Drive axis controller optimization of production machines based on dynamic models

The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The first part presents the identification of a dynamic model of the axis based on experimental data from measuring the axis dynamics. The second pa...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 115; no. 4; pp. 1277 - 1293
Main Authors: Halamka, Vojtěch, Moravec, Jan, Beneš, Petr, Neusser, Zdeněk, Koubek, Jan, Kozlok, Tomáš, Valášek, Michael, Šika, Zbyněk
Format: Journal Article
Language:English
Published: London Springer London 01-07-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The first part presents the identification of a dynamic model of the axis based on experimental data from measuring the axis dynamics. The second part describes the controller model, selection of optimization objective functions, and optimization of constraint conditions. The optimization of controllers is tuned by simulation using identified state-space model. Subsequently, the optimization procedure is implemented on the identified model, and the found control parameters are used on a real machine tool linear axis with different loads. The implementation of the proposed complex procedure on a real horizontal machine tool proved the advantage of simultaneous tuning of all parameters using optimization methods. The strategy solves the problem of mutual interaction of all control law parameters disabling effective usability of gradual sequential tuning. The methodology was developed on a speed control loop, the tuning of which is usually the most difficult due to the close interaction with the dynamic properties of the machine mechanics. The whole procedure is also applicable to the position and current control loop.
AbstractList The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The first part presents the identification of a dynamic model of the axis based on experimental data from measuring the axis dynamics. The second part describes the controller model, selection of optimization objective functions, and optimization of constraint conditions. The optimization of controllers is tuned by simulation using identified state-space model. Subsequently, the optimization procedure is implemented on the identified model, and the found control parameters are used on a real machine tool linear axis with different loads. The implementation of the proposed complex procedure on a real horizontal machine tool proved the advantage of simultaneous tuning of all parameters using optimization methods. The strategy solves the problem of mutual interaction of all control law parameters disabling effective usability of gradual sequential tuning. The methodology was developed on a speed control loop, the tuning of which is usually the most difficult due to the close interaction with the dynamic properties of the machine mechanics. The whole procedure is also applicable to the position and current control loop.
Author Kozlok, Tomáš
Halamka, Vojtěch
Valášek, Michael
Koubek, Jan
Moravec, Jan
Neusser, Zdeněk
Beneš, Petr
Šika, Zbyněk
Author_xml – sequence: 1
  givenname: Vojtěch
  surname: Halamka
  fullname: Halamka, Vojtěch
  organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague
– sequence: 2
  givenname: Jan
  surname: Moravec
  fullname: Moravec, Jan
  organization: Department of Production Machines and Equipment, Faculty of Mechanical Engineering, Czech Technical University in Prague
– sequence: 3
  givenname: Petr
  surname: Beneš
  fullname: Beneš, Petr
  organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague
– sequence: 4
  givenname: Zdeněk
  surname: Neusser
  fullname: Neusser, Zdeněk
  organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague
– sequence: 5
  givenname: Jan
  surname: Koubek
  fullname: Koubek, Jan
