Enhancement of the wettability of graphite-based lithium-ion battery anodes by selective laser surface modification using low energy nanosecond pulses
The electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since only completely wetted electrode sections are working. In order to accelerate and facilitate this process, the authors of this study developed...
Saved in:
Published in: | International journal of advanced manufacturing technology Vol. 118; no. 5-6; pp. 1987 - 1997 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Springer London
2022
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since only completely wetted electrode sections are working. In order to accelerate and facilitate this process, the authors of this study developed a method to significantly increase the wettability of graphite-based anodes by a laser surface modification using low energy nanosecond laser pulses. The anode surface microstructure was evaluated by means of white-light interferometry and scanning electron microscopy. The assessment of wettability was done by drop test and capillary rise test of the liquid electrolyte. The results show that there is a predominantly selective ablation process for laser energy inputs below 2 J/m by which the graphite active material remains unaffected and the binder material is decomposed. The observed increase in surface roughness correlates with the increasing wettability. Investigations using Raman spectroscopy showed that laser treatment leads to a damage on the crystalline structure of the graphite particle surface. However, treating an entire anode including 6 wt% binder and conductive carbon black has shown that the overall amorphous content of the anodes surface can be reduced by 32% through treating the surface with a laser energy of 1.29 J/m. Up to that point, which is the resulting parameter range for the selective process, it is possible to ablate the amorphous binder and carbon black phase coevally exposing graphite particles while keeping their crystalline structure. Exceeding that range, ablation of the whole anode composite dominates and amorphization of the graphite surface occurs. The electrode’s capacity was tested on half-cells in coin cell format. For the whole laser parameter range investigated, the anodes capacity matches the mass loss caused by laser ablation. No additional capacity loss was observed due to amorphization of the exterior graphite particle’s surface. |
---|---|
AbstractList | The electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since only completely wetted electrode sections are working. In order to accelerate and facilitate this process, the authors of this study developed a method to significantly increase the wettability of graphite-based anodes by a laser surface modification using low energy nanosecond laser pulses. The anode surface microstructure was evaluated by means of white-light interferometry and scanning electron microscopy. The assessment of wettability was done by drop test and capillary rise test of the liquid electrolyte. The results show that there is a predominantly selective ablation process for laser energy inputs below 2 J/m by which the graphite active material remains unaffected and the binder material is decomposed. The observed increase in surface roughness correlates with the increasing wettability. Investigations using Raman spectroscopy showed that laser treatment leads to a damage on the crystalline structure of the graphite particle surface. However, treating an entire anode including 6 wt% binder and conductive carbon black has shown that the overall amorphous content of the anodes surface can be reduced by 32% through treating the surface with a laser energy of 1.29 J/m. Up to that point, which is the resulting parameter range for the selective process, it is possible to ablate the amorphous binder and carbon black phase coevally exposing graphite particles while keeping their crystalline structure. Exceeding that range, ablation of the whole anode composite dominates and amorphization of the graphite surface occurs. The electrode’s capacity was tested on half-cells in coin cell format. For the whole laser parameter range investigated, the anodes capacity matches the mass loss caused by laser ablation. No additional capacity loss was observed due to amorphization of the exterior graphite particle’s surface. |
Author | Ruck, Simon Martan, Jiří Sandherr, Jens Kleefoot, Max-Jonathan Maischik, Thomas Bolsinger, Marius Simon, Nadine Riegel, Harald Enderle, Sebastian Knoblauch, Volker |
Author_xml | – sequence: 1 givenname: Max-Jonathan surname: Kleefoot fullname: Kleefoot, Max-Jonathan email: Max-Jonathan.Kleefoot@hs-aalen.de organization: Laser Application Center, Aalen University, New Technologies Research Centre (NTC), University of West Bohemia – sequence: 2 givenname: Sebastian surname: Enderle fullname: Enderle, Sebastian organization: Laser Application Center, Aalen University – sequence: 3 givenname: Jens surname: Sandherr fullname: Sandherr, Jens organization: Materials Research Institute Aalen, Aalen University – sequence: 4 givenname: Marius surname: Bolsinger fullname: Bolsinger, Marius organization: Materials Research Institute Aalen, Aalen University – sequence: 5 givenname: Thomas surname: Maischik fullname: Maischik, Thomas organization: Volkswagen AG, Group Innovation – sequence: 6 givenname: Nadine surname: Simon fullname: Simon, Nadine organization: Volkswagen AG, Group Innovation – sequence: 7 givenname: Jiří surname: Martan fullname: Martan, Jiří organization: New Technologies Research Centre (NTC), University of West Bohemia – sequence: 8 givenname: Simon surname: Ruck fullname: Ruck, Simon organization: Laser Application Center, Aalen University – sequence: 9 givenname: Volker surname: Knoblauch fullname: Knoblauch, Volker organization: Materials Research Institute Aalen, Aalen University – sequence: 10 givenname: Harald surname: Riegel fullname: Riegel, Harald organization: Laser Application Center, Aalen University |
BookMark | eNp9kM1OxCAUhYnRxHH0BVyRuEahtJQujfEvMXGja0LhdgbTgRGopi_i88o4Ju5ccXPynUPynaBDHzwgdM7oJaO0vUqUspYSWjFCJaU14QdowWrOCaesOUQLWglJeCvkMTpJ6a3gggm5QF-3fq29gQ34jMOA8xrwJ-Sseze6PO-iVdTbtctAep3A4hKv3bQhLnjc65whzlj7YCHhfsYJRjDZfQAeCx1xmuKgDeBNsG5wRuddbUrOr_AYPjF4iKsZ-zKQwARv8XYaE6RTdDTocpz9vkv0enf7cvNAnp7vH2-un4jhgmfSVAas6JtOaytbZlnVSasHo8E0MDRtCequHqQxIMCwrqts1QjKW0uF7IDzJbrY725jeJ8gZfUWpujLl6oqgmpJa9kUqtpTJoaUIgxqG91Gx1kxqnb-1d6_Kv7Vj3-1m-b7UiqwX0H8m_6n9Q2pmY5k |
CitedBy_id | crossref_primary_10_1016_j_carbon_2022_09_031 crossref_primary_10_2139_ssrn_4191317 crossref_primary_10_1002_celc_202300349 crossref_primary_10_1016_j_carbon_2023_01_009 crossref_primary_10_3390_batteries9030164 crossref_primary_10_1016_j_procir_2022_08_133 crossref_primary_10_3390_en16155640 crossref_primary_10_1002_batt_202200090 crossref_primary_10_1002_ente_202301502 |
Cites_doi | 10.1117/12.2510073 10.1016/j.jpowsour.2014.11.019 10.1007/978-3-642-30653-2 10.1016/j.procir.2015.12.044 10.2351/7.0000200 10.1021/cr800344k 10.1117/12.873700 10.1149/1945-7111/ab9bfd 10.1016/j.jpowsour.2015.03.133 10.1007/s00170-019-03347-4 10.1088/2631-7990/abca84 10.1039/C4TA02353F 10.1016/j.electacta.2019.135163 10.3389/fenrg.2014.00056 10.1016/j.electacta.2010.05.072 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PQEST PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-021-08004-3 |
DatabaseName | SpringerOpen CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection ProQuest Engineering Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | CrossRef Engineering Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 1997 |
ExternalDocumentID | 10_1007_s00170_021_08004_3 |
GrantInformation_xml | – fundername: Bundesministerium für Wirtschaft und Technologie grantid: 03ETE018F funderid: http://dx.doi.org/10.13039/501100002765 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ABYXP ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c363t-52ced6b59aad871d1298dafcaec5ef57d12494f8cce6ec1992d256037d0689e33 |
IEDL.DBID | AEJHL |
ISSN | 0268-3768 |
IngestDate | Thu Oct 10 18:20:28 EDT 2024 Fri Nov 22 00:18:47 EST 2024 Sat Dec 16 12:08:57 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Keywords | Short pulsed laser Lithium-ion battery Selective laser ablation Wettability Anode |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-52ced6b59aad871d1298dafcaec5ef57d12494f8cce6ec1992d256037d0689e33 |
OpenAccessLink | http://link.springer.com/10.1007/s00170-021-08004-3 |
PQID | 2616480485 |
PQPubID | 2044010 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2616480485 crossref_primary_10_1007_s00170_021_08004_3 springer_journals_10_1007_s00170_021_08004_3 |
PublicationCentury | 2000 |
PublicationDate | 1-2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 1-2022 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | KnocheTSurekFReinhartGA process model for the electrolyte filling of lithium-ion batteriesProc CIRP20164140541010.1016/j.procir.2015.12.044 BolsingerMWellerMRuckSKayaPRiegelHKnoblauchVSelective surface treatment by means of IR-laser — a new approach to enhance the rate capability of cathodes for Li-ion batteriesElectrochim Acta202033013516310.1016/j.electacta.2019.135163 PflegingWPröllJA new approach for rapid electrolyte wetting in tape cast electrodes for lithium-ion batteriesJ Mater Chem A2014236149181492610.1039/C4TA02353F EnderleSBolsingerMRuckSKnoblauchVRiegelHThermophysical modeling of selective laser ablation processing of lithium-ion battery cathodesJ Laser Appl20203244200810.2351/7.0000200 Pröll J, Kohler R, Adelhelm C, Bruns M, Torge M, Heißler S et al (2011) Laser modification and characterization of Li-Mn-O thin film cathodes for lithium-ion batteries. In: Laser-based Micro- and Nanopackaging and Assembly V: SPIE, 79210Q PflegingWRecent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturingInt J Extrem Manuf2021311200210.1088/2631-7990/abca84 Ruck S, Enderle S, Bolsinger M, Weller M, Knoblauch V, Riegel H (2019) Enhancing the rate capability of highly densified Li-Ion battery cathodes by selective laser ablation. In: Klotzbach U, Kling R, Watanabe A, editors. Laser-based Micro- and Nanoprocessing XIII: SPIE; 2019 - 2019, p 47 SauterCZahnRWoodVUnderstanding electrolyte infilling of lithium ion batteriesJ Electrochem Soc20201671010054610.1149/1945-7111/ab9bfd VermaPMairePNovákPA review of the features and analyses of the solid electrolyte interphase in Li-ion batteriesElectrochim Acta201055226332634110.1016/j.electacta.2010.05.072 Korthauer R (2013) Handbuch lithium-ionen-batterien. Springer Vieweg, Berlin Heidelberg Baddour-HadjeanRPereira-RamosJ-PRaman microspectrometry applied to the study of electrode materials for lithium batteriesChem Rev201011031278131910.1021/cr800344k FerrariSLoveridgeMBeattieSDJahnMDashwoodRJBhagatRLatest advances in the manufacturing of 3D rechargeable lithium microbatteriesJ Power Sourc2015286254610.1016/j.jpowsour.2015.03.133 WoodDLLiJDanielCProspects for reducing the processing cost of lithium ion batteriesJ Power Sourc201527523424210.1016/j.jpowsour.2014.11.019 ShengYFellCRSonYKMetzBMJiangJChurchBCEffect of calendering on electrode wettability in lithium-ion batteriesFront Energy Res201428310.3389/fenrg.2014.00056 HabedankJBGünterFJBillotNGillesRNeuwirthTReinhartGZaehMFRapid electrolyte wetting of lithium-ion batteries containing laser structured electrodes: in situ visualization by neutron radiographyInt J Adv Manuf Technol20191029-122769277810.1007/s00170-019-03347-4 8004_CR11 P Verma (8004_CR15) 2010; 55 8004_CR1 Y Sheng (8004_CR6) 2014; 2 W Pfleging (8004_CR8) 2014; 2 M Bolsinger (8004_CR12) 2020; 330 DL Wood (8004_CR3) 2015; 275 C Sauter (8004_CR5) 2020; 167 S Enderle (8004_CR13) 2020; 32 T Knoche (8004_CR2) 2016; 41 S Ferrari (8004_CR10) 2015; 286 JB Habedank (8004_CR4) 2019; 102 W Pfleging (8004_CR9) 2021; 3 R Baddour-Hadjean (8004_CR14) 2010; 110 8004_CR7 |
References_xml | – ident: 8004_CR11 doi: 10.1117/12.2510073 – volume: 275 start-page: 234 year: 2015 ident: 8004_CR3 publication-title: J Power Sourc doi: 10.1016/j.jpowsour.2014.11.019 contributor: fullname: DL Wood – ident: 8004_CR1 doi: 10.1007/978-3-642-30653-2 – volume: 41 start-page: 405 year: 2016 ident: 8004_CR2 publication-title: Proc CIRP doi: 10.1016/j.procir.2015.12.044 contributor: fullname: T Knoche – volume: 32 start-page: 42008 issue: 4 year: 2020 ident: 8004_CR13 publication-title: J Laser Appl doi: 10.2351/7.0000200 contributor: fullname: S Enderle – volume: 110 start-page: 1278 issue: 3 year: 2010 ident: 8004_CR14 publication-title: Chem Rev doi: 10.1021/cr800344k contributor: fullname: R Baddour-Hadjean – ident: 8004_CR7 doi: 10.1117/12.873700 – volume: 167 start-page: 100546 issue: 10 year: 2020 ident: 8004_CR5 publication-title: J Electrochem Soc doi: 10.1149/1945-7111/ab9bfd contributor: fullname: C Sauter – volume: 286 start-page: 25 year: 2015 ident: 8004_CR10 publication-title: J Power Sourc doi: 10.1016/j.jpowsour.2015.03.133 contributor: fullname: S Ferrari – volume: 102 start-page: 2769 issue: 9-12 year: 2019 ident: 8004_CR4 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03347-4 contributor: fullname: JB Habedank – volume: 3 start-page: 12002 issue: 1 year: 2021 ident: 8004_CR9 publication-title: Int J Extrem Manuf doi: 10.1088/2631-7990/abca84 contributor: fullname: W Pfleging – volume: 2 start-page: 14918 issue: 36 year: 2014 ident: 8004_CR8 publication-title: J Mater Chem A doi: 10.1039/C4TA02353F contributor: fullname: W Pfleging – volume: 330 start-page: 135163 year: 2020 ident: 8004_CR12 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.135163 contributor: fullname: M Bolsinger – volume: 2 start-page: 83 year: 2014 ident: 8004_CR6 publication-title: Front Energy Res doi: 10.3389/fenrg.2014.00056 contributor: fullname: Y Sheng – volume: 55 start-page: 6332 issue: 22 year: 2010 ident: 8004_CR15 publication-title: Electrochim Acta doi: 10.1016/j.electacta.2010.05.072 contributor: fullname: P Verma |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.445584 |
Snippet | The electrolyte filling process of battery cells is one of the time-critical bottlenecks in cell production. Wetting is of particular importance here, since... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1987 |
SubjectTerms | Ablation Amorphization Anodes Application Binders (materials) CAE) and Design Carbon Carbon black Computer-Aided Engineering (CAD Crystal structure Crystallinity Drop tests Electrolytes Electrolytic cells Engineering Graphite Impact tests Industrial and Production Engineering Laser ablation Lasers Lithium-ion batteries Mechanical Engineering Media Management Nanosecond pulses Parameters Raman spectroscopy Rechargeable batteries Surface roughness Wettability Wetted electrodes Wetting White light interferometry |
Title | Enhancement of the wettability of graphite-based lithium-ion battery anodes by selective laser surface modification using low energy nanosecond pulses |
URI | https://link.springer.com/article/10.1007/s00170-021-08004-3 https://www.proquest.com/docview/2616480485 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoe4EDlJdYKNUcuIHRJrYT51jBbheEuFAkbpFjTygqTarNRtX-EX4vM95kFxAcyimSEyWK57PnG89LiBcBE2Vyl8l8OkWpjTfSWQ6x0tYnwemgPOcOLz7lH7_YtzMuk6O2RxfNxevRIxk36m2uW6z0IjmigEmOlmpPHJDuMQTug5PZ-8WHEUZJkXMrzC3M0oL7z-9grLRRG-fW4GzIkpgxR9aI5fVmh9yav3_1d_21I6V_-FGjeprf-68fOxR3BzYKJxv43Be3sHkg7vxSo_Ch-DFrzhkZfIoIbQ1EGOEaV6tNfe81D8Wi10RdJavEADR8_q2_lCRxqGL5zjW4pg3YQbWGLjbeoT0WiLfjErp-WTuPcNkGjlqKQAGOxv8K39trwJibCA29oGPbPcBVT9q8eyQ-z2dnbxZyaOYgvcrUigxejyGrTOFcICMtEM-wwdXeoTdYmzxwF2xdW-8xQ89BsYHZmMrDNLMFKvVY7Ddtg08EYO5I32LiKq-0S1SVJhp9qnzQdZHWdiJejiIqrzY1O8ptdeY42yXNdhlnu1QTcTRKsRzWb1eSXZlpS7ubmYhXo9h2t__9tqc3e_yZuJ1yPkU80zkS-6tlj8_FXhf64wHVfH13djr_CUAb8Io |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVoewAOfFcstDAHbmBpEzuJc6xgt1tRemGRuEWOPaGV2qTabFTtH-nv7Yw32QUEB7g6kaN4xp43npk3QrzzGKkks6nMxmOUOnGJtIZTrLRxkbfaK8e1w7Ov2dl382nCNDl6qIUJ2e5DSDKc1Jtit0D1IjmlgFGOlmpH7Ok81aTLe0cn8-PpoEdRnnEvzI2exTk3oN_qsdKJWke3-mhDGoWSOXJHDG840xfX_PmrvxqwLSr9LZAa7NP08f_92RPxqMejcLRWoKfiHtbPxMOfWAqfi9tJfc66wfeI0FRAkBFucLlcM3yveCjQXhN4lWwUPdDw-UV3JUnmUAYCzxXYuvHYQrmCNrTeoVMWCLnjAtpuUVmHcNV4zlsKqgKcj_8DLpsbwFCdCDVN0LL37uG6I3vevhDfppP5x5ns2zlIp1K1JJfXoU_LJLfWk5vmCWkYbytn0SVYJZnnPti6Ms5hio7TYj3jMZX5cWpyVGpf7NZNjS8FYGbJ4mJkS6e0jVQZRxpdrJzXVR5XZiTeDzIqrtesHcWGnzmsdkGrXYTVLtRIHAxiLPod3BbkWaba0PmWjMSHQWzbx3-f7dW_vf5W3J_Nv5wWpydnn1-LBzFXV4QbngOxu1x0eCh2Wt-96VX8Dh3Z8uw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVoKyF6oHyqCy3MgRtE3cRO4hwruqsFqgoJkLhFjj2hSDRZbRJV-0f4vcw4yS5F5YC4OpGj2M-eN_bMGyFeOQxlnJokSKdTDFRs48BoDrFS2obOKCct5w4vPqUXX_XZjGVyNln8Ptp9vJLscxpYpalqT5auPNkkvnnZl4DDC5jxqEDuiD1Fngwhfe909n5xPmIqzFKui7nBXJRxMfotpqWKZX_TNdw8JKFPnyPXRPPi00Oize1fvWnMtgz1j0tVb6vmB___lw_E_YGnwmkPrIfiDlaPxP5v6oWPxc9ZdcmY4fNFqEsgKgnX2La98veam7wcNpHagI2lA2q-_N5dBYQFKLyw5xpMVTtsoFhD40vy0O4LxOhxBU23Ko1FuKodxzN5CAHH6X-DH_U1oM9ahIo6aNird7DsyM43T8SX-ezz20UwlHkIrExkS66wRZcUcWaMI_fNEQPRzpTWoI2xjFPH9bFVqa3FBC2HyzrmaTJ100RnKOVTsVvVFR4KwNSQJcbQFFYqE8oiChXaSFqnyiwq9US8HucrX_ZqHvlGt9mPdk6jnfvRzuVEHI1Tmg8ru8nJ40yUpn0vnog34xRuH_-9t2f_9vpLcffj2Tw_f3fx4bm4F3HShT_4ORK77arDY7HTuO7FgPZf_ev7rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+wettability+of+graphite-based+lithium-ion+battery+anodes+by+selective+laser+surface+modification+using+low+energy+nanosecond+pulses&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Kleefoot%2C+Max-Jonathan&rft.au=Enderle%2C+Sebastian&rft.au=Sandherr%2C+Jens&rft.au=Bolsinger%2C+Marius&rft.date=2022-01-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=118&rft.issue=5-6&rft.spage=1987&rft.epage=1997&rft_id=info:doi/10.1007%2Fs00170-021-08004-3&rft.externalDocID=10_1007_s00170_021_08004_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |