Neurite transection produces cytosolic oxidation, which enhances plasmalemmal repair
To survive, cells must rapidly repair (seal) plasmalemmal damage. Cytosolic oxidation has been shown to increase cell survival in some cases and produce cell death in other protocols. An antioxidant (melatonin; Mel) has been reported to decrease the probability of sealing plasmalemmal damage. Here w...
Saved in:
Published in: | Journal of neuroscience research Vol. 90; no. 5; pp. 945 - 954 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-05-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To survive, cells must rapidly repair (seal) plasmalemmal damage. Cytosolic oxidation has been shown to increase cell survival in some cases and produce cell death in other protocols. An antioxidant (melatonin; Mel) has been reported to decrease the probability of sealing plasmalemmal damage. Here we report that plasmalemmal damage produces cytosolic oxidation, as assayed by methylene blue (MB) color change in rat B104 hippocampal cells. Plasmalemmal sealing is affected by duration of Ca2+ deprivation and length of exposure to, and concentration of, oxidizing agents such as H2O2 and thimerosal (TH). Cytosolic oxidation by 10 μM to 50 mM H2O2 or 100 μM to 2 mM TH increases the probability of Ca2+‐dependent plasmalemmal sealing, whereas higher concentrations of H2O2 decrease sealing probability and also damage uninjured cells. We also show that antioxidants (Mel, MB) or reducing agents (dithiothreitol) decrease sealing. Proteins, such as protein kinase A, SNAP‐25, synaptobrevin, and N‐ethylmaleimide‐sensitive factor (previously reported to enhance sealing in other pathways), also enhance sealing in this oxidation pathway. In brief, our data show that plasmalemmal damage produces cytosolic oxidation that increases the probability of plasmalemmal sealing, which is strongly correlated with cell survival in other studies. Our results may provide new insights into the etiology and treatment of oxidation‐dependent neurodegenerative disorders, such as Parkinson's, Huntington's, and Alzheimer's diseases. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | To survive, cells must rapidly repair (seal) plasmalemmal damage. Cytosolic oxidation has been shown to increase cell survival in some cases and produce cell death in other protocols. An antioxidant (melatonin; Mel) has been reported to decrease the probability of sealing plasmalemmal damage. Here we report that plasmalemmal damage produces cytosolic oxidation, as assayed by methylene blue (MB) color change in rat B104 hippocampal cells. Plasmalemmal sealing is affected by duration of Ca²⁺ deprivation and length of exposure to, and concentration of, oxidizing agents such as H₂O₂ and thimerosal (TH). Cytosolic oxidation by 10 μM to 50 mM H₂O₂ or 100 μM to 2 mM TH increases the probability of Ca²⁺-dependent plasmalemmal sealing, whereas higher concentrations of H₂O₂ decrease sealing probability and also damage uninjured cells. We also show that antioxidants (Mel, MB) or reducing agents (dithiothreitol) decrease sealing. Proteins, such as protein kinase A, SNAP-25, synaptobrevin, and N-ethylmaleimide-sensitive factor (previously reported to enhance sealing in other pathways), also enhance sealing in this oxidation pathway. In brief, our data show that plasmalemmal damage produces cytosolic oxidation that increases the probability of plasmalemmal sealing, which is strongly correlated with cell survival in other studies. Our results may provide new insights into the etiology and treatment of oxidation-dependent neurodegenerative disorders, such as Parkinson's, Huntington's, and Alzheimer's diseases. To survive, cells must rapidly repair (seal) plasmalemmal damage. Cytosolic oxidation has been shown to increase cell survival in some cases and produce cell death in other protocols. An antioxidant (melatonin; Mel) has been reported to decrease the probability of sealing plasmalemmal damage. Here we report that plasmalemmal damage produces cytosolic oxidation, as assayed by methylene blue (MB) color change in rat B104 hippocampal cells. Plasmalemmal sealing is affected by duration of Ca2+ deprivation and length of exposure to, and concentration of, oxidizing agents such as H2O2 and thimerosal (TH). Cytosolic oxidation by 10 μM to 50 mM H2O2 or 100 μM to 2 mM TH increases the probability of Ca2+‐dependent plasmalemmal sealing, whereas higher concentrations of H2O2 decrease sealing probability and also damage uninjured cells. We also show that antioxidants (Mel, MB) or reducing agents (dithiothreitol) decrease sealing. Proteins, such as protein kinase A, SNAP‐25, synaptobrevin, and N‐ethylmaleimide‐sensitive factor (previously reported to enhance sealing in other pathways), also enhance sealing in this oxidation pathway. In brief, our data show that plasmalemmal damage produces cytosolic oxidation that increases the probability of plasmalemmal sealing, which is strongly correlated with cell survival in other studies. Our results may provide new insights into the etiology and treatment of oxidation‐dependent neurodegenerative disorders, such as Parkinson's, Huntington's, and Alzheimer's diseases. © 2011 Wiley Periodicals, Inc. To survive, cells must rapidly repair (seal) plasmalemmal damage. Cytosolic oxidation has been shown to increase cell survival in some cases and produce cell death in other protocols. An antioxidant (melatonin; Mel) has been reported to decrease the probability of sealing plasmalemmal damage. Here we report that plasmalemmal damage produces cytosolic oxidation, as assayed by methylene blue (MB) color change in rat B104 hippocampal cells. Plasmalemmal sealing is affected by duration of Ca 2+ deprivation and length of exposure to, and concentration of, oxidizing agents such as H 2 O 2 and thimerosal (TH). Cytosolic oxidation by 10 μM to 50 mM H 2 O 2 or 100 μM to 2 mM TH increases the probability of Ca 2+ ‐dependent plasmalemmal sealing, whereas higher concentrations of H 2 O 2 decrease sealing probability and also damage uninjured cells. We also show that antioxidants (Mel, MB) or reducing agents (dithiothreitol) decrease sealing. Proteins, such as protein kinase A, SNAP‐25, synaptobrevin, and N‐ethylmaleimide‐sensitive factor (previously reported to enhance sealing in other pathways), also enhance sealing in this oxidation pathway. In brief, our data show that plasmalemmal damage produces cytosolic oxidation that increases the probability of plasmalemmal sealing, which is strongly correlated with cell survival in other studies. Our results may provide new insights into the etiology and treatment of oxidation‐dependent neurodegenerative disorders, such as Parkinson's, Huntington's, and Alzheimer's diseases. © 2011 Wiley Periodicals, Inc. |
Author | Bittner, G.D. Robison, T. Fan, J.D. Spaeth, C.S. Spaeth, E.B. Wilcott, R.W. |
Author_xml | – sequence: 1 givenname: C.S. surname: Spaeth fullname: Spaeth, C.S. organization: Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas – sequence: 2 givenname: J.D. surname: Fan fullname: Fan, J.D. organization: Section of Neurobiology, University of Texas at Austin, Austin, Texas – sequence: 3 givenname: E.B. surname: Spaeth fullname: Spaeth, E.B. organization: Section of Neurobiology, University of Texas at Austin, Austin, Texas – sequence: 4 givenname: T. surname: Robison fullname: Robison, T. organization: Section of Neurobiology, University of Texas at Austin, Austin, Texas – sequence: 5 givenname: R.W. surname: Wilcott fullname: Wilcott, R.W. organization: Section of Neurobiology, University of Texas at Austin, Austin, Texas – sequence: 6 givenname: G.D. surname: Bittner fullname: Bittner, G.D. email: bittner@mail.utexas.edu organization: Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22497022$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtOwkAUhicGIxdd-AKmWxMLc-ttqSgoIWgM6nIyzJyGwdI2MyXA21ussHNzzknO9_-Lr4taeZEDQtcE9wnGdLDKbZ_SmLIz1CE4iXwe8KiFOpiF2OeY0DbqOrfCGCdJwC5Qm1KeRJjSDprPYGNNBV5lZe5AVabIvdIWeqPAeWpfFa7IjPKKndHy8Lzztkujlh7kS5kfmDKTbi0zWNfDs1BKYy_ReSozB1d_u4c-Rk_z4bM_fR2_DO-nvmIhY76KQ47rUynNGMUK0gVEJIlkSJTWEU-55rEiaRzHOljIRBMJBEMiqVIp0SnrodumV9nCOQupKK1ZS7sXBIuDGVGbEb9mavamYcvNYg36RB5V1MCgAbYmg_3_TWIyez9W-k3CuAp2p4S03yKMWBSIr9lYDN-mD5_z0UQ8sh8P0IEb |
CitedBy_id | crossref_primary_10_1186_s40580_022_00298_7 crossref_primary_10_1002_jnr_24232 crossref_primary_10_1002_hed_25122 crossref_primary_10_1002_jnr_23685 crossref_primary_10_1016_j_expneurol_2016_02_001 crossref_primary_10_4103_1673_5374_187019 crossref_primary_10_1007_s00018_018_2888_7 crossref_primary_10_1002_jnr_23704 crossref_primary_10_1016_j_semcdb_2015_09_023 crossref_primary_10_3389_fphys_2023_1114779 crossref_primary_10_3390_ijms23084451 crossref_primary_10_4103_1673_5374_308099 crossref_primary_10_1016_j_jneumeth_2018_12_015 crossref_primary_10_1002_mus_27975 crossref_primary_10_1016_j_freeradbiomed_2014_09_024 crossref_primary_10_3390_ijms20061478 crossref_primary_10_4103_NRR_NRR_D_23_01220 crossref_primary_10_1016_j_ceb_2017_03_011 crossref_primary_10_1016_j_mcn_2020_103534 crossref_primary_10_3389_fphys_2019_00828 |
Cites_doi | 10.1083/jcb.200502031 10.1038/labinvest.2010.36 10.1016/j.neulet.2008.06.005 10.1523/JNEUROSCI.14-11-06638.1994 10.1007/s00401-010-0788-5 10.1523/JNEUROSCI.22-01-00209.2002 10.1523/JNEUROSCI.3213-07.2008 10.1074/jbc.M406327200 10.1016/S0197-0186(03)00101-3 10.1002/neu.20005 10.1073/pnas.76.1.514 10.1002/j.1460-2075.1994.tb06834.x 10.1016/j.neulet.2010.03.078 10.1016/j.mcn.2005.01.005 10.1523/JNEUROSCI.4483-03.2004 10.1126/science.7904084 10.1074/jbc.M603952200 10.1002/1097-4547(20001115)62:4<566::AID-JNR11>3.0.CO;2-4 10.1083/jcb.129.1.105 10.1038/sj.jcbfm.9600399 10.1016/j.neuroscience.2009.07.012 10.1523/JNEUROSCI.18-20-08292.1998 10.1073/pnas.67.1.305 10.1038/ncb1812 10.1523/JNEUROSCI.4155-10.2010 10.1083/jcb.131.6.1747 10.1101/gad.471708 10.1074/jbc.M702582200 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: Copyright © 2012 Wiley Periodicals, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1002/jnr.22823 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1097-4547 |
EndPage | 954 |
ExternalDocumentID | 10_1002_jnr_22823 22497022 JNR22823 ark_67375_WNG_CPLBVTFJ_D |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Lone Star Paralysis Foundation – fundername: NINDS NIH HHS grantid: R01 NS081063 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 YYP ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-c3633-c8640c36ccd3320cefbe7197a61cdd74f4d48c1f888d5ba9d1ae10e9a2ccf1df3 |
IEDL.DBID | 33P |
ISSN | 0360-4012 |
IngestDate | Thu Nov 21 22:21:37 EST 2024 Sat Sep 28 07:50:30 EDT 2024 Sat Aug 24 01:00:34 EDT 2024 Wed Oct 30 09:51:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3633-c8640c36ccd3320cefbe7197a61cdd74f4d48c1f888d5ba9d1ae10e9a2ccf1df3 |
Notes | ArticleID:JNR22823 istex:396A148C618E95F2A913CD0D77AD9FEB623597F4 Lone Star Paralysis Foundation ark:/67375/WNG-CPLBVTFJ-D C.S. Spaeth's and E.B. Spaeth's current address is University of Texas Southwestern Medical School, 6000 Harry Hines Blvd, Dallas, TX 75390. |
PMID | 22497022 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1002_jnr_22823 pubmed_primary_22497022 wiley_primary_10_1002_jnr_22823_JNR22823 istex_primary_ark_67375_WNG_CPLBVTFJ_D |
PublicationCentury | 2000 |
PublicationDate | 2012-05 May 2012 2012-May 2012-05-00 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of neuroscience research |
PublicationTitleAlternate | J. Neurosci. Res |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Cai C,Musumiya H,Weisleder N,Matsuda N,Nishi M,Hwang M,Ko JK,Lin P,Thornton A,Zhao X,Pan Z,Komazaki S,Brotto M,Takeshima H,Ma J. 2009. MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11: 56-64. Bi GQ,Alderton JM,Steinhardt RA. 1995. Calcium regulated exocytosis is required for cell membrane sealing. J Cell Biol 131: 1747-1758. Krause TL,Fishman HM,Ballinger ML,Bittner GD. 1994. Extent and mechanism of sealing in transected giant axons of squid and earthworms. J Neurosci 14: 6638-6651. Gilman AG. 1970. A protein binding assay for adenosine 3′:5′ cyclic monophosphate. Proc Natl Acad Sci U S A 67: 305-312. Spaeth CS,Boydston EA,Figard LR,Zuzek A,Bittner GD. 2010. A model for sealing plasmalemmal damage in neurons and other eukaryotic cells. J Neurosci 30: 15790-15800. Togo T. 2004. Long term potentiation of wound-induced exocytosis and plasma membrane repair is dependent on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway. J Biol Chem 279: 4996-5003. Tuoc TC,Stoykova A. 2008. TRIM11 modulates the function of neurogenic transcription factor Pax6 through ubiquitin-proteosome system. Genes Dev 22: 1972-1986. Ma M,Zhang J,Akhlaq AF,Chen P,Ong W. 2010. Effects of cholesterol oxidation products on exocytosis. Neurosci Lett 476: 36-41. Detrait ER,Yoo SM,Eddleman CS,Fukuda M,Bittner GD,Fishman HM. 2000. Plasmalemmal repair of severed neurites of PC12 cells requires Ca2+ and synaptotagmin. J Neurosci Res 62: 566-573. Wingo TS,Rosen A,Cutler DJ,Lah JJ,Levey AI. 2010. Praoxonase-1 polymorphisms in Alzheimer's disease, Parkinson's disease, and AD-PD spectrum diseases. Neurobiol Aging [E-pub ahead of print]. Chan PH,Kawase M.,Murakami K,Chen SF,Li Y,Calagui B,Reola L,Carlson E,Epstein CJ. 1998. Overexpression of Sod1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18: 8292-8299. van Diepen MT,Spencer GE,van Minnen J,Gouwenberg Y,Bouwman J,Smit AB,van Kesteren RE. 2005. The molluscan RING-finger protein L-TRIM is essential for neuronal outgrowth. Mol Cell Neurosci 29: 74-81. Garcia EP,McPherson PS,Chilcote TJ,Takei T,DeCamilli P. 1995. rbSec1A and B colocalize with syntaxin1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J Cell Biol 129: 105-120. Yoo S,Bottenstein JE,Bittner GD,Fishman HM. 2004. Survival of mammalian B104 cells following neurite transection at different locations depends on somal Ca2+ concentration. J Neurobiol 60: 137-153. Rojas JC,Simola N,Kermath BA,Kane JR,Schaller T,Gonzalez-Lima F. 2009. Striatal neuroprotection with methylene blue. Neurosci 163: 877-889. Steinhardt RA,Bi G,Alderton JM. 1994. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263: 390-393. Brennan JP,Bardswell SC,Burgoyne JR,Fuller W,Schroder E,Wait R,Begum S,Kentish JC,Eaton P. 2006. Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281: 21827-21836. Celsi F,Ferri A,Casciati A,D'Ambrosi N,Rotilio G,Costa A,Volente C,Carri MT. 2004. Overexpression of superoxide dismutase 1 protects against beta-amyloid peptide toxicity: effect of estrogen and copper chelators. Neurochem Int 44: 25-33. Chen L,Baoshan X,Liu L,Luo Y,Yin J,Zhou H,Chen W,Shen T,Han X,Huang S. 2010. Hydrogen peroxide inhibits mTOR signaling by activation of AMPK alpha leading to apoptosis of neuronal cells. Lab Invest 90: 762-773. Bottenstein JE,Sato GH. 1979. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A 76: 514-517. Matsushita K,Morrell CN,Mason RJA,Yamakuchi M,Khanday FA,Irani K,Lowenstein C J. 2005. Hydrogen peroxide regulates endothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor. J Cell Biol 170: 73-79. Sugawara T,Noshita N,Lewen A,Gasche Y,Ferrand-Drake M,Fujimura M,Morita-Fujiura Y,Chan PH. 2002. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci 22: 209-217. Chang S,Jiang X,Zhao C,Lee C,Ferriero D. 2008. Exogenous low dose hydrogen peroxide increases hypoxia-inducible factor-1alpha protein expression and induces preconditioning protection against ischemia in primary cortical neurons. Neurosci Lett 441: 134-138. Horie H,Kadoya T,Hikawa N,Sango K,Inoue H,Takeshita K,Asawa R,Hiroi T,Sato M,Yoshioka T,Ishikawa Y. 2004. Oxidized galection-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 24: 1873-1880. Gerstner B,DeSilva TM,Genz K,Armstrong A,Brehmer F,Neve RL,Felderhoff-Mueser U,Volpe JJ,Rosenberg PA. 2008. Hyperoxia causes maturation-dependent cell death in the developing white matter. J Neurosci 28: 1236-1245. Hayashi T,McMahon H,Yamasaki S,Binz T,Hata Y,Sudhof TC,Niemann H. 1994. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13: 5051-5061. Humphries K,Pennypacker JK,Taylor SS. 2007. Redox regulation of cAMP-dependent protein kinase signaling: kinase vs. phosphotase inactivation. J Biol Chem 282: 22072-22079. Agresti A. 1996. An introduction to categorical data analysis. New York: John Wiley & Sons. p 60-64. Lee J,Kosaras B,Del Signore SJ,Cormier K,McKee A,Ratan RR,Kowal NW,Ryu H. 2011. Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington's disease mice. Acta Neuropathol 121: 487-498. Endo H,Nito C,Kamada H,Yu F,Chan PH. 2007. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab 27: 975-982. 2004; 44 2005; 170 2004; 60 2007; 282 2010 2004; 24 1996 1995; 131 2008; 441 1979; 76 2005; 29 2009; 11 1998; 18 2004; 279 2000 1994; 263 2008; 28 2010; 476 2002; 22 1970; 67 2000; 62 1995; 129 1994; 14 1994; 13 2008; 22 2009; 163 2006; 281 2010; 90 2010; 30 2011; 121 2007; 27 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 Agresti A (e_1_2_6_2_1) 1996 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Bittner GD (e_1_2_6_4_1) 2000 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 Wingo TS (e_1_2_6_31_1) 2010 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 29 start-page: 74 year: 2005 end-page: 81 article-title: The molluscan RING‐finger protein L‐TRIM is essential for neuronal outgrowth publication-title: Mol Cell Neurosci – volume: 279 start-page: 4996 year: 2004 end-page: 5003 article-title: Long term potentiation of wound‐induced exocytosis and plasma membrane repair is dependent on cAMP‐response element‐mediated transcription via a protein kinase C‐ and p38 MAPK‐dependent pathway publication-title: J Biol Chem – volume: 24 start-page: 1873 year: 2004 end-page: 1880 article-title: Oxidized galection‐1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy publication-title: J Neurosci – volume: 131 start-page: 1747 year: 1995 end-page: 1758 article-title: Calcium regulated exocytosis is required for cell membrane sealing publication-title: J Cell Biol – volume: 76 start-page: 514 year: 1979 end-page: 517 article-title: Growth of a rat neuroblastoma cell line in serum‐free supplemented medium publication-title: Proc Natl Acad Sci U S A – volume: 281 start-page: 21827 year: 2006 end-page: 21836 article-title: Oxidant‐induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation publication-title: J Biol Chem – volume: 13 start-page: 5051 year: 1994 end-page: 5061 article-title: Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly publication-title: EMBO J – volume: 44 start-page: 25 year: 2004 end-page: 33 article-title: Overexpression of superoxide dismutase 1 protects against beta‐amyloid peptide toxicity: effect of estrogen and copper chelators publication-title: Neurochem Int – volume: 22 start-page: 209 year: 2002 end-page: 217 article-title: Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation publication-title: J Neurosci – volume: 22 start-page: 1972 year: 2008 end-page: 1986 article-title: TRIM11 modulates the function of neurogenic transcription factor Pax6 through ubiquitin‐proteosome system publication-title: Genes Dev – volume: 27 start-page: 975 year: 2007 end-page: 982 article-title: Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase‐3beta survival signaling publication-title: J Cereb Blood Flow Metab – volume: 163 start-page: 877 year: 2009 end-page: 889 article-title: Striatal neuroprotection with methylene blue publication-title: Neurosci – volume: 129 start-page: 105 year: 1995 end-page: 120 article-title: rbSec1A and B colocalize with syntaxin1 and SNAP‐25 throughout the axon, but are not in a stable complex with syntaxin publication-title: J Cell Biol – volume: 263 start-page: 390 year: 1994 end-page: 393 article-title: Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release publication-title: Science – volume: 67 start-page: 305 year: 1970 end-page: 312 article-title: A protein binding assay for adenosine 3′:5′ cyclic monophosphate publication-title: Proc Natl Acad Sci U S A – volume: 30 start-page: 15790 year: 2010 end-page: 15800 article-title: A model for sealing plasmalemmal damage in neurons and other eukaryotic cells publication-title: J Neurosci – volume: 11 start-page: 56 year: 2009 end-page: 64 article-title: MG53 nucleates assembly of cell membrane repair machinery publication-title: Nat Cell Biol – volume: 18 start-page: 8292 year: 1998 end-page: 8299 article-title: Overexpression of Sod1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion publication-title: J Neurosci – volume: 28 start-page: 1236 year: 2008 end-page: 1245 article-title: Hyperoxia causes maturation‐dependent cell death in the developing white matter publication-title: J Neurosci – start-page: 60 year: 1996 end-page: 64 – volume: 121 start-page: 487 year: 2011 end-page: 498 article-title: Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington's disease mice publication-title: Acta Neuropathol – start-page: 337 year: 2000 end-page: 370 – volume: 62 start-page: 566 year: 2000 end-page: 573 article-title: Plasmalemmal repair of severed neurites of PC12 cells requires Ca and synaptotagmin publication-title: J Neurosci Res – volume: 14 start-page: 6638 year: 1994 end-page: 6651 article-title: Extent and mechanism of sealing in transected giant axons of squid and earthworms publication-title: J Neurosci – volume: 441 start-page: 134 year: 2008 end-page: 138 article-title: Exogenous low dose hydrogen peroxide increases hypoxia‐inducible factor‐1alpha protein expression and induces preconditioning protection against ischemia in primary cortical neurons publication-title: Neurosci Lett – volume: 476 start-page: 36 year: 2010 end-page: 41 article-title: Effects of cholesterol oxidation products on exocytosis publication-title: Neurosci Lett – volume: 90 start-page: 762 year: 2010 end-page: 773 article-title: Hydrogen peroxide inhibits mTOR signaling by activation of AMPK alpha leading to apoptosis of neuronal cells publication-title: Lab Invest – volume: 60 start-page: 137 year: 2004 end-page: 153 article-title: Survival of mammalian B104 cells following neurite transection at different locations depends on somal Ca concentration publication-title: J Neurobiol – volume: 170 start-page: 73 year: 2005 end-page: 79 article-title: Hydrogen peroxide regulates endothelial exocytosis by inhibition of N‐ethylmaleimide sensitive factor publication-title: J Cell Biol – year: 2010 article-title: Praoxonase‐1 polymorphisms in Alzheimer's disease, Parkinson's disease, and AD‐PD spectrum diseases publication-title: Neurobiol Aging [E‐pub ahead of print] – volume: 282 start-page: 22072 year: 2007 end-page: 22079 article-title: Redox regulation of cAMP‐dependent protein kinase signaling: kinase vs. phosphotase inactivation publication-title: J Biol Chem – ident: e_1_2_6_23_1 doi: 10.1083/jcb.200502031 – ident: e_1_2_6_11_1 doi: 10.1038/labinvest.2010.36 – ident: e_1_2_6_10_1 doi: 10.1016/j.neulet.2008.06.005 – ident: e_1_2_6_20_1 doi: 10.1523/JNEUROSCI.14-11-06638.1994 – ident: e_1_2_6_21_1 doi: 10.1007/s00401-010-0788-5 – ident: e_1_2_6_27_1 doi: 10.1523/JNEUROSCI.22-01-00209.2002 – start-page: 337 volume-title: Axonal regeneration in the central nervous system year: 2000 ident: e_1_2_6_4_1 contributor: fullname: Bittner GD – ident: e_1_2_6_15_1 doi: 10.1523/JNEUROSCI.3213-07.2008 – ident: e_1_2_6_28_1 doi: 10.1074/jbc.M406327200 – ident: e_1_2_6_8_1 doi: 10.1016/S0197-0186(03)00101-3 – ident: e_1_2_6_32_1 doi: 10.1002/neu.20005 – ident: e_1_2_6_5_1 doi: 10.1073/pnas.76.1.514 – ident: e_1_2_6_17_1 doi: 10.1002/j.1460-2075.1994.tb06834.x – ident: e_1_2_6_22_1 doi: 10.1016/j.neulet.2010.03.078 – ident: e_1_2_6_30_1 doi: 10.1016/j.mcn.2005.01.005 – ident: e_1_2_6_18_1 doi: 10.1523/JNEUROSCI.4483-03.2004 – ident: e_1_2_6_26_1 doi: 10.1126/science.7904084 – ident: e_1_2_6_6_1 doi: 10.1074/jbc.M603952200 – ident: e_1_2_6_12_1 doi: 10.1002/1097-4547(20001115)62:4<566::AID-JNR11>3.0.CO;2-4 – start-page: 60 volume-title: An introduction to categorical data analysis year: 1996 ident: e_1_2_6_2_1 contributor: fullname: Agresti A – ident: e_1_2_6_14_1 doi: 10.1083/jcb.129.1.105 – ident: e_1_2_6_13_1 doi: 10.1038/sj.jcbfm.9600399 – year: 2010 ident: e_1_2_6_31_1 article-title: Praoxonase‐1 polymorphisms in Alzheimer's disease, Parkinson's disease, and AD‐PD spectrum diseases publication-title: Neurobiol Aging [E‐pub ahead of print] contributor: fullname: Wingo TS – ident: e_1_2_6_24_1 doi: 10.1016/j.neuroscience.2009.07.012 – ident: e_1_2_6_9_1 doi: 10.1523/JNEUROSCI.18-20-08292.1998 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.67.1.305 – ident: e_1_2_6_7_1 doi: 10.1038/ncb1812 – ident: e_1_2_6_25_1 doi: 10.1523/JNEUROSCI.4155-10.2010 – ident: e_1_2_6_3_1 doi: 10.1083/jcb.131.6.1747 – ident: e_1_2_6_29_1 doi: 10.1101/gad.471708 – ident: e_1_2_6_19_1 doi: 10.1074/jbc.M702582200 |
SSID | ssj0009953 |
Score | 2.2005978 |
Snippet | To survive, cells must rapidly repair (seal) plasmalemmal damage. Cytosolic oxidation has been shown to increase cell survival in some cases and produce cell... |
SourceID | crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 945 |
SubjectTerms | Animals Antioxidants - pharmacology axonal repair Axotomy B104 cells calcium Calcium - metabolism Cell Line, Tumor Cell Membrane - drug effects Cell Membrane - physiology Cytosol - drug effects Cytosol - physiology Dose-Response Relationship, Drug Drug Interactions H2O2 Hydrogen Peroxide - pharmacology melatonin methylene blue neurite transection Neurites - drug effects Neurites - metabolism Neuroblastoma - pathology Oxidants - pharmacology oxidation Oxidation-Reduction - drug effects plasmalemmal damage Protein Kinase Inhibitors - pharmacology Rats Time Factors Wound Healing - drug effects Wound Healing - physiology |
Title | Neurite transection produces cytosolic oxidation, which enhances plasmalemmal repair |
URI | https://api.istex.fr/ark:/67375/WNG-CPLBVTFJ-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.22823 https://www.ncbi.nlm.nih.gov/pubmed/22497022 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYLlzYl7LJQghxIBAvSWxxYitVhSoEZblFie2oBTWtkiLg7xk7tMABCYlL5IOzaGacec8av0FoV4fClyKVHk-48bgW3BNCZZ5WiqSERUS5ZhON26j1KM4vrEzO8egsTKUPMd5wsyvD_a_tAk_S8uhLNPQpLw4pEAar9AkswR3fYNdfgruyUqBkoQ8cidCRqpBPj8Z3_shF09asb98S0Xew6rJNfe5f3zmPZj9BJj6pomIBTZh8ES2d5ECwe-94D7uyT7efvoTaVp4DcCce2qzlCrNyPHA6sKbE6n3YL610MO6_dav2Swf4tdNVHWzyjo2YEg8AgPcgz_TgggtIb91iGd3VL9pnDe-z1YKnWMiYp0TIfRgqpRmjvjJZaiIioyQkSuuIZ1xzoUgGfFkHaSI1SQzxjUyoUhnRGVtBU3k_N2sIg-s50K6QangmzQIpVehLanwdCAB3QQ3tjIweDypFjbjSTqYx2Cp2tqqhPeeO8YykeLYlaFEQP7Qu47Prq9P7dr0Zn9fQauWv8UzAJDICZFJD-84tv78kbrZu3GD971M30AxAJlqVPG6iqWHxYrbQZKlftl38fQCbkdxu |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VONBLaUsfgdKuKoQ44OJ92N6VuPBKUxoiVALtbeXsrpW0ihM5QcC_Z3ZNAj0gVerF2sP4oZlZzzej2W8ANm0qYyV7KhK5cJGwUkRSmiKyxtAe5Rk1YdhE6zzr_JJHx54mZ292Fqbmh5gX3PzOCP9rv8F9QXr3gTX0d1l9YZgx8AVYEik6oj_Awc8eKHdVzUHJ0xizJMpmvEIx253f-lc0WvKKvXkUih7D1RBvmiv_96Uv4cU9ziT7tWO8gmeufA2r-yXm2MNbskVC52coqa9C1zN0IPQkUx-4Qm9WScaBCtZNiLmdjiaePZiMbgb1BKYdct0fmD5xZd87zYSMEYMPMdQM8UIqjHCD6g1cNI-7h63oftpCZHjKeWRkKmJcGmM5Z7FxRc9lVGV5So21mSiEFdLQAlNmm_RyZWnuaOxUzowpqC34W1gsR6V7DwStLzDzSpnFZ7IiUcqksWIutolEfJc04PNM63pck2romj6ZadSVDrpqwFawx1wir_74LrQs0T87X_XhWfvgsts80UcNeFcbbC6JsERlCE4asB3s8vRL9EnnR1is_bvoJ1hudU_buv2t830dniOCYnUH5AdYnFZXbgMWJvbqY3DGO5Hq4JY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4VkFAvfUHbtKVYCCEObFk_dtdWT0BIeSmKIBRu1sb2KmmVTbQJKvz7jr0kwKFSJS4rH7wPzYz3-8YafwOwaVMZK9lTkciFi4SVIpLSFJE1hvYoz6gJzSaOLrL2tWweepmc77OzMLU-xHzDza-M8L_2C3xsi90H0dBfZfWNYcLAF2BJIA33wvmcdx4Ud1UtQcnTGJMkymayQjHbnd_6BIyWvF1vHyHRY7Ya4Kb1-lkf-gZe3bNMsleHxVt44cp3sLJXYoY9vCNbJNR9hg31Feh6fQ4knmTqYStUZpVkHIRg3YSYu-lo4rWDyeh2UPdf2iF_-gPTJ67s-5CZkDEy8CECzRAvpEJ8G1SrcNk67B4cRfe9FiLDU84jI1MR49AYyzmLjSt6LqMqy1NqrM1EIayQhhaYMNuklytLc0djp3JmTEFtwd_DYjkq3Ucg6HuBeVfKLD6TFYlSJo0Vc7FNJLK7pAEbM6PrcS2poWvxZKbRVjrYqgFbwR3zGXn129egZYm-av_QB52z_Z_d1oluNuBD7a_5TCQlKkNq0oDt4JZ_v0SftM_D4NP_T12H5U6zpc-O26ef4SXSJ1aXP36BxWl149ZgYWJvvoZQ_AvzDN88 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurite+transection+produces+cytosolic+oxidation%2C+which+enhances+plasmalemmal+repair&rft.jtitle=Journal+of+neuroscience+research&rft.au=Spaeth%2C+C.S.&rft.au=Fan%2C+J.D.&rft.au=Spaeth%2C+E.B.&rft.au=Robison%2C+T.&rft.date=2012-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0360-4012&rft.eissn=1097-4547&rft.volume=90&rft.issue=5&rft.spage=945&rft.epage=954&rft_id=info:doi/10.1002%2Fjnr.22823&rft.externalDBID=10.1002%252Fjnr.22823&rft.externalDocID=JNR22823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon |