fullname: Lake
– ident: ref_21
  doi: 10.1109/CVPR.2018.00760
– volume: 25
  start-page: 926
  year: 2018
  ident: ref_33
  article-title: Additive margin softmax for face verification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2822810
  contributor:
    fullname: Wang
– ident: ref_1
– ident: ref_18
– volume: 89
  start-page: 36
  year: 2023
  ident: ref_4
  article-title: Deep learning applications in surgery: Current uses and future directions
  publication-title: Am. Surg.
  doi: 10.1177/00031348221101490
  contributor:
    fullname: Morris
– ident: ref_35
  doi: 10.1109/CVPR.2018.00610
– ident: ref_15
  doi: 10.1109/IJCNN52387.2021.9534395
– ident: ref_19
  doi: 10.5244/C.28.6
– ident: ref_24
  doi: 10.3390/sym11091066
– ident: ref_6
– ident: ref_25
– ident: ref_26
  doi: 10.1109/CVPR52688.2022.00957
– ident: ref_29
– ident: ref_27
– volume: 62
  start-page: 4820
  year: 2022
  ident: ref_3
  article-title: Identifying SNARE proteins using an alignment-free method based on multiscan convolutional neural network and PSSM profiles
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c01034
  contributor:
    fullname: Kha
– ident: ref_34
  doi: 10.1109/ICCV.2017.492
– volume: 174
  start-page: 104536
  year: 2019
  ident: ref_11
  article-title: Classification with many classes: Challenges and pluses
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2019.104536
  contributor:
    fullname: Abramovich
– ident: ref_14
  doi: 10.20944/preprints202106.0718.v1
– ident: ref_32
  doi: 10.1109/CVPR.2018.00552
– ident: ref_28
  doi: 10.1109/CVPR42600.2020.01220
– volume: 2022
  start-page: 9710667
  year: 2022
  ident: ref_22
  article-title: Feature learning-based generative adversarial network data augmentation for class-based few-shot learning
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/9710667
  contributor:
    fullname: Subedi
– ident: ref_31
  doi: 10.1109/CVPR.2017.713
– ident: ref_17
– ident: ref_2
  doi: 10.1093/bfgp/elad031
– ident: ref_8
  doi: 10.1109/CVPR.2019.00738
– ident: ref_20
– volume: 564
  start-page: 124
  year: 2021
  ident: ref_12
  article-title: Blessing of dimensionality at the edge and geometry of few-shot learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.022
  contributor:
    fullname: Tyukin
– volume: 376
  start-page: 20170237
  year: 2018
  ident: ref_13
  article-title: Blessing of dimensionality: Mathematical foundations of the statistical physics of data
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2017.0237
  contributor:
    fullname: Gorban
SSID ssj0000913810
Score 2.3191168
Snippet Large-class few-shot learning has a wide range of applications in many fields, such as the medical, power, security, and remote sensing fields. At present,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 12843
SubjectTerms Accuracy
Algorithms
Classification
global orthogonal regularization
high-dimensional feature space
large-class few-shot learning
Learning
Methods
Neural networks
Optimization
Remote sensing
Semantics
Teaching methods
Title A Large-Class Few-Shot Learning Method Based on High-Dimensional Features
URI https://www.proquest.com/docview/2899388860
https://doaj.org/article/d9bf05d2d39448e7b3693573f97605d6
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1NT8MwDIYt4AQHBAPE-FIOIOAQ0TXt0h4HbBoScBlI3KIkTuG0oX2Iv4-dFjQOiAvXtqoiu47zqvZjgFObJgo7mZZVqbzMKAfI0ikrgyJvU4B1fBznMxzpx5fits-YnO9RX1wTVuOBa8NdYemqJMcUuYOzCNqpbqlyrSrKo3S9hm0neklMxT247DC6qq50V6Tr-X8wCS_F27H6kYMiqv-3DTlmmcEWbDbHQ9Grl7UNK2Hcgo0laGALtptwnImLhhl9uQN3PXHPNd0yDrkUg_AhR2-TuWjwqa_iIU6KFteUtFBMxoLrO-Qto_1rLIfgs-CCtPcuPA_6TzdD2UxJkF511VxiETKnte1YX2Vae0wdYlKlqAtb5lhicEVw3CCLXZsFdN5nmPjUJyHVmHu1B2vjyTjsg0iTykZEm1M-o-guuEeABAi9Mneq9G04-7Kbea9hGIZEBNvXLNu3Ddds1O9nGGEdL5BjTeNY85dj23DOLjEcaPOp9bbpF6ClMrLK9DRJnaKgE1kbjr68ZpoInBkWkorvJwf_sZpDWOdB83UhyxGszaeLcAyrM1ycxC_vEy7x2Ww
link.rule.ids 315,782,786,866,2107,27934,27935
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Large-Class+Few-Shot+Learning+Method+Based+on+High-Dimensional+Features&rft.jtitle=Applied+sciences&rft.au=Dang%2C+Jiawei&rft.au=Zhou%2C+Yu&rft.au=Zheng%2C+Ruirui&rft.au=He%2C+Jianjun&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=23&rft.spage=12843&rft_id=info:doi/10.3390%2Fapp132312843&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon