Neutrally- and stably-stratified boundary layers adjustments to a step change in surface roughness
In this work, we study the development of the internal boundary layer (IBL) induced by a surface roughness discontinuity, where the downstream surface has a roughness length greater than that upstream. The work is carried out in the EnFlo meteorological wind tunnel, at the University of Surrey, in b...
Saved in:
Published in: | Experiments in fluids Vol. 64; no. 4 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-04-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we study the development of the internal boundary layer (IBL) induced by a surface roughness discontinuity, where the downstream surface has a roughness length greater than that upstream. The work is carried out in the EnFlo meteorological wind tunnel, at the University of Surrey, in both thermally neutral and stable cases with varying degrees of stability. For the neutrally-stratified boundary layer, the IBL development in the log-law region shows good agreement with the diffusion model proposed by Panofsky and Dutton (Atmospheric turbulence, Wiley, New York, 1984) provided that a modified origin condition is introduced and its growth rate is dictated by a constant diffusion term. However, the model over-predicts the growth of the IBL in the outer layer, where the IBL depth grows slowly with fetch following a power function with exponent
n
being 0.61 (whereas the original model prescribes
n
≈
0.8
). For the stably-stratified boundary layers,
n
is found to further reduce as the bulk Richardson number,
Ri
b
, increases. The analysis of the top region of the IBL shows that the slow growth rate is due to a combination of the decay of the diffusion term and a significantly negative mean wall-normal velocity, which transports fluid elements towards the wall. Considering these two effects, a modified diffusion model is proposed which well captures the growth of the IBL for both neutrally and stably-stratified boundary layers.
Graphical abstract |
---|---|
ISSN: | 0723-4864 1432-1114 |
DOI: | 10.1007/s00348-023-03626-7 |