Lattice-ordered pregroups are semi-distributive
We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law which holds in lattice-ordered pregroups.
Saved in:
Published in: | Algebra universalis Vol. 82; no. 1 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-02-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law which holds in lattice-ordered pregroups. |
---|---|
AbstractList | We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law which holds in lattice-ordered pregroups. |
ArticleNumber | 16 |
Author | Jipsen, Peter Přenosil, Adam Galatos, Nick Kinyon, Michael |
Author_xml | – sequence: 1 givenname: Nick surname: Galatos fullname: Galatos, Nick organization: Department of Mathematics, University of Denver – sequence: 2 givenname: Peter surname: Jipsen fullname: Jipsen, Peter organization: Mathematics Chapman University – sequence: 3 givenname: Michael surname: Kinyon fullname: Kinyon, Michael organization: Department of Mathematics, University of Denver – sequence: 4 givenname: Adam surname: Přenosil fullname: Přenosil, Adam email: adam.prenosil@vanderbilt.edu organization: Department of Mathematics, Vanderbilt University |
BookMark | eNp9kM1Lw0AQxRepYFr9BzwFPK-d_UxylOIXFLzoedlmJyXFJnE2Efzv3RrBm6fhzfzeG3hLtuj6Dhm7FnArAIp1BAAhOUjgSYLi-oxlQidZVkIsWJbukhup4YItYzyc6KIyGVtv_Ti2NfKeAhKGfCDcUz8NMfeEecRjy0MbR2p309h-4iU7b_x7xKvfuWJvD_evmye-fXl83txtea2sGrmwytbG-xp3gBYba4zXIYRyB0E2oKyXhYK0DwpLUSbWmga8rMtGVBBKtWI3c-5A_ceEcXSHfqIuvXRSF5W2RSFNouRM1dTHSNi4gdqjpy8nwJ2KcXMxLhXjfopxOpnUbIoJ7vZIf9H_uL4BnMxnDg |
CitedBy_id | crossref_primary_10_1016_j_jalgebra_2024_02_036 |
Cites_doi | 10.1007/3-540-48199-0_6 10.1142/S0218196721500119 10.1007/s00012-012-0199-7 10.1016/j.jalgebra.2004.07.002 10.1007/3-540-48975-4_1 10.1023/A:1011444711686 10.1007/s11225-007-9083-4 10.1007/3-540-36280-0_3 10.1007/BF01181877 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00012-020-00703-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-8911 |
ExternalDocumentID | 10_1007_s00012_020_00703_4 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 186 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UPT UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 XJT YLTOR Z45 ZMTXR ZWQNP ZY4 ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c363t-1636c5aaceb0e6ef655a4ddd8b0d2f036a2730ef6d3e8186c565f0a2c8f190d83 |
IEDL.DBID | AEJHL |
ISSN | 0002-5240 |
IngestDate | Tue Nov 19 03:49:08 EST 2024 Fri Nov 22 00:52:05 EST 2024 Sat Dec 16 12:09:51 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 06B99 06F05 Residuated lattices Pregroups |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-1636c5aaceb0e6ef655a4ddd8b0d2f036a2730ef6d3e8186c565f0a2c8f190d83 |
OpenAccessLink | https://digitalcommons.chapman.edu/cgi/viewcontent.cgi?article=1701&context=scs_articles |
PQID | 2479467725 |
PQPubID | 2043785 |
ParticipantIDs | proquest_journals_2479467725 crossref_primary_10_1007_s00012_020_00703_4 springer_journals_10_1007_s00012_020_00703_4 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Algebra universalis |
PublicationTitleAbbrev | Algebra Univers |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Buszkowski, W.: Lambek grammars based on pregroups. In: P. de Groote, G. Morrill, C. Retoré (eds.) Logical aspects of computational linguistics, LACL 2001, Lecture Notes in Computer Science, vol. 2099, pp. 95–109. Springer (2001) Lambek, J.: Type grammar revisited. In: A. Lecomte, F. Lamarche, G. Perrier (eds.) Logical aspects of computational linguistics, Lecture Notes in Computer Science, vol. 1582, pp. 1–27. Springer (1999) GalatosNJipsenPPeriodic lattice-ordered pregroups are distributiveAlgebra Univ.2012681–2145150300874210.1007/s00012-012-0199-7 Freese, R., Nation, J.: A simple semidistributive lattice Int. J. Algebra Comput. https://doi.org/10.1142/S0218196721500119 LambekJType grammars as pregroupsGrammars20014213910.1023/A:1011444711686 GalatosNJipsenPKowalskiTOnoHResiduated lattices: an algebraic glimpse and substructural logics, Studies in Logic and the Foundations of Mathematics2007New YorkElsevier1171.03001 Buszkowski, W.: Pregroups: models and grammars. In: H.C.M. de Swart (ed.) Relational Methods in Computer Science, RelMiCS 2001, Lecture Notes in Computer Science, vol. 2561, pp. 35–49. Springer (2002) LambekJSome lattice models of bilinear logicAlgebra Univ.199534541550135748310.1007/BF01181877 BuszkowskiWType logic and pregroupsStud. Logic.2007872–3145169236545710.1007/s11225-007-9083-4 GalatosNTsinakisCGeneralized MV-algebrasJ. Algebra20052831254291210208310.1016/j.jalgebra.2004.07.002 N Galatos (703_CR6) 2007 703_CR2 J Lambek (703_CR10) 2001; 4 W Buszkowski (703_CR3) 2007; 87 703_CR1 703_CR4 N Galatos (703_CR5) 2012; 68 N Galatos (703_CR7) 2005; 283 J Lambek (703_CR8) 1995; 34 703_CR9 |
References_xml | – ident: 703_CR1 doi: 10.1007/3-540-48199-0_6 – ident: 703_CR4 doi: 10.1142/S0218196721500119 – volume: 68 start-page: 145 issue: 1–2 year: 2012 ident: 703_CR5 publication-title: Algebra Univ. doi: 10.1007/s00012-012-0199-7 contributor: fullname: N Galatos – volume: 283 start-page: 254 issue: 1 year: 2005 ident: 703_CR7 publication-title: J. Algebra doi: 10.1016/j.jalgebra.2004.07.002 contributor: fullname: N Galatos – ident: 703_CR9 doi: 10.1007/3-540-48975-4_1 – volume: 4 start-page: 21 year: 2001 ident: 703_CR10 publication-title: Grammars doi: 10.1023/A:1011444711686 contributor: fullname: J Lambek – volume: 87 start-page: 145 issue: 2–3 year: 2007 ident: 703_CR3 publication-title: Stud. Logic. doi: 10.1007/s11225-007-9083-4 contributor: fullname: W Buszkowski – ident: 703_CR2 doi: 10.1007/3-540-36280-0_3 – volume-title: Residuated lattices: an algebraic glimpse and substructural logics, Studies in Logic and the Foundations of Mathematics year: 2007 ident: 703_CR6 contributor: fullname: N Galatos – volume: 34 start-page: 541 year: 1995 ident: 703_CR8 publication-title: Algebra Univ. doi: 10.1007/BF01181877 contributor: fullname: J Lambek |
SSID | ssj0012795 |
Score | 2.2639854 |
Snippet | We prove that the lattice reduct of every lattice-ordered pregroup is semidistributive. This is a consequence of a certain weak form of the distributive law... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
SubjectTerms | Algebra Mathematics Mathematics and Statistics |
Title | Lattice-ordered pregroups are semi-distributive |
URI | https://link.springer.com/article/10.1007/s00012-020-00703-4 https://www.proquest.com/docview/2479467725 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5se9GDb7FaZQ_eNLpNNvs4FttSpHpRoT0t2TxAxLV0W3-_k3R3i6IHPS1kQwgfk8yXzMwXgAuf6a6kBo-pVGgSSJXhPhhnhMYykVmCFmNscfLoMXqYxP2Blclh9dVF_npdRSTdRl3Xurk7E2JPO1aihpGgAS30PRyNu9Ub3I3GdfCARgmvWC9Hj1XWyvw8yld_tCaZ3-Kizt0Md_410V3YLtml11uZwx5s6Hwftu5radbiAG7GYmET3ogT3dTKm821K-0oPDHXXqHfXoiyarruIawPfQjPw8HT7YiUryYQyUK2IEiwQsmFkDrzdahNyLkIlFJx5itq0GEJZCw-tiumrZydREpnfEFlbJAcqJgdQTN_z_UxeIEIeUZjZZiyKu1BEkTUJAyXeKR5V3bbcFlhl85W4hhpLYPsYEgRhtTBkAZt6FTwpuVCKVLqFO6R4vM2XFV4rn__PtrJ37qfwia12Sgu37oDzcV8qc-gUajleWk-9juZTvuf0qu94w |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,49649,49652,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2i7QAMvBGFAhnYwCL1I4-xgpZWtF0oEpvl-CExUKqm5fux3SQVCAZYk8iyjq59j3PvOQa4ColuS2zsMRULjahUmd0HkwzhRKYyS23EGCdO7j_F45fkvutscmiphfHd7mVJ0u_UldjN_zRB7rjjPGoIojVo0DSiNpYbncHkoVdVD3CcspL2MpuyCrHMz6N8TUhrlvmtMOrzTW_3fzPdg52CXwadVUDsw4aeHsD2qDJnzQ_hdigWruUNedtNrYLZXHtxRx6IuQ5y_faKlPPT9VdhfegjeO51J3d9VNybgCSJyAJZihVJJoTUWagjbSLGBFVKJVmosLEpS1jOEtrnimhnaCctqTOhwDIxlh6ohBxDffo-1ScQUBGxDCfKEOV82mlKY2xSYhd5rFlbtptwXYLHZyt7DF4ZIXsYuIWBexg4bUKrxJcXSyXn2HvcW5LPmnBT4rl-_ftop3_7_BI2-5PRkA8H48cz2MKuN8V3X7egvpgv9TnUcrW8KGLpE1n1wCE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sC6IH32K1ag7edGm6jzyOxbZUrUVQwVvY7AM8GEuT-vvd3SYpih7EaxKW8DGb-SYz37cAFz5RPYG1KVMxV4gKmZrvYJQiHIlYpLGJGG3FyePHcPoSDYbWJqdW8btp96oludQ0WJemrOjOpO7Wwjf3AwXZ0sf61RBEG9CippIxkd7qD2_Hk7qTgMOYVRSYmfRVCmd-XuVrcloxzm9NUpd7Rtv_f-sd2Cp5p9dfBsourKlsDzbva9PWfB-6E17YUTjk7DiV9GZz5UQfucfnysvV2yuS1mfXHZH1oQ7geTR8uh6j8jwFJEhACmSoVyAY50KlvgqUDhjjVEoZpb7E2qQybriMb65LoqzRnTBkT_sci0gb2iAjcgjN7D1TR-BRHrAUR1ITaf3baUxDrGNiNn-oWE_02nBZAZnMlrYZSW2Q7GBIDAyJgyGhbehUWCflFsoT7LzvDflnbbiqsF3d_n214789fg7rD4NRMrmZ3p3ABrYjKyZUiN-BZjFfqFNo5HJxVobVJ2uHyOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lattice-ordered+pregroups+are+semi-distributive&rft.jtitle=Algebra+universalis&rft.au=Galatos%2C+Nick&rft.au=Jipsen%2C+Peter&rft.au=Kinyon%2C+Michael&rft.au=P%C5%99enosil%2C+Adam&rft.date=2021-02-01&rft.pub=Springer+International+Publishing&rft.issn=0002-5240&rft.eissn=1420-8911&rft.volume=82&rft.issue=1&rft_id=info:doi/10.1007%2Fs00012-020-00703-4&rft.externalDocID=10_1007_s00012_020_00703_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-5240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-5240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-5240&client=summon |