  organization: Department of Production Machines and Equipment, Faculty of Mechanical Engineering, Czech Technical University in Prague
– sequence: 6
  givenname: Tomáš
  surname: Kozlok
  fullname: Kozlok, Tomáš
  organization: TOS Varnsdorf a. s
– sequence: 7
  givenname: Michael
  surname: Valášek
  fullname: Valášek, Michael
  organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague
– sequence: 8
  givenname: Zbyněk
  orcidid: 0000-0002-5492-7704
  surname: Šika
  fullname: Šika, Zbyněk
  email: Zbynek.Sika@fs.cvut.cz
  organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague
BookMark eNp9kE1LAzEQhoNUsFX_gKcFz9F8bTY9Sv2Eggh6DtlkVrfsJjXZWuuvN3YFb56GGZ53ZnhmaOKDB4TOKLmghFSXiRBaEUwYxaSikuDtAZpSwTnmhJYTNCVMKswrqY7QLKVVxiWVaoqermP7AYX5bFNhgx9i6DqIRVgPbd9-maENvghNsY7Bbey-6419az2kojYJXJEnbudN39qiDw66dIIOG9MlOP2tx-jl9uZ5cY-Xj3cPi6sltlzyAZdKCgdS8ZI4NwfOHDVQKSdqxSxTMAdbU9lIWxtBqKtFJVxtHG8IiLmVwI_R-bg3__a-gTToVdhEn09qVgrF5pIzlik2UjaGlCI0eh3b3sSdpkT_qNOjOp3V6b06vc0hPoZShv0rxL_V_6S-AQeDdUA
CitedBy_id crossref_primary_10_1007_s00170_022_10075_9
crossref_primary_10_1007_s00170_022_10165_8
crossref_primary_10_1016_j_engappai_2022_105506
Cites_doi 10.1109/IECON.2015.7392406
10.1109/AIM.2005.1511046
10.1016/S0890-6955(01)00004-9
10.1109/ICEM49940.2020.9271036
10.1007/s00170-009-2496-7
10.1016/j.jsv.2021.116010
10.1007/s00170-020-05719-7
10.2478/v10180-011-0012-8
10.1177/1077546305055542
10.1007/s00170-011-3450-z
10.1016/j.mechatronics.2020.102445
10.1109/CSPA.2013.6530030
10.3390/app10249036
10.1007/978-0-387-72133-0
10.1016/j.isatra.2020.06.025
10.1007/s00170-020-05651-w
10.1177/1077546320918488
10.1016/S0890-6955(01)00003-7
10.1006/jsvi.1994.1360
10.1007/s00170-020-05041-2
10.1007/s00170-020-05858-x
10.1007/1-84628-158-X
10.1109/TIE.2021.3050356
10.1109/ISIE45063.2020.9152478
10.1007/s11740-016-0704-5
10.1007/s00707-019-2363-z
10.1109/ACCESS.2020.2977395
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-021-07160-w
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Engineering Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1293
ExternalDocumentID 10_1007_s00170_021_07160_w
GrantInformation_xml – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: CZ.02.1.01/0.0/0.0/16_026/0008404
  funderid: http://dx.doi.org/10.13039/501100001823
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABYXP
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-5864de68350dd9e32d1ae78d4b82c28e9ecb16f6cba401db474dbad3f0e49c6e3
IEDL.DBID AEJHL
ISSN 0268-3768
IngestDate Tue Nov 19 05:27:38 EST 2024
Fri Nov 22 00:18:44 EST 2024
Sat Dec 16 12:09:16 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Speed controller
Speed controller parameters
Machine tool
Speed control loop
Drive axis
Cascade control
Identification
Optimization of cascade control
Control quality criterions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-5864de68350dd9e32d1ae78d4b82c28e9ecb16f6cba401db474dbad3f0e49c6e3
ORCID 0000-0002-5492-7704
OpenAccessLink http://link.springer.com/10.1007/s00170-021-07160-w
PQID 2548296322
PQPubID 2044010
PageCount 17
ParticipantIDs proquest_journals_2548296322
crossref_primary_10_1007_s00170_021_07160_w
springer_journals_10_1007_s00170_021_07160_w
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Khosravi M, Behrunani V, Myszkor P, Smith RS, Rupenyan A, Lygeros J (2021) Performance-driven cascade controller tuning with Bayesian optimization. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2021.3050356
Gawronski WK (2004) Advanced structural dynamics and active control of structures, New York: Springer-Verlag New York. https://doi.org/10.1007/978-0-387-72133-0
Bubák A (2004) Increasing the dynamics and accuracy of machine tool feed axes. Dissertation, Czech Technical University in Prague (in Czech)
Lee C-Y, Hwang S-H, Nam E, Min B-K (2020) Identification of mass and sliding friction parameters of machine tool feed drive using recursive least squares method. Int J Adv Manuf Technol 109(9):2831–2844. https://doi.org/10.1007/s00170-020-05858-x
Farrage A, Uchiyama N (2020) Improvement of motion accuracy and energy consumption for industrial feed drive systems using adaptive sliding mode control. ISA Trans 106:382–391. https://doi.org/10.1016/j.isatra.2020.06.025
Wong WW-S, Erkorkmaz K (2010) Constrained identification of virtual CNC drives using a genetic algorithm. Int J Adv Manuf Technol 50(1):275–288. https://doi.org/10.1007/s00170-009-2496-7
Olgac N, Holm-Hansen BT (1994) A novel active vibration absorption technique: delayed resonator. J Sound Vib 176(1):93–104. https://doi.org/10.1006/jsvi.1994.1360
Kim H, Okwudire CE (2020) Simultaneous servo error pre-compensation and feedrate optimization with tolerance constraints using linear programming. Int J Adv Manuf Technol 109(3):809–821. https://doi.org/10.1007/s00170-020-05651-w
Turhan MH, Tseng GWG, Erkorkmaz K, Fidan B (2020) Dynamic model identification for CNC machine tool feed drives from in-process signals for virtual process planning. Mechatronics 72:102445. https://doi.org/10.1016/j.mechatronics.2020.102445
Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part III: high speed tracking and contouring control of feed drives. Int J Mach Tools Manuf 41(11):1637–1658. https://doi.org/10.1016/S0890-6955(01)00004-9
Sencer B, Ishizaki K (2015) Smooth polynomial interpolation for point-to-point trajectories with vibration avoidance. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society 002070-002075. https://doi.org/10.1109/IECON.2015.7392406
Msukwa MR, Nshama EW, Uchiyama N (2020) Contouring control based on reference adjustment and uncertainty compensator for precision motion of industrial feed drive systems. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE) 89-94. https://doi.org/10.1109/ISIE45063.2020.9152478
Kehne S, Fey M, Brecher C, Herfs W (2020) Control of the static and dynamic stiffness of feed drive axes by using an external force sensor. 2020 International Conference on Electrical Machines (ICEM) 1081-1085. https://doi.org/10.1109/ICEM49940.2020.9271036
Neugebauer R, Hofmann S, Hellmich A, Schlegel H (2011) Time-based method for the combined identification of velocity-loop parameters. Archive of Mechanical Engineering 58(2):175–184
Margolis BWL, Farouki RT (2020) Inverse dynamics toolpath compensation for CNC machines based on model predictive control. Int J Adv Manuf Technol 109(7):2155–2172. https://doi.org/10.1007/s00170-020-05719-7
Katayma T (2005) Subspace methods for system identification, London: Springer- Verlag. https://doi.org/10.1007/1-84628-158-X
Chen C, Cheng C (2005) Integrated design for a mechatronic feed drive system of machine tools. Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 588-593. https://doi.org/10.1109/AIM.2005.1511046
Moravec J, Šika Z (2019) Tuning of position control loop of machine tools based on experimentally identified mechanical model. Computational mechanics 2019: Proceedings of computational Mechanics 2019: 35th conference with international participation 127-128
Halamka V (2019) Optimization of control of machine drive axis. Masters thesis, Czech Technical University in Prague (in Czech)
Msukwa MR, Nshama EW, Uchiyama N (2020) Adaptive sliding mode control with feedforward compensator for energy-efficient and high-speed precision motion of feed drive systems. IEEE Access 8:43571–43581. https://doi.org/10.1109/ACCESS.2020.2977395
Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part II: modeling and identification of feed drives. Int J Mach Tools Manuf 41(10):1487–1509. https://doi.org/10.1016/S0890-6955(01)00003-7
Yang H, Wang Z, Zhang T, Du F (2020) A review on vibration analysis and control of machine tool feed drive systems. Int J Adv Manuf Technol 107:503–525. https://doi.org/10.1007/s00170-020-05041-2
Elbeheiry EM, Elmaraghy WH, Elmaraghy HA (2005) A structured linear quadratic gaussian based control design algorithm for machine tool controllers including both feed drive and process dynamics. J Vib Control 11(7):949–983. https://doi.org/10.1177/1077546305055542
Sekler P, Voß M, Verl A (2012) Model-based calculation of the system behavior of machine structures on the control device for vibration avoidance. Int J Adv Manuf Technol 58(9):1087–1095. https://doi.org/10.1007/s00170-011-3450-z
Beneš P, Valášek M, Šika Z, Zavřel J, Pelikán J (2019) SHAVO control: the combination of the adjusted command shaping and feedback control for vibration suppression. Acta Mech 230(5):1891–1905. https://doi.org/10.1007/s00707-019-2363-z
KhaderNModal parameters of a rotating multiple-disk-shaft system from simulated frequency response dataApplied and Computational Mechanics201481187198
Rebelein C, Vlacil J, Zaeh MF (2017) Modeling of the dynamic behavior of machine tools: influences of damping, friction, control and motion. Prod Eng 11(1):61–74. https://doi.org/10.1007/s11740-016-0704-5
Šika Z, Vyhlídal T, Neusser Z (2021) Two-dimensional delayed resonator for entire vibration absorption. J Sound Vib 500:116010. https://doi.org/10.1016/j.jsv.2021.116010
Moravec J (2014) Minimization of errors and irregular motion of machine tool feed drive axes. Dissertation, Czech Technical University in Prague (in Czech)
Souček P (2004) Servomechanisms in production machines, Prague: ČVUT (in Czech)
Houck C, Joines J, Kay A (1994) A genetic algorithm for function optimization: a MATLAB implementation, North California State University
Chen S-Y, Chien Z-J, Wang W-Y, Chiang H-H (2020) Contour tracking control of a linear motors-driven X-Y-Y stage using auto-tuning cross-coupled 2DOF PID control approach. Appl Sci 10(24):9036. https://doi.org/10.3390/app10249036
Jamaludin IW, Wahab NA, Khalib NS, Sahlan S, Ibrahim Z, Rahmat MF (2013) N4SID and MOESP subspace identification methods. 2013 IEEE 9th International Colloquium on Signal Processing and its Applications 140-145. https://doi.org/10.1109/CSPA.2013.6530030
Poshtan J, Mojallali H (2020) Subspace system identification. Iranian Journal of Electrical and Electronic Engineering 1(1):11-17
Kraus K, Šika Z, Beneš P, Krivošej J, Vyhlídal T (2020) Mechatronic robot arm with active vibration absorbers. J Vib Control 26(13-14):1145–1156. https://doi.org/10.1177/1077546320918488
7160_CR17
7160_CR18
7160_CR19
N Khader (7160_CR20) 2014; 8
7160_CR2
7160_CR3
7160_CR4
7160_CR5
7160_CR6
7160_CR7
7160_CR8
7160_CR9
7160_CR21
7160_CR22
7160_CR23
7160_CR24
7160_CR25
7160_CR26
7160_CR1
7160_CR27
7160_CR28
7160_CR29
7160_CR30
7160_CR31
7160_CR10
7160_CR32
7160_CR11
7160_CR33
7160_CR12
7160_CR34
7160_CR13
7160_CR35
7160_CR14
7160_CR15
7160_CR16
References_xml – ident: 7160_CR5
  doi: 10.1109/IECON.2015.7392406
– ident: 7160_CR3
  doi: 10.1109/AIM.2005.1511046
– ident: 7160_CR2
  doi: 10.1016/S0890-6955(01)00004-9
– ident: 7160_CR9
  doi: 10.1109/ICEM49940.2020.9271036
– volume: 8
  start-page: 187
  issue: 1
  year: 2014
  ident: 7160_CR20
  publication-title: Applied and Computational Mechanics
  contributor:
    fullname: N Khader
– ident: 7160_CR16
  doi: 10.1007/s00170-009-2496-7
– ident: 7160_CR25
  doi: 10.1016/j.jsv.2021.116010
– ident: 7160_CR12
  doi: 10.1007/s00170-020-05719-7
– ident: 7160_CR17
  doi: 10.2478/v10180-011-0012-8
– ident: 7160_CR32
– ident: 7160_CR30
– ident: 7160_CR4
  doi: 10.1177/1077546305055542
– ident: 7160_CR18
  doi: 10.1007/s00170-011-3450-z
– ident: 7160_CR34
– ident: 7160_CR22
  doi: 10.1016/j.mechatronics.2020.102445
– ident: 7160_CR26
  doi: 10.1109/CSPA.2013.6530030
– ident: 7160_CR7
  doi: 10.3390/app10249036
– ident: 7160_CR28
  doi: 10.1007/978-0-387-72133-0
– ident: 7160_CR8
  doi: 10.1016/j.isatra.2020.06.025
– ident: 7160_CR13
  doi: 10.1007/s00170-020-05651-w
– ident: 7160_CR24
  doi: 10.1177/1077546320918488
– ident: 7160_CR31
– ident: 7160_CR15
  doi: 10.1016/S0890-6955(01)00003-7
– ident: 7160_CR33
– ident: 7160_CR23
  doi: 10.1006/jsvi.1994.1360
– ident: 7160_CR27
– ident: 7160_CR35
– ident: 7160_CR1
  doi: 10.1007/s00170-020-05041-2
– ident: 7160_CR21
  doi: 10.1007/s00170-020-05858-x
– ident: 7160_CR29
  doi: 10.1007/1-84628-158-X
– ident: 7160_CR14
  doi: 10.1109/TIE.2021.3050356
– ident: 7160_CR10
  doi: 10.1109/ISIE45063.2020.9152478
– ident: 7160_CR19
  doi: 10.1007/s11740-016-0704-5
– ident: 7160_CR6
  doi: 10.1007/s00707-019-2363-z
– ident: 7160_CR11
  doi: 10.1109/ACCESS.2020.2977395
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.3813286
Snippet The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1277
SubjectTerms CAE) and Design
Cascade control
Computer-Aided Engineering (CAD
Control theory
Controllers
Dynamic models
Engineering
Industrial and Production Engineering
Machine tools
Mechanical Engineering
Media Management
Optimization
Original Article
Parameter identification
Speed control
State space models
Tuning
Title Drive axis controller optimization of production machines based on dynamic models
URI https://link.springer.com/article/10.1007/s00170-021-07160-w
https://www.proquest.com/docview/2548296322
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA46XvTgLo4bOXjTSpqkaXocdMYFEUQFbyVNUhCdjkwdxp_vS7qMih70VLrQ0ve-vCVvQ-iQcp3oMMphpcXgoACmArBaSaBiorjMmGbaD7G9i28e5Vnftclh7dZF8XzSRCS9oG5r3Xynl8BlFIBWFCSYzqMF0D0RgHuh17-6uG5gFCaxG4XZwowmbv78DMaMR6wKbtXBBhH6ijnwRqRbb7Kurfn5q1_118wo_RZH9eppsPKvH1tFy7U1insVfNbQnC3W0dKnHoUb6PZsDAIRq_enEtd57S92jEcgaoZ1DSce5fi16hzrzoY-P9OW2GlIg-GKqcbeYz92p9xED4P-_elFUM9hCDQT7C2IpODGCrDViDGJZdSEysbS8ExSTaVNrM5CkQudKfDWTMZjbjJlWE4sT7SwbAt1ilFhtxGmRBuSWGCSUdylgRItFBNRqEhkKcm76KihbvpatdtI28bKnlApECr1hEqnXbTXMCCtl16ZgscrKYgVSrvouKH47Pbvb9v52-O7aJFWTAtIuIc6b-OJ3UfzpZkc1IB0x8v788EHxzPXIg
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HNSDuziuOXjTQpqkaXIUZ0bFcUAcwVtJkxQEZ2E6g_5807SdUdGDHtuGlr73vY23AZwRpqUOo8xJWuwCFIepwHmtOFAxVkykVFPtl9g-xt1n0WwVY3JY3Qvjq93rlKTX1LNmNz_qJShKCpxZ5Dh4W4RlJjlzWF6-vO1dt2schTIudmHOcEZksYB-jmPKIlpmt6psAw99y5wLR0QhcKJqrvn5q18N2Nwr_ZZI9fapvfG_P9uE9cofRZclgLZgwQ62Ye3TlMIdeGiOnUpE6v0lR1Vl-6sdo6FTNv2qixMNMzQqZ8cWV31foWlzVNhIg9wdUy6-R37xTr4LT-1W7-omqDYxBJpyOgkiwZmx3Hlr2BhpKTGhsrEwLBVEE2Gl1WnIM65T5eI1k7KYmVQZmmHLpOaW7sHSYDiw-4AI1gZL67hkFCsKQbHmivIoVDiyBGcNOK_Jm4zKgRvJbLSyJ1TiCJV4QiVvDTiqOZBUwpcnLuYVxCkWQhpwUVN8_vj3tx387fgprNz07jtJ57Z7dwirpGRggMMjWJqMp_YYFnMzPanQ-QH519mE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkFA5tECLWErBB240wrEdxzmi7q54CYFapN4ix3YkJDa72iwC_j1jJ9ktFT1UHJNYiTLz2TOjmfkG4JAJk5k4KXGnpRigIKYi9FpppFOqhSq44SYMsf2ZXv1W_YGnyZl38Ydq9y4l2fQ0eJamanY8seXxvPEt0L5EvrwATaSk0eMyrAqMZBDpqyeD89PLDlNxlvq5mHPMscwPo19gmouEN5muNvMg49A-h6GJ8ptPtY02b3_1tTFbeKh_JVWDrRp-ev9fbsDH1k8lJw2wNmHJVVuw_gd74We46U_xqCT66a4mbcX7vZuSMR5Co7a7k4xLMmk4Zf3VKFRuupp422kJ3rHPlR7dGRIG8tRf4HY4-PXjNGonNESGSz6LEiWFdRK9OGpt5jizsXapsqJQzDDlMmeKWJbSFBrjOFuIVNhCW15SJzIjHd-GlWpcuR0gjBpLM4cas1r4AlFqpOYyiTVNHKNlD446UeeThogjn1MuB0HlKKg8CCp_7MFep4283ZR1jrGwYnjgMNaD7530F4___bbd_1t-AGvX_WF-eXZ18RU-sEZ_EY33YGU2fXDfYLm2D_stUF8AdpniRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drive+axis+controller+optimization+of+production+machines+based+on+dynamic+models&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Halamka%2C+Vojt%C4%9Bch&rft.au=Moravec%2C+Jan&rft.au=Bene%C5%A1%2C+Petr&rft.au=Neusser%2C+Zden%C4%9Bk&rft.date=2021-07-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=115&rft.issue=4&rft.spage=1277&rft.epage=1293&rft_id=info:doi/10.1007%2Fs00170-021-07160-w&rft.externalDocID=10_1007_s00170_021_07160_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon