Enhancement of the wettability of graphite-based lithium-ion battery anodes by selective laser surface modification using low energy nanosecond pulses

The electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since only completely wetted electrode sections are working. In order to accelerate and facilitate this process, the authors of this study developed...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 118; no. 5-6; pp. 1987 - 1997
Main Authors: Kleefoot, Max-Jonathan, Enderle, Sebastian, Sandherr, Jens, Bolsinger, Marius, Maischik, Thomas, Simon, Nadine, Martan, Jiří, Ruck, Simon, Knoblauch, Volker, Riegel, Harald
Format: Journal Article
Language:English
Published: London Springer London 2022
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since only completely wetted electrode sections are working. In order to accelerate and facilitate this process, the authors of this study developed a method to significantly increase the wettability of graphite-based anodes by a laser surface modification using low energy nanosecond laser pulses. The anode surface microstructure was evaluated by means of white-light interferometry and scanning electron microscopy. The assessment of wettability was done by drop test and capillary rise test of the liquid electrolyte. The results show that there is a predominantly selective ablation process for laser energy inputs below 2 J/m by which the graphite active material remains unaffected and the binder material is decomposed. The observed increase in surface roughness correlates with the increasing wettability. Investigations using Raman spectroscopy showed that laser treatment leads to a damage on the crystalline structure of the graphite particle surface. However, treating an entire anode including 6 wt% binder and conductive carbon black has shown that the overall amorphous content of the anodes surface can be reduced by 32% through treating the surface with a laser energy of 1.29 J/m. Up to that point, which is the resulting parameter range for the selective process, it is possible to ablate the amorphous binder and carbon black phase coevally exposing graphite particles while keeping their crystalline structure. Exceeding that range, ablation of the whole anode composite dominates and amorphization of the graphite surface occurs. The electrode’s capacity was tested on half-cells in coin cell format. For the whole laser parameter range investigated, the anodes capacity matches the mass loss caused by laser ablation. No additional capacity loss was observed due to amorphization of the exterior graphite particle’s surface.
AbstractList The electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since only completely wetted electrode sections are working. In order to accelerate and facilitate this process, the authors of this study developed a method to significantly increase the wettability of graphite-based anodes by a laser surface modification using low energy nanosecond laser pulses. The anode surface microstructure was evaluated by means of white-light interferometry and scanning electron microscopy. The assessment of wettability was done by drop test and capillary rise test of the liquid electrolyte. The results show that there is a predominantly selective ablation process for laser energy inputs below 2 J/m by which the graphite active material remains unaffected and the binder material is decomposed. The observed increase in surface roughness correlates with the increasing wettability. Investigations using Raman spectroscopy showed that laser treatment leads to a damage on the crystalline structure of the graphite particle surface. However, treating an entire anode including 6 wt% binder and conductive carbon black has shown that the overall amorphous content of the anodes surface can be reduced by 32% through treating the surface with a laser energy of 1.29 J/m. Up to that point, which is the resulting parameter range for the selective process, it is possible to ablate the amorphous binder and carbon black phase coevally exposing graphite particles while keeping their crystalline structure. Exceeding that range, ablation of the whole anode composite dominates and amorphization of the graphite surface occurs. The electrode’s capacity was tested on half-cells in coin cell format. For the whole laser parameter range investigated, the anodes capacity matches the mass loss caused by laser ablation. No additional capacity loss was observed due to amorphization of the exterior graphite particle’s surface.
Author Ruck, Simon
Martan, Jiří
Sandherr, Jens
Kleefoot, Max-Jonathan
Maischik, Thomas
Bolsinger, Marius
Simon, Nadine
Riegel, Harald
Enderle, Sebastian
Knoblauch, Volker
Author_xml – sequence: 1
  givenname: Max-Jonathan
  surname: Kleefoot
  fullname: Kleefoot, Max-Jonathan
  email: Max-Jonathan.Kleefoot@hs-aalen.de
  organization: Laser Application Center, Aalen University, New Technologies Research Centre (NTC), University of West Bohemia
– sequence: 2
  givenname: Sebastian
  surname: Enderle
  fullname: Enderle, Sebastian
  organization: Laser Application Center, Aalen University
– sequence: 3
  givenname: Jens
  surname: Sandherr
  fullname: Sandherr, Jens
  organization: Materials Research Institute Aalen, Aalen University
– sequence: 4
  givenname: Marius
  surname: Bolsinger
  fullname: Bolsinger, Marius
  organization: Materials Research Institute Aalen, Aalen University
– sequence: 5
  givenname: Thomas
  surname: Maischik
  fullname: Maischik, Thomas
  organization: Volkswagen AG, Group Innovation
– sequence: 6
  givenname: Nadine
  surname: Simon
  fullname: Simon, Nadine
  organization: Volkswagen AG, Group Innovation
– sequence: 7
  givenname: Jiří
  surname: Martan
  fullname: Martan, Jiří
  organization: New Technologies Research Centre (NTC), University of West Bohemia
– sequence: 8
  givenname: Simon
  surname: Ruck
  fullname: Ruck, Simon
  organization: Laser Application Center, Aalen University
– sequence: 9
  givenname: Volker
  surname: Knoblauch
  fullname: Knoblauch, Volker
  organization: Materials Research Institute Aalen, Aalen University
– sequence: 10
  givenname: Harald
  surname: Riegel
  fullname: Riegel, Harald
  organization: Laser Application Center, Aalen University
BookMark eNp9kM1OxCAUhYnRxHH0BVyRuEahtJQujfEvMXGja0LhdgbTgRGopi_i88o4Ju5ccXPynUPynaBDHzwgdM7oJaO0vUqUspYSWjFCJaU14QdowWrOCaesOUQLWglJeCvkMTpJ6a3gggm5QF-3fq29gQ34jMOA8xrwJ-Sseze6PO-iVdTbtctAep3A4hKv3bQhLnjc65whzlj7YCHhfsYJRjDZfQAeCx1xmuKgDeBNsG5wRuddbUrOr_AYPjF4iKsZ-zKQwARv8XYaE6RTdDTocpz9vkv0enf7cvNAnp7vH2-un4jhgmfSVAas6JtOaytbZlnVSasHo8E0MDRtCequHqQxIMCwrqts1QjKW0uF7IDzJbrY725jeJ8gZfUWpujLl6oqgmpJa9kUqtpTJoaUIgxqG91Gx1kxqnb-1d6_Kv7Vj3-1m-b7UiqwX0H8m_6n9Q2pmY5k
CitedBy_id crossref_primary_10_1016_j_carbon_2022_09_031
crossref_primary_10_2139_ssrn_4191317
crossref_primary_10_1002_celc_202300349
crossref_primary_10_1016_j_carbon_2023_01_009
crossref_primary_10_3390_batteries9030164
crossref_primary_10_1016_j_procir_2022_08_133
crossref_primary_10_3390_en16155640
crossref_primary_10_1002_batt_202200090
crossref_primary_10_1002_ente_202301502
Cites_doi 10.1117/12.2510073
10.1016/j.jpowsour.2014.11.019
10.1007/978-3-642-30653-2
10.1016/j.procir.2015.12.044
10.2351/7.0000200
10.1021/cr800344k
10.1117/12.873700
10.1149/1945-7111/ab9bfd
10.1016/j.jpowsour.2015.03.133
10.1007/s00170-019-03347-4
10.1088/2631-7990/abca84
10.1039/C4TA02353F
10.1016/j.electacta.2019.135163
10.3389/fenrg.2014.00056
10.1016/j.electacta.2010.05.072
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-021-08004-3
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList CrossRef
Engineering Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1997
ExternalDocumentID 10_1007_s00170_021_08004_3
GrantInformation_xml – fundername: Bundesministerium für Wirtschaft und Technologie
  grantid: 03ETE018F
  funderid: http://dx.doi.org/10.13039/501100002765
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABYXP
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-52ced6b59aad871d1298dafcaec5ef57d12494f8cce6ec1992d256037d0689e33
IEDL.DBID AEJHL
ISSN 0268-3768
IngestDate Thu Oct 10 18:20:28 EDT 2024
Fri Nov 22 00:18:47 EST 2024
Sat Dec 16 12:08:57 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Short pulsed laser
Lithium-ion battery
Selective laser ablation
Wettability
Anode
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-52ced6b59aad871d1298dafcaec5ef57d12494f8cce6ec1992d256037d0689e33
OpenAccessLink http://link.springer.com/10.1007/s00170-021-08004-3
PQID 2616480485
PQPubID 2044010
PageCount 11
ParticipantIDs proquest_journals_2616480485
crossref_primary_10_1007_s00170_021_08004_3
springer_journals_10_1007_s00170_021_08004_3
PublicationCentury 2000
PublicationDate 1-2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 1-2022
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References KnocheTSurekFReinhartGA process model for the electrolyte filling of lithium-ion batteriesProc CIRP20164140541010.1016/j.procir.2015.12.044
BolsingerMWellerMRuckSKayaPRiegelHKnoblauchVSelective surface treatment by means of IR-laser — a new approach to enhance the rate capability of cathodes for Li-ion batteriesElectrochim Acta202033013516310.1016/j.electacta.2019.135163
PflegingWPröllJA new approach for rapid electrolyte wetting in tape cast electrodes for lithium-ion batteriesJ Mater Chem A2014236149181492610.1039/C4TA02353F
EnderleSBolsingerMRuckSKnoblauchVRiegelHThermophysical modeling of selective laser ablation processing of lithium-ion battery cathodesJ Laser Appl20203244200810.2351/7.0000200
Pröll J, Kohler R, Adelhelm C, Bruns M, Torge M, Heißler S et al (2011) Laser modification and characterization of Li-Mn-O thin film cathodes for lithium-ion batteries. In: Laser-based Micro- and Nanopackaging and Assembly V: SPIE, 79210Q
PflegingWRecent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturingInt J Extrem Manuf2021311200210.1088/2631-7990/abca84
Ruck S, Enderle S, Bolsinger M, Weller M, Knoblauch V, Riegel H (2019) Enhancing the rate capability of highly densified Li-Ion battery cathodes by selective laser ablation. In: Klotzbach U, Kling R, Watanabe A, editors. Laser-based Micro- and Nanoprocessing XIII: SPIE; 2019 - 2019, p 47
SauterCZahnRWoodVUnderstanding electrolyte infilling of lithium ion batteriesJ Electrochem Soc20201671010054610.1149/1945-7111/ab9bfd
VermaPMairePNovákPA review of the features and analyses of the solid electrolyte interphase in Li-ion batteriesElectrochim Acta201055226332634110.1016/j.electacta.2010.05.072
Korthauer R (2013) Handbuch lithium-ionen-batterien. Springer Vieweg, Berlin Heidelberg
Baddour-HadjeanRPereira-RamosJ-PRaman microspectrometry applied to the study of electrode materials for lithium batteriesChem Rev201011031278131910.1021/cr800344k
FerrariSLoveridgeMBeattieSDJahnMDashwoodRJBhagatRLatest advances in the manufacturing of 3D rechargeable lithium microbatteriesJ Power Sourc2015286254610.1016/j.jpowsour.2015.03.133
WoodDLLiJDanielCProspects for reducing the processing cost of lithium ion batteriesJ Power Sourc201527523424210.1016/j.jpowsour.2014.11.019
ShengYFellCRSonYKMetzBMJiangJChurchBCEffect of calendering on electrode wettability in lithium-ion batteriesFront Energy Res201428310.3389/fenrg.2014.00056
HabedankJBGünterFJBillotNGillesRNeuwirthTReinhartGZaehMFRapid electrolyte wetting of lithium-ion batteries containing laser structured electrodes: in situ visualization by neutron radiographyInt J Adv Manuf Technol20191029-122769277810.1007/s00170-019-03347-4
8004_CR11
P Verma (8004_CR15) 2010; 55
8004_CR1
Y Sheng (8004_CR6) 2014; 2
W Pfleging (8004_CR8) 2014; 2
M Bolsinger (8004_CR12) 2020; 330
DL Wood (8004_CR3) 2015; 275
C Sauter (8004_CR5) 2020; 167
S Enderle (8004_CR13) 2020; 32
T Knoche (8004_CR2) 2016; 41
S Ferrari (8004_CR10) 2015; 286
JB Habedank (8004_CR4) 2019; 102
W Pfleging (8004_CR9) 2021; 3
R Baddour-Hadjean (8004_CR14) 2010; 110
8004_CR7
References_xml – ident: 8004_CR11
  doi: 10.1117/12.2510073
– volume: 275
  start-page: 234
  year: 2015
  ident: 8004_CR3
  publication-title: J Power Sourc
  doi: 10.1016/j.jpowsour.2014.11.019
  contributor:
    fullname: DL Wood
– ident: 8004_CR1
  doi: 10.1007/978-3-642-30653-2
– volume: 41
  start-page: 405
  year: 2016
  ident: 8004_CR2
  publication-title: Proc CIRP
  doi: 10.1016/j.procir.2015.12.044
  contributor:
    fullname: T Knoche
– volume: 32
  start-page: 42008
  issue: 4
  year: 2020
  ident: 8004_CR13
  publication-title: J Laser Appl
  doi: 10.2351/7.0000200
  contributor:
    fullname: S Enderle
– volume: 110
  start-page: 1278
  issue: 3
  year: 2010
  ident: 8004_CR14
  publication-title: Chem Rev
  doi: 10.1021/cr800344k
  contributor:
    fullname: R Baddour-Hadjean
– ident: 8004_CR7
  doi: 10.1117/12.873700
– volume: 167
  start-page: 100546
  issue: 10
  year: 2020
  ident: 8004_CR5
  publication-title: J Electrochem Soc
  doi: 10.1149/1945-7111/ab9bfd
  contributor:
    fullname: C Sauter
– volume: 286
  start-page: 25
  year: 2015
  ident: 8004_CR10
  publication-title: J Power Sourc
  doi: 10.1016/j.jpowsour.2015.03.133
  contributor:
    fullname: S Ferrari
– volume: 102
  start-page: 2769
  issue: 9-12
  year: 2019
  ident: 8004_CR4
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-03347-4
  contributor:
    fullname: JB Habedank
– volume: 3
  start-page: 12002
  issue: 1
  year: 2021
  ident: 8004_CR9
  publication-title: Int J Extrem Manuf
  doi: 10.1088/2631-7990/abca84
  contributor:
    fullname: W Pfleging
– volume: 2
  start-page: 14918
  issue: 36
  year: 2014
  ident: 8004_CR8
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA02353F
  contributor:
    fullname: W Pfleging
– volume: 330
  start-page: 135163
  year: 2020
  ident: 8004_CR12
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.135163
  contributor:
    fullname: M Bolsinger
– volume: 2
  start-page: 83
  year: 2014
  ident: 8004_CR6
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2014.00056
  contributor:
    fullname: Y Sheng
– volume: 55
  start-page: 6332
  issue: 22
  year: 2010
  ident: 8004_CR15
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2010.05.072
  contributor:
    fullname: P Verma
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.445584
Snippet The electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1987
SubjectTerms Ablation
Amorphization
Anodes
Application
Binders (materials)
CAE) and Design
Carbon
Carbon black
Computer-Aided Engineering (CAD
Crystal structure
Crystallinity
Drop tests
Electrolytes
Electrolytic cells
Engineering
Graphite
Impact tests
Industrial and Production Engineering
Laser ablation
Lasers
Lithium-ion batteries
Mechanical Engineering
Media Management
Nanosecond pulses
Parameters
Raman spectroscopy
Rechargeable batteries
Surface roughness
Wettability
Wetted electrodes
Wetting
White light interferometry
Title Enhancement of the wettability of graphite-based lithium-ion battery anodes by selective laser surface modification using low energy nanosecond pulses
URI https://link.springer.com/article/10.1007/s00170-021-08004-3
https://www.proquest.com/docview/2616480485
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4EDlJdYKNUcuIHRJrYT51jBbheEuFAkbpFjTygqTarNRtX-EX4vM95kFxAcyimSEyWK57PnG89LiBcBE2Vyl8l8OkWpjTfSWQ6x0tYnwemgPOcOLz7lH7_YtzMuk6O2RxfNxevRIxk36m2uW6z0IjmigEmOlmpPHJDuMQTug5PZ-8WHEUZJkXMrzC3M0oL7z-9grLRRG-fW4GzIkpgxR9aI5fVmh9yav3_1d_21I6V_-FGjeprf-68fOxR3BzYKJxv43Be3sHkg7vxSo_Ch-DFrzhkZfIoIbQ1EGOEaV6tNfe81D8Wi10RdJavEADR8_q2_lCRxqGL5zjW4pg3YQbWGLjbeoT0WiLfjErp-WTuPcNkGjlqKQAGOxv8K39trwJibCA29oGPbPcBVT9q8eyQ-z2dnbxZyaOYgvcrUigxejyGrTOFcICMtEM-wwdXeoTdYmzxwF2xdW-8xQ89BsYHZmMrDNLMFKvVY7Ddtg08EYO5I32LiKq-0S1SVJhp9qnzQdZHWdiJejiIqrzY1O8ptdeY42yXNdhlnu1QTcTRKsRzWb1eSXZlpS7ubmYhXo9h2t__9tqc3e_yZuJ1yPkU80zkS-6tlj8_FXhf64wHVfH13djr_CUAb8Io
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVoewAOfFcstDAHbmBpEzuJc6xgt1tRemGRuEWOPaGV2qTabFTtH-nv7Yw32QUEB7g6kaN4xp43npk3QrzzGKkks6nMxmOUOnGJtIZTrLRxkbfaK8e1w7Ov2dl382nCNDl6qIUJ2e5DSDKc1Jtit0D1IjmlgFGOlmpH7Ok81aTLe0cn8-PpoEdRnnEvzI2exTk3oN_qsdKJWke3-mhDGoWSOXJHDG840xfX_PmrvxqwLSr9LZAa7NP08f_92RPxqMejcLRWoKfiHtbPxMOfWAqfi9tJfc66wfeI0FRAkBFucLlcM3yveCjQXhN4lWwUPdDw-UV3JUnmUAYCzxXYuvHYQrmCNrTeoVMWCLnjAtpuUVmHcNV4zlsKqgKcj_8DLpsbwFCdCDVN0LL37uG6I3vevhDfppP5x5ns2zlIp1K1JJfXoU_LJLfWk5vmCWkYbytn0SVYJZnnPti6Ms5hio7TYj3jMZX5cWpyVGpf7NZNjS8FYGbJ4mJkS6e0jVQZRxpdrJzXVR5XZiTeDzIqrtesHcWGnzmsdkGrXYTVLtRIHAxiLPod3BbkWaba0PmWjMSHQWzbx3-f7dW_vf5W3J_Nv5wWpydnn1-LBzFXV4QbngOxu1x0eCh2Wt-96VX8Dh3Z8uw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoKyF6oHyqCy3MgRtE3cRO4hwruqsFqgoJkLhFjj2hSDRZbRJV-0f4vcw4yS5F5YC4OpGj2M-eN_bMGyFeOQxlnJokSKdTDFRs48BoDrFS2obOKCct5w4vPqUXX_XZjGVyNln8Ptp9vJLscxpYpalqT5auPNkkvnnZl4DDC5jxqEDuiD1Fngwhfe909n5xPmIqzFKui7nBXJRxMfotpqWKZX_TNdw8JKFPnyPXRPPi00Oize1fvWnMtgz1j0tVb6vmB___lw_E_YGnwmkPrIfiDlaPxP5v6oWPxc9ZdcmY4fNFqEsgKgnX2La98veam7wcNpHagI2lA2q-_N5dBYQFKLyw5xpMVTtsoFhD40vy0O4LxOhxBU23Ko1FuKodxzN5CAHH6X-DH_U1oM9ahIo6aNird7DsyM43T8SX-ezz20UwlHkIrExkS66wRZcUcWaMI_fNEQPRzpTWoI2xjFPH9bFVqa3FBC2HyzrmaTJ100RnKOVTsVvVFR4KwNSQJcbQFFYqE8oiChXaSFqnyiwq9US8HucrX_ZqHvlGt9mPdk6jnfvRzuVEHI1Tmg8ru8nJ40yUpn0vnog34xRuH_-9t2f_9vpLcffj2Tw_f3fx4bm4F3HShT_4ORK77arDY7HTuO7FgPZf_ev7rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+wettability+of+graphite-based+lithium-ion+battery+anodes+by+selective+laser+surface+modification+using+low+energy+nanosecond+pulses&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Kleefoot%2C+Max-Jonathan&rft.au=Enderle%2C+Sebastian&rft.au=Sandherr%2C+Jens&rft.au=Bolsinger%2C+Marius&rft.date=2022-01-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=118&rft.issue=5-6&rft.spage=1987&rft.epage=1997&rft_id=info:doi/10.1007%2Fs00170-021-08004-3&rft.externalDocID=10_1007_s00170_021_08004_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon