Lattice-ordered pregroups are semi-distributive

We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law which holds in lattice-ordered pregroups.

Saved in:
Bibliographic Details
Published in:Algebra universalis Vol. 82; no. 1
Main Authors: Galatos, Nick, Jipsen, Peter, Kinyon, Michael, Přenosil, Adam
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01-02-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law which holds in lattice-ordered pregroups.
AbstractList We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law which holds in lattice-ordered pregroups.
ArticleNumber 16
Author Jipsen, Peter
Přenosil, Adam
Galatos, Nick
Kinyon, Michael
Author_xml – sequence: 1
  givenname: Nick
  surname: Galatos
  fullname: Galatos, Nick
  organization: Department of Mathematics, University of Denver
– sequence: 2
  givenname: Peter
  surname: Jipsen
  fullname: Jipsen, Peter
  organization: Mathematics Chapman University
– sequence: 3
  givenname: Michael
  surname: Kinyon
  fullname: Kinyon, Michael
  organization: Department of Mathematics, University of Denver
– sequence: 4
  givenname: Adam
  surname: Přenosil
  fullname: Přenosil, Adam
  email: adam.prenosil@vanderbilt.edu
  organization: Department of Mathematics, Vanderbilt University
BookMark eNp9kM1Lw0AQxRepYFr9BzwFPK-d_UxylOIXFLzoedlmJyXFJnE2Efzv3RrBm6fhzfzeG3hLtuj6Dhm7FnArAIp1BAAhOUjgSYLi-oxlQidZVkIsWJbukhup4YItYzyc6KIyGVtv_Ti2NfKeAhKGfCDcUz8NMfeEecRjy0MbR2p309h-4iU7b_x7xKvfuWJvD_evmye-fXl83txtea2sGrmwytbG-xp3gBYba4zXIYRyB0E2oKyXhYK0DwpLUSbWmga8rMtGVBBKtWI3c-5A_ceEcXSHfqIuvXRSF5W2RSFNouRM1dTHSNi4gdqjpy8nwJ2KcXMxLhXjfopxOpnUbIoJ7vZIf9H_uL4BnMxnDg
CitedBy_id crossref_primary_10_1016_j_jalgebra_2024_02_036
Cites_doi 10.1007/3-540-48199-0_6
10.1142/S0218196721500119
10.1007/s00012-012-0199-7
10.1016/j.jalgebra.2004.07.002
10.1007/3-540-48975-4_1
10.1023/A:1011444711686
10.1007/s11225-007-9083-4
10.1007/3-540-36280-0_3
10.1007/BF01181877
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s00012-020-00703-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-8911
ExternalDocumentID 10_1007_s00012_020_00703_4
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
186
1N0
1SB
2.D
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
ZMTXR
ZWQNP
ZY4
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c363t-1636c5aaceb0e6ef655a4ddd8b0d2f036a2730ef6d3e8186c565f0a2c8f190d83
IEDL.DBID AEJHL
ISSN 0002-5240
IngestDate Tue Nov 19 03:49:08 EST 2024
Fri Nov 22 00:52:05 EST 2024
Sat Dec 16 12:09:51 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 06B99
06F05
Residuated lattices
Pregroups
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1636c5aaceb0e6ef655a4ddd8b0d2f036a2730ef6d3e8186c565f0a2c8f190d83
OpenAccessLink https://digitalcommons.chapman.edu/cgi/viewcontent.cgi?article=1701&context=scs_articles
PQID 2479467725
PQPubID 2043785
ParticipantIDs proquest_journals_2479467725
crossref_primary_10_1007_s00012_020_00703_4
springer_journals_10_1007_s00012_020_00703_4
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Algebra universalis
PublicationTitleAbbrev Algebra Univers
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Buszkowski, W.: Lambek grammars based on pregroups. In: P. de Groote, G. Morrill, C. Retoré (eds.) Logical aspects of computational linguistics, LACL 2001, Lecture Notes in Computer Science, vol. 2099, pp. 95–109. Springer (2001)
Lambek, J.: Type grammar revisited. In: A. Lecomte, F. Lamarche, G. Perrier (eds.) Logical aspects of computational linguistics, Lecture Notes in Computer Science, vol. 1582, pp. 1–27. Springer (1999)
GalatosNJipsenPPeriodic lattice-ordered pregroups are distributiveAlgebra Univ.2012681–2145150300874210.1007/s00012-012-0199-7
Freese, R., Nation, J.: A simple semidistributive lattice Int. J. Algebra Comput. https://doi.org/10.1142/S0218196721500119
LambekJType grammars as pregroupsGrammars20014213910.1023/A:1011444711686
GalatosNJipsenPKowalskiTOnoHResiduated lattices: an algebraic glimpse and substructural logics, Studies in Logic and the Foundations of Mathematics2007New YorkElsevier1171.03001
Buszkowski, W.: Pregroups: models and grammars. In: H.C.M. de Swart (ed.) Relational Methods in Computer Science, RelMiCS 2001, Lecture Notes in Computer Science, vol. 2561, pp. 35–49. Springer (2002)
LambekJSome lattice models of bilinear logicAlgebra Univ.199534541550135748310.1007/BF01181877
BuszkowskiWType logic and pregroupsStud. Logic.2007872–3145169236545710.1007/s11225-007-9083-4
GalatosNTsinakisCGeneralized MV-algebrasJ. Algebra20052831254291210208310.1016/j.jalgebra.2004.07.002
N Galatos (703_CR6) 2007
703_CR2
J Lambek (703_CR10) 2001; 4
W Buszkowski (703_CR3) 2007; 87
703_CR1
703_CR4
N Galatos (703_CR5) 2012; 68
N Galatos (703_CR7) 2005; 283
J Lambek (703_CR8) 1995; 34
703_CR9
References_xml – ident: 703_CR1
  doi: 10.1007/3-540-48199-0_6
– ident: 703_CR4
  doi: 10.1142/S0218196721500119
– volume: 68
  start-page: 145
  issue: 1–2
  year: 2012
  ident: 703_CR5
  publication-title: Algebra Univ.
  doi: 10.1007/s00012-012-0199-7
  contributor:
    fullname: N Galatos
– volume: 283
  start-page: 254
  issue: 1
  year: 2005
  ident: 703_CR7
  publication-title: J. Algebra
  doi: 10.1016/j.jalgebra.2004.07.002
  contributor:
    fullname: N Galatos
– ident: 703_CR9
  doi: 10.1007/3-540-48975-4_1
– volume: 4
  start-page: 21
  year: 2001
  ident: 703_CR10
  publication-title: Grammars
  doi: 10.1023/A:1011444711686
  contributor:
    fullname: J Lambek
– volume: 87
  start-page: 145
  issue: 2–3
  year: 2007
  ident: 703_CR3
  publication-title: Stud. Logic.
  doi: 10.1007/s11225-007-9083-4
  contributor:
    fullname: W Buszkowski
– ident: 703_CR2
  doi: 10.1007/3-540-36280-0_3
– volume-title: Residuated lattices: an algebraic glimpse and substructural logics, Studies in Logic and the Foundations of Mathematics
  year: 2007
  ident: 703_CR6
  contributor:
    fullname: N Galatos
– volume: 34
  start-page: 541
  year: 1995
  ident: 703_CR8
  publication-title: Algebra Univ.
  doi: 10.1007/BF01181877
  contributor:
    fullname: J Lambek
SSID ssj0012795
Score 2.2639854
Snippet We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
SubjectTerms Algebra
Mathematics
Mathematics and Statistics
Title Lattice-ordered pregroups are semi-distributive
URI https://link.springer.com/article/10.1007/s00012-020-00703-4
https://www.proquest.com/docview/2479467725
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5se9GDb7FaZQ_eNLpNNvs4FttSpHpRoT0t2TxAxLV0W3-_k3R3i6IHPS1kQwgfk8yXzMwXgAuf6a6kBo-pVGgSSJXhPhhnhMYykVmCFmNscfLoMXqYxP2Blclh9dVF_npdRSTdRl3Xurk7E2JPO1aihpGgAS30PRyNu9Ub3I3GdfCARgmvWC9Hj1XWyvw8yld_tCaZ3-Kizt0Md_410V3YLtml11uZwx5s6Hwftu5radbiAG7GYmET3ogT3dTKm821K-0oPDHXXqHfXoiyarruIawPfQjPw8HT7YiUryYQyUK2IEiwQsmFkDrzdahNyLkIlFJx5itq0GEJZCw-tiumrZydREpnfEFlbJAcqJgdQTN_z_UxeIEIeUZjZZiyKu1BEkTUJAyXeKR5V3bbcFlhl85W4hhpLYPsYEgRhtTBkAZt6FTwpuVCKVLqFO6R4vM2XFV4rn__PtrJ37qfwia12Sgu37oDzcV8qc-gUajleWk-9juZTvuf0qu94w
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2i7QAMvBGFAhnYwCL1I4-xgpZWtF0oEpvl-CExUKqm5fux3SQVCAZYk8iyjq59j3PvOQa4ColuS2zsMRULjahUmd0HkwzhRKYyS23EGCdO7j_F45fkvutscmiphfHd7mVJ0u_UldjN_zRB7rjjPGoIojVo0DSiNpYbncHkoVdVD3CcspL2MpuyCrHMz6N8TUhrlvmtMOrzTW_3fzPdg52CXwadVUDsw4aeHsD2qDJnzQ_hdigWruUNedtNrYLZXHtxRx6IuQ5y_faKlPPT9VdhfegjeO51J3d9VNybgCSJyAJZihVJJoTUWagjbSLGBFVKJVmosLEpS1jOEtrnimhnaCctqTOhwDIxlh6ohBxDffo-1ScQUBGxDCfKEOV82mlKY2xSYhd5rFlbtptwXYLHZyt7DF4ZIXsYuIWBexg4bUKrxJcXSyXn2HvcW5LPmnBT4rl-_ftop3_7_BI2-5PRkA8H48cz2MKuN8V3X7egvpgv9TnUcrW8KGLpE1n1wCE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sC6IH32K1ag7edGm6jzyOxbZUrUVQwVvY7AM8GEuT-vvd3SYpih7EaxKW8DGb-SYz37cAFz5RPYG1KVMxV4gKmZrvYJQiHIlYpLGJGG3FyePHcPoSDYbWJqdW8btp96oludQ0WJemrOjOpO7Wwjf3AwXZ0sf61RBEG9CippIxkd7qD2_Hk7qTgMOYVRSYmfRVCmd-XuVrcloxzm9NUpd7Rtv_f-sd2Cp5p9dfBsourKlsDzbva9PWfB-6E17YUTjk7DiV9GZz5UQfucfnysvV2yuS1mfXHZH1oQ7geTR8uh6j8jwFJEhACmSoVyAY50KlvgqUDhjjVEoZpb7E2qQybriMb65LoqzRnTBkT_sci0gb2iAjcgjN7D1TR-BRHrAUR1ITaf3baUxDrGNiNn-oWE_02nBZAZnMlrYZSW2Q7GBIDAyJgyGhbehUWCflFsoT7LzvDflnbbiqsF3d_n214789fg7rD4NRMrmZ3p3ABrYjKyZUiN-BZjFfqFNo5HJxVobVJ2uHyOY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lattice-ordered+pregroups+are+semi-distributive&rft.jtitle=Algebra+universalis&rft.au=Galatos%2C+Nick&rft.au=Jipsen%2C+Peter&rft.au=Kinyon%2C+Michael&rft.au=P%C5%99enosil%2C+Adam&rft.date=2021-02-01&rft.pub=Springer+International+Publishing&rft.issn=0002-5240&rft.eissn=1420-8911&rft.volume=82&rft.issue=1&rft_id=info:doi/10.1007%2Fs00012-020-00703-4&rft.externalDocID=10_1007_s00012_020_00703_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-5240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-5240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-5240&client=summon