Drive axis controller optimization of production machines based on dynamic models
The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The first part presents the identification of a dynamic model of the axis based on experimental data from measuring the axis dynamics. The second pa...
Saved in:
Published in: | International journal of advanced manufacturing technology Vol. 115; no. 4; pp. 1277 - 1293 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Springer London
01-07-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The first part presents the identification of a dynamic model of the axis based on experimental data from measuring the axis dynamics. The second part describes the controller model, selection of optimization objective functions, and optimization of constraint conditions. The optimization of controllers is tuned by simulation using identified state-space model. Subsequently, the optimization procedure is implemented on the identified model, and the found control parameters are used on a real machine tool linear axis with different loads. The implementation of the proposed complex procedure on a real horizontal machine tool proved the advantage of simultaneous tuning of all parameters using optimization methods. The strategy solves the problem of mutual interaction of all control law parameters disabling effective usability of gradual sequential tuning. The methodology was developed on a speed control loop, the tuning of which is usually the most difficult due to the close interaction with the dynamic properties of the machine mechanics. The whole procedure is also applicable to the position and current control loop. |
---|---|
AbstractList | The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The first part presents the identification of a dynamic model of the axis based on experimental data from measuring the axis dynamics. The second part describes the controller model, selection of optimization objective functions, and optimization of constraint conditions. The optimization of controllers is tuned by simulation using identified state-space model. Subsequently, the optimization procedure is implemented on the identified model, and the found control parameters are used on a real machine tool linear axis with different loads. The implementation of the proposed complex procedure on a real horizontal machine tool proved the advantage of simultaneous tuning of all parameters using optimization methods. The strategy solves the problem of mutual interaction of all control law parameters disabling effective usability of gradual sequential tuning. The methodology was developed on a speed control loop, the tuning of which is usually the most difficult due to the close interaction with the dynamic properties of the machine mechanics. The whole procedure is also applicable to the position and current control loop. |
Author | Kozlok, Tomáš Halamka, Vojtěch Valášek, Michael Koubek, Jan Moravec, Jan Neusser, Zdeněk Beneš, Petr Šika, Zbyněk |
Author_xml | – sequence: 1 givenname: Vojtěch surname: Halamka fullname: Halamka, Vojtěch organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague – sequence: 2 givenname: Jan surname: Moravec fullname: Moravec, Jan organization: Department of Production Machines and Equipment, Faculty of Mechanical Engineering, Czech Technical University in Prague – sequence: 3 givenname: Petr surname: Beneš fullname: Beneš, Petr organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague – sequence: 4 givenname: Zdeněk surname: Neusser fullname: Neusser, Zdeněk organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague – sequence: 5 givenname: Jan surname: Koubek fullname: Koubek, Jan organization: Department of Production Machines and Equipment, Faculty of Mechanical Engineering, Czech Technical University in Prague – sequence: 6 givenname: Tomáš surname: Kozlok fullname: Kozlok, Tomáš organization: TOS Varnsdorf a. s – sequence: 7 givenname: Michael surname: Valášek fullname: Valášek, Michael organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague – sequence: 8 givenname: Zbyněk orcidid: 0000-0002-5492-7704 surname: Šika fullname: Šika, Zbyněk email: Zbynek.Sika@fs.cvut.cz organization: Department of Mechanics Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague |
BookMark | eNp9kE1LAzEQhoNUsFX_gKcFz9F8bTY9Sv2Eggh6DtlkVrfsJjXZWuuvN3YFb56GGZ53ZnhmaOKDB4TOKLmghFSXiRBaEUwYxaSikuDtAZpSwTnmhJYTNCVMKswrqY7QLKVVxiWVaoqermP7AYX5bFNhgx9i6DqIRVgPbd9-maENvghNsY7Bbey-6419az2kojYJXJEnbudN39qiDw66dIIOG9MlOP2tx-jl9uZ5cY-Xj3cPi6sltlzyAZdKCgdS8ZI4NwfOHDVQKSdqxSxTMAdbU9lIWxtBqKtFJVxtHG8IiLmVwI_R-bg3__a-gTToVdhEn09qVgrF5pIzlik2UjaGlCI0eh3b3sSdpkT_qNOjOp3V6b06vc0hPoZShv0rxL_V_6S-AQeDdUA |
CitedBy_id | crossref_primary_10_1007_s00170_022_10075_9 crossref_primary_10_1007_s00170_022_10165_8 crossref_primary_10_1016_j_engappai_2022_105506 |
Cites_doi | 10.1109/IECON.2015.7392406 10.1109/AIM.2005.1511046 10.1016/S0890-6955(01)00004-9 10.1109/ICEM49940.2020.9271036 10.1007/s00170-009-2496-7 10.1016/j.jsv.2021.116010 10.1007/s00170-020-05719-7 10.2478/v10180-011-0012-8 10.1177/1077546305055542 10.1007/s00170-011-3450-z 10.1016/j.mechatronics.2020.102445 10.1109/CSPA.2013.6530030 10.3390/app10249036 10.1007/978-0-387-72133-0 10.1016/j.isatra.2020.06.025 10.1007/s00170-020-05651-w 10.1177/1077546320918488 10.1016/S0890-6955(01)00003-7 10.1006/jsvi.1994.1360 10.1007/s00170-020-05041-2 10.1007/s00170-020-05858-x 10.1007/1-84628-158-X 10.1109/TIE.2021.3050356 10.1109/ISIE45063.2020.9152478 10.1007/s11740-016-0704-5 10.1007/s00707-019-2363-z 10.1109/ACCESS.2020.2977395 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PQEST PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-021-07160-w |
DatabaseName | SpringerOpen CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Engineering Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 1293 |
ExternalDocumentID | 10_1007_s00170_021_07160_w |
GrantInformation_xml | – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy grantid: CZ.02.1.01/0.0/0.0/16_026/0008404 funderid: http://dx.doi.org/10.13039/501100001823 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ABYXP ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c363t-5864de68350dd9e32d1ae78d4b82c28e9ecb16f6cba401db474dbad3f0e49c6e3 |
IEDL.DBID | AEJHL |
ISSN | 0268-3768 |
IngestDate | Tue Nov 19 05:27:38 EST 2024 Fri Nov 22 00:18:44 EST 2024 Sat Dec 16 12:09:16 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Speed controller Speed controller parameters Machine tool Speed control loop Drive axis Cascade control Identification Optimization of cascade control Control quality criterions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-5864de68350dd9e32d1ae78d4b82c28e9ecb16f6cba401db474dbad3f0e49c6e3 |
ORCID | 0000-0002-5492-7704 |
OpenAccessLink | http://link.springer.com/10.1007/s00170-021-07160-w |
PQID | 2548296322 |
PQPubID | 2044010 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2548296322 crossref_primary_10_1007_s00170_021_07160_w springer_journals_10_1007_s00170_021_07160_w |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Khosravi M, Behrunani V, Myszkor P, Smith RS, Rupenyan A, Lygeros J (2021) Performance-driven cascade controller tuning with Bayesian optimization. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2021.3050356 Gawronski WK (2004) Advanced structural dynamics and active control of structures, New York: Springer-Verlag New York. https://doi.org/10.1007/978-0-387-72133-0 Bubák A (2004) Increasing the dynamics and accuracy of machine tool feed axes. Dissertation, Czech Technical University in Prague (in Czech) Lee C-Y, Hwang S-H, Nam E, Min B-K (2020) Identification of mass and sliding friction parameters of machine tool feed drive using recursive least squares method. Int J Adv Manuf Technol 109(9):2831–2844. https://doi.org/10.1007/s00170-020-05858-x Farrage A, Uchiyama N (2020) Improvement of motion accuracy and energy consumption for industrial feed drive systems using adaptive sliding mode control. ISA Trans 106:382–391. https://doi.org/10.1016/j.isatra.2020.06.025 Wong WW-S, Erkorkmaz K (2010) Constrained identification of virtual CNC drives using a genetic algorithm. Int J Adv Manuf Technol 50(1):275–288. https://doi.org/10.1007/s00170-009-2496-7 Olgac N, Holm-Hansen BT (1994) A novel active vibration absorption technique: delayed resonator. J Sound Vib 176(1):93–104. https://doi.org/10.1006/jsvi.1994.1360 Kim H, Okwudire CE (2020) Simultaneous servo error pre-compensation and feedrate optimization with tolerance constraints using linear programming. Int J Adv Manuf Technol 109(3):809–821. https://doi.org/10.1007/s00170-020-05651-w Turhan MH, Tseng GWG, Erkorkmaz K, Fidan B (2020) Dynamic model identification for CNC machine tool feed drives from in-process signals for virtual process planning. Mechatronics 72:102445. https://doi.org/10.1016/j.mechatronics.2020.102445 Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part III: high speed tracking and contouring control of feed drives. Int J Mach Tools Manuf 41(11):1637–1658. https://doi.org/10.1016/S0890-6955(01)00004-9 Sencer B, Ishizaki K (2015) Smooth polynomial interpolation for point-to-point trajectories with vibration avoidance. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society 002070-002075. https://doi.org/10.1109/IECON.2015.7392406 Msukwa MR, Nshama EW, Uchiyama N (2020) Contouring control based on reference adjustment and uncertainty compensator for precision motion of industrial feed drive systems. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE) 89-94. https://doi.org/10.1109/ISIE45063.2020.9152478 Kehne S, Fey M, Brecher C, Herfs W (2020) Control of the static and dynamic stiffness of feed drive axes by using an external force sensor. 2020 International Conference on Electrical Machines (ICEM) 1081-1085. https://doi.org/10.1109/ICEM49940.2020.9271036 Neugebauer R, Hofmann S, Hellmich A, Schlegel H (2011) Time-based method for the combined identification of velocity-loop parameters. Archive of Mechanical Engineering 58(2):175–184 Margolis BWL, Farouki RT (2020) Inverse dynamics toolpath compensation for CNC machines based on model predictive control. Int J Adv Manuf Technol 109(7):2155–2172. https://doi.org/10.1007/s00170-020-05719-7 Katayma T (2005) Subspace methods for system identification, London: Springer- Verlag. https://doi.org/10.1007/1-84628-158-X Chen C, Cheng C (2005) Integrated design for a mechatronic feed drive system of machine tools. Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 588-593. https://doi.org/10.1109/AIM.2005.1511046 Moravec J, Šika Z (2019) Tuning of position control loop of machine tools based on experimentally identified mechanical model. Computational mechanics 2019: Proceedings of computational Mechanics 2019: 35th conference with international participation 127-128 Halamka V (2019) Optimization of control of machine drive axis. Masters thesis, Czech Technical University in Prague (in Czech) Msukwa MR, Nshama EW, Uchiyama N (2020) Adaptive sliding mode control with feedforward compensator for energy-efficient and high-speed precision motion of feed drive systems. IEEE Access 8:43571–43581. https://doi.org/10.1109/ACCESS.2020.2977395 Erkorkmaz K, Altintas Y (2001) High speed CNC system design. Part II: modeling and identification of feed drives. Int J Mach Tools Manuf 41(10):1487–1509. https://doi.org/10.1016/S0890-6955(01)00003-7 Yang H, Wang Z, Zhang T, Du F (2020) A review on vibration analysis and control of machine tool feed drive systems. Int J Adv Manuf Technol 107:503–525. https://doi.org/10.1007/s00170-020-05041-2 Elbeheiry EM, Elmaraghy WH, Elmaraghy HA (2005) A structured linear quadratic gaussian based control design algorithm for machine tool controllers including both feed drive and process dynamics. J Vib Control 11(7):949–983. https://doi.org/10.1177/1077546305055542 Sekler P, Voß M, Verl A (2012) Model-based calculation of the system behavior of machine structures on the control device for vibration avoidance. Int J Adv Manuf Technol 58(9):1087–1095. https://doi.org/10.1007/s00170-011-3450-z Beneš P, Valášek M, Šika Z, Zavřel J, Pelikán J (2019) SHAVO control: the combination of the adjusted command shaping and feedback control for vibration suppression. Acta Mech 230(5):1891–1905. https://doi.org/10.1007/s00707-019-2363-z KhaderNModal parameters of a rotating multiple-disk-shaft system from simulated frequency response dataApplied and Computational Mechanics201481187198 Rebelein C, Vlacil J, Zaeh MF (2017) Modeling of the dynamic behavior of machine tools: influences of damping, friction, control and motion. Prod Eng 11(1):61–74. https://doi.org/10.1007/s11740-016-0704-5 Šika Z, Vyhlídal T, Neusser Z (2021) Two-dimensional delayed resonator for entire vibration absorption. J Sound Vib 500:116010. https://doi.org/10.1016/j.jsv.2021.116010 Moravec J (2014) Minimization of errors and irregular motion of machine tool feed drive axes. Dissertation, Czech Technical University in Prague (in Czech) Souček P (2004) Servomechanisms in production machines, Prague: ČVUT (in Czech) Houck C, Joines J, Kay A (1994) A genetic algorithm for function optimization: a MATLAB implementation, North California State University Chen S-Y, Chien Z-J, Wang W-Y, Chiang H-H (2020) Contour tracking control of a linear motors-driven X-Y-Y stage using auto-tuning cross-coupled 2DOF PID control approach. Appl Sci 10(24):9036. https://doi.org/10.3390/app10249036 Jamaludin IW, Wahab NA, Khalib NS, Sahlan S, Ibrahim Z, Rahmat MF (2013) N4SID and MOESP subspace identification methods. 2013 IEEE 9th International Colloquium on Signal Processing and its Applications 140-145. https://doi.org/10.1109/CSPA.2013.6530030 Poshtan J, Mojallali H (2020) Subspace system identification. Iranian Journal of Electrical and Electronic Engineering 1(1):11-17 Kraus K, Šika Z, Beneš P, Krivošej J, Vyhlídal T (2020) Mechatronic robot arm with active vibration absorbers. J Vib Control 26(13-14):1145–1156. https://doi.org/10.1177/1077546320918488 7160_CR17 7160_CR18 7160_CR19 N Khader (7160_CR20) 2014; 8 7160_CR2 7160_CR3 7160_CR4 7160_CR5 7160_CR6 7160_CR7 7160_CR8 7160_CR9 7160_CR21 7160_CR22 7160_CR23 7160_CR24 7160_CR25 7160_CR26 7160_CR1 7160_CR27 7160_CR28 7160_CR29 7160_CR30 7160_CR31 7160_CR10 7160_CR32 7160_CR11 7160_CR33 7160_CR12 7160_CR34 7160_CR13 7160_CR35 7160_CR14 7160_CR15 7160_CR16 |
References_xml | – ident: 7160_CR5 doi: 10.1109/IECON.2015.7392406 – ident: 7160_CR3 doi: 10.1109/AIM.2005.1511046 – ident: 7160_CR2 doi: 10.1016/S0890-6955(01)00004-9 – ident: 7160_CR9 doi: 10.1109/ICEM49940.2020.9271036 – volume: 8 start-page: 187 issue: 1 year: 2014 ident: 7160_CR20 publication-title: Applied and Computational Mechanics contributor: fullname: N Khader – ident: 7160_CR16 doi: 10.1007/s00170-009-2496-7 – ident: 7160_CR25 doi: 10.1016/j.jsv.2021.116010 – ident: 7160_CR12 doi: 10.1007/s00170-020-05719-7 – ident: 7160_CR17 doi: 10.2478/v10180-011-0012-8 – ident: 7160_CR32 – ident: 7160_CR30 – ident: 7160_CR4 doi: 10.1177/1077546305055542 – ident: 7160_CR18 doi: 10.1007/s00170-011-3450-z – ident: 7160_CR34 – ident: 7160_CR22 doi: 10.1016/j.mechatronics.2020.102445 – ident: 7160_CR26 doi: 10.1109/CSPA.2013.6530030 – ident: 7160_CR7 doi: 10.3390/app10249036 – ident: 7160_CR28 doi: 10.1007/978-0-387-72133-0 – ident: 7160_CR8 doi: 10.1016/j.isatra.2020.06.025 – ident: 7160_CR13 doi: 10.1007/s00170-020-05651-w – ident: 7160_CR24 doi: 10.1177/1077546320918488 – ident: 7160_CR31 – ident: 7160_CR15 doi: 10.1016/S0890-6955(01)00003-7 – ident: 7160_CR33 – ident: 7160_CR23 doi: 10.1006/jsvi.1994.1360 – ident: 7160_CR27 – ident: 7160_CR35 – ident: 7160_CR1 doi: 10.1007/s00170-020-05041-2 – ident: 7160_CR21 doi: 10.1007/s00170-020-05858-x – ident: 7160_CR29 doi: 10.1007/1-84628-158-X – ident: 7160_CR14 doi: 10.1109/TIE.2021.3050356 – ident: 7160_CR10 doi: 10.1109/ISIE45063.2020.9152478 – ident: 7160_CR19 doi: 10.1007/s11740-016-0704-5 – ident: 7160_CR6 doi: 10.1007/s00707-019-2363-z – ident: 7160_CR11 doi: 10.1109/ACCESS.2020.2977395 |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.3813286 |
Snippet | The paper deals with the creation and implementation of a methodology for optimizing the parameters of cascade control of the machine tool axis drives. The... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1277 |
SubjectTerms | CAE) and Design Cascade control Computer-Aided Engineering (CAD Control theory Controllers Dynamic models Engineering Industrial and Production Engineering Machine tools Mechanical Engineering Media Management Optimization Original Article Parameter identification Speed control State space models Tuning |
Title | Drive axis controller optimization of production machines based on dynamic models |
URI | https://link.springer.com/article/10.1007/s00170-021-07160-w https://www.proquest.com/docview/2548296322 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA46XvTgLo4bOXjTSpqkaXocdMYFEUQFbyVNUhCdjkwdxp_vS7qMih70VLrQ0ve-vCVvQ-iQcp3oMMphpcXgoACmArBaSaBiorjMmGbaD7G9i28e5Vnftclh7dZF8XzSRCS9oG5r3Xynl8BlFIBWFCSYzqMF0D0RgHuh17-6uG5gFCaxG4XZwowmbv78DMaMR6wKbtXBBhH6ijnwRqRbb7Kurfn5q1_118wo_RZH9eppsPKvH1tFy7U1insVfNbQnC3W0dKnHoUb6PZsDAIRq_enEtd57S92jEcgaoZ1DSce5fi16hzrzoY-P9OW2GlIg-GKqcbeYz92p9xED4P-_elFUM9hCDQT7C2IpODGCrDViDGJZdSEysbS8ExSTaVNrM5CkQudKfDWTMZjbjJlWE4sT7SwbAt1ilFhtxGmRBuSWGCSUdylgRItFBNRqEhkKcm76KihbvpatdtI28bKnlApECr1hEqnXbTXMCCtl16ZgscrKYgVSrvouKH47Pbvb9v52-O7aJFWTAtIuIc6b-OJ3UfzpZkc1IB0x8v788EHxzPXIg |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HNSDuziuOXjTQpqkaXIUZ0bFcUAcwVtJkxQEZ2E6g_5807SdUdGDHtuGlr73vY23AZwRpqUOo8xJWuwCFIepwHmtOFAxVkykVFPtl9g-xt1n0WwVY3JY3Qvjq93rlKTX1LNmNz_qJShKCpxZ5Dh4W4RlJjlzWF6-vO1dt2schTIudmHOcEZksYB-jmPKIlpmt6psAw99y5wLR0QhcKJqrvn5q18N2Nwr_ZZI9fapvfG_P9uE9cofRZclgLZgwQ62Ye3TlMIdeGiOnUpE6v0lR1Vl-6sdo6FTNv2qixMNMzQqZ8cWV31foWlzVNhIg9wdUy6-R37xTr4LT-1W7-omqDYxBJpyOgkiwZmx3Hlr2BhpKTGhsrEwLBVEE2Gl1WnIM65T5eI1k7KYmVQZmmHLpOaW7sHSYDiw-4AI1gZL67hkFCsKQbHmivIoVDiyBGcNOK_Jm4zKgRvJbLSyJ1TiCJV4QiVvDTiqOZBUwpcnLuYVxCkWQhpwUVN8_vj3tx387fgprNz07jtJ57Z7dwirpGRggMMjWJqMp_YYFnMzPanQ-QH519mE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkFA5tECLWErBB240wrEdxzmi7q54CYFapN4ix3YkJDa72iwC_j1jJ9ktFT1UHJNYiTLz2TOjmfkG4JAJk5k4KXGnpRigIKYi9FpppFOqhSq44SYMsf2ZXv1W_YGnyZl38Ydq9y4l2fQ0eJamanY8seXxvPEt0L5EvrwATaSk0eMyrAqMZBDpqyeD89PLDlNxlvq5mHPMscwPo19gmouEN5muNvMg49A-h6GJ8ptPtY02b3_1tTFbeKh_JVWDrRp-ev9fbsDH1k8lJw2wNmHJVVuw_gd74We46U_xqCT66a4mbcX7vZuSMR5Co7a7k4xLMmk4Zf3VKFRuupp422kJ3rHPlR7dGRIG8tRf4HY4-PXjNGonNESGSz6LEiWFdRK9OGpt5jizsXapsqJQzDDlMmeKWJbSFBrjOFuIVNhCW15SJzIjHd-GlWpcuR0gjBpLM4cas1r4AlFqpOYyiTVNHKNlD446UeeThogjn1MuB0HlKKg8CCp_7MFep4283ZR1jrGwYnjgMNaD7530F4___bbd_1t-AGvX_WF-eXZ18RU-sEZ_EY33YGU2fXDfYLm2D_stUF8AdpniRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drive+axis+controller+optimization+of+production+machines+based+on+dynamic+models&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Halamka%2C+Vojt%C4%9Bch&rft.au=Moravec%2C+Jan&rft.au=Bene%C5%A1%2C+Petr&rft.au=Neusser%2C+Zden%C4%9Bk&rft.date=2021-07-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=115&rft.issue=4&rft.spage=1277&rft.epage=1293&rft_id=info:doi/10.1007%2Fs00170-021-07160-w&rft.externalDocID=10_1007_s00170_021_07160_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